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ABSTRACT

Large-eddy simulations of laminar-turbulent transition

due to Tollmien-Schlichting (TS) waves and their control by

steady boundary-layer streaks are performed. The streaks

are forced at the inflow as optimal solutions to the linear

parabolic stability equations (PSE), and the TS-waves are

excited via a harmonic volume force (together with small-

amplitude noise) within the computational domain . The

results show, in agreement with recent experimental and

theoretical studies, that significant damping of unstable

two-dimensional TS-waves of various frequencies can be ob-

tained. The damping characteristics are mainly dependent

on the streak amplitude. A new phenomena is also identi-

fied which is characterised by the strong amplification via

nonlinear interactions of the second spanwise harmonic of

the streak when the streak amplitude is comparable to the

TS amplitude. Moreover, visualisations of the flow field are

used to highlight the different vortical structures and their

interactions that are relevant to this flow case.

INTRODUCTION

The reduction and control of the viscous drag force ex-

erted on thin bodies moving in a fluid is of great technical

interest. Several active and passive methods to achieve a

delay of laminar-turbulent transition in the boundary layer

have been developed in the past. The study by Cossu

and Brandt (2002) showed the stabilisation of the Tollmien-

Schlichting (TS) waves by steady streaks of finite amplitude

in the Blasius boundary layer. In the presence of streaks, i.e.

spanwise modulation of the two-dimensional bounday-layer

flow, the unstable TS-waves evolve from two-dimensional

waves to spanwise modulated waves, referred to as streaky

TS-waves. They have similar phase speed as their two-

dimensional counterpart and are less unstable. The exper-

iments by Fransson et al. (2005) confirmed the theoretical

predictions and demonstrated that such a stabilising effect

can indeed lead to transition delay (Fransson et al., 2006).

In this study, we perform a numerical study of such a sta-

bilisation in a realistic framework in order to investigate the

effect of streaks of varying amplitude, spacing, and the cor-

responding sensitivity of the transition delay. In particular,

the evolution of perturbations at low streak amplitudes, i.e.

when the amplitude of both TS-waves and streaks are com-

parable, is considered.

SIMULATION APPROACH AND VALIDATION

Numerical method

The presented simulation results are obtained using

a spectral method to solve the three-dimensional, time-

dependent, incompressible Navier-Stokes equations (see

Lundbladh et al. (1999)). In the streamwise and spanwise di-

rections, Fourier series are used whereas the wall-normal di-

rection is discretised with Chebyshev polynomials. The pe-

riodic boundary conditions in streamwise direction are com-

bined with a spatially developing boundary layer by adding a

“fringe region” at the end of the domain. In this region, the

outflowing fluid is forced via a volume force to the prescribed

inflow velocity field, which in this case consists of a Blasius

boundary layer profile (zero-pressure gradient) with super-

imposed optimal streaks (see below). The inflow is located

at Reynolds number Reδ∗
0

= U∞δ∗
0
/ν = 300 (correspond-

ing to Rex = 32000), where ν is the fluid viscosity, U∞ the

free-stream velocity and δ∗
0

the displacement thickness at the

inlet. The simulation box has dimensions Lx×Ly×Lz equal

to 2000× 60× 180 in the streamwise, wall-normal and span-

wise directions, respectively, made non-dimensional based

on δ∗
0
. Results are obtained with a resolution Nx ×Ny ×Nz

of 512×121×128 grid points. With this resolution the use of

large-eddy simulation (LES) is necessary to obtain accurate

results. For this purpose the ADM-RT model is employed

(Schlatter et al., 2004). With this model, the effect of the

unresolved spatial scales is accounted for by adding to the

momentum equations a relaxation term proportional to the

high-pass filtered velocity field, i.e. −χHN ∗ui. Here, χ is a

model coefficient which is set constant in the present work,

HN∗ symbolises the action of the high-order high-pass filter
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defined in three dimensions, and ui is the grid-filtered veloc-

ity. The relaxation term acts as an energy sink and thereby

inhibits the build-up of energy near the numerical cutoff.

The ADM-RT model was found to be well suited for the

spectral simulations of transitional flows. In particular, the

vortical structures during breakdown can be predicted ac-

curately in both the temporal and spatial setting (Schlatter

et al., 2006).
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Figure 1: Stability diagram showing the neutral curve for

two-dimensional TS waves. The dashed line signifies the

computational domain with inlet at Rex = 32000 (◦), and

the cross × indicates the streamwise position where the vol-

ume forcing is applied. The dotted line is the fringe region

downstream of Rex = 590000.

TS-wave generation

The TS-waves are forced at Rex = 60000 by a har-

monic volume force acting in the wall-normal direction at

a non-dimensional frequency F = 120, corresponding to

ω0 = 0.036, see Figure 1. The rms-TS amplitude at branch I

(Rex ≈ 150000) is approximately 0.76%. Small-amplitude

steady, spanwise random noise is also introduced. This will

trigger secondary instability of the two-dimensional waves

leading to K-type transition shortly after branch II if no con-

trol is applied. The validation of the forcing of the TS-waves

is presented in Figure 2, which displays the perturbation

streamwise velocity profile slightly after branch I in com-

parison with linear stability theory (LST). Figure 3 shows

the growth rate of the wall-normal maximum of the stream-

wise velocity fluctuation compared to results from solving

the (linear) parabolic stability equations (PSE). The TS-

waves evolve nonlinearly into a saturated state, therefore

also a comparison with lower amplitude forcing is provided

in the figure. Good agreement with LST and PSE is ob-

tained by the current LES for both the velocity profile and

the growth rate of the TS-waves.
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Figure 2: Comparison of TS-waves obtained by LES with

LST. urms at Rex = 216000, LES, • LST.

The nonlinear evolution and breakdown of the TS-waves

is also correctly captured by the current LES, as shown in

Figure 4 where the classic subharmonic scenario by Her-

bert (1993) is reproduced. In the plot, the evolution of the
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Figure 3: Comparison of TS-waves obtained by LES

with LST and PSE. Wall-normal maximum of urms for

uncontrolled case with random 3D disturbances,

2D nonlinearly-saturated TS-wave, linear low-

amplitude TS-wave (rescaled), ◦ PSE.

relevant Fourier components of the perturbation fields is dis-

played and compared to PSE.
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Figure 4: Evolution of various Fourier modes for H-type

(subharmonic) transition (Herbert, 1993). current

LES; symbols: PSE. • mode (ω0, 0), � (ω0/2, βcrit),

◭ (2ω0, 0), N (3ω0/2, βcrit).

Streak generation

The complete velocity vector field obtained with the lin-

ear code developed by Levin and Henningson (2003) is used

to force the desired streaky perturbation at the inflow of

the computational domain. These streaks are introduced

in the fringe region by adding them to the laminar Blasius

profile UB . The streaks considered are optimally growing

perturbations, i.e. solution of the linearised boundary-layer

equations, and are characterised by the spanwise wavenum-

ber βst = 2π10/Lz and the streamwise location of their

maximum amplitude (Rex ≈ 185000). The latter values

are chosen to approximatively match the streaks in the ex-

periments by Fransson et al. (2005). The different values

of the streak amplitudes considered are reported in Table 1.

The streak amplitude Ast is defined as:

Ast(x) =

»

max
y,z

(U − UB) − min
y,z

(U − UB)

–

/2U∞

Note that the streaks of largest amplitude are susceptible to

secondary inviscid instability (Andersson et al., 2001).

RESULTS

Two-dimensional waves

Several LES using the above setup have been performed.

The results presented are obtained by averaging in time and

in the spanwise direction and by performing Fourier analysis

on the velocity fields saved during one or two periods of the
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Table 1: Amplitudes Ast of the streaks used for the various

simulations.

Streak Ast at inlet Ast,max Rex of maximum

A 29% 39% 120000

B 20% 32% 150000

C 10% 19% 170000

D 5% 10% 195000

E 2.6% 5.1% 190000

F 1.7% 3.4% 185000

G 0.6% 1.2% 185000

N 0% 0% n/a

Re
x

E
in

t

1 2 3 4 5

x 10
5

10
−8

10
−6

10
−4

10
−2

Figure 5: Energy integrated in the wall-normal direction

contained in mode (ω0, 0) of the two-dimensional TS waves

at F = 120 in the presence of streaks. streak B,

streak C, streak E, streak F, no

streak (case N).

TS-waves. Analysis of the spectral content of the velocity

fields has been performed by Fourier transforming a number

of full velocity fields in time and in the spanwise direction,

where modes are denoted by (ω0, βst)-pairs in the following.

The linear evolution of the TS-waves in the streaky bound-

ary layer is considered first. The results confirm the finding

by Cossu and Brandt (2002) and Fransson et al. (2005);

streaks of increasing amplitude have a stronger quenching

effect on the unstable waves (Fig. 5). Figure 6 displays the

behaviour of TS-waves of lower frequency in a longer do-

main. By comparing with the streak amplitude in the lower

plot it is evident that the observed stabilisation is related to

the local streak amplitude. In the following we will there-

fore consider only waves with frequency F = 120, with the

assumption that the effect of the streak amplitude can be re-

lated to that of the wave frequency. Lower frequencies will

be amplified further dowmstream and will ride on streaks

of lower amplitudes; in other words, what is found at lower

streak amplitudes can also be observed for stronger streaks,

only further downstream and with waves of lower F .

The wall-normal disturbance profiles of the streamwise

velocity belonging to the streaky TS-waves averaged in the

spanwise direction are reported in Figure 7. The typical M-

shaped structure, i.e. featuring two local maxima of the rms

values close to the wall, observed in previous numerical and

experimental studies, is well captured by the current LES.

Influence of the spanwise scale of the streak

Simulations of transition featuring TS-waves and streaks

under controlled conditions have been performed to investi-

gate the effect of the streak spanwise scale on the stabilisa-

tion and possible transition delay. It is observed that if the

TS-waves reach sufficiently high amplitudes, i.e. of the order
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Figure 6: Streak C and 2D TS-waves of different ampli-

tude and frequency. F = 120, ATS = 2.575 · 10−5,

F = 70, ATS = 1.692 · 10−4, F = 50, ATS =

1.000 ·10−3. a) Mode (ω0, 0), thick lines are only TS-waves,

thin lines controlled with streak C. • position of branch I

and II according to LST. b) Streak amplitude urms,max.
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Figure 7: Waveforms of the streaky TS-waves com-

pared to the corresponding normal TS waves ( ) at

Rex = 482000. The amplitude of the streaky waves are

rescaled by 110 to account for the lower growth rate.

of 0.5% of the free-stream velocity, and the streaks are char-

acterised by the spanwise scale of the unstable secondary

instability modes, turbulent breakdown is indeed promoted

by the presence of the steady streaks. If, on the other

hand, the streak spacing is chosen too narrow, the coupling

between TS-wave and streak is low leading to a reduced

damping effect. Therefore, the streak spanwise wavenum-

ber used in the following results is chosen about three times

larger than that of the most unstable wavenumber of sec-

ondary instability. This scale roughly corresponds to that

already used in the experiments by Fransson et al. (2005).

2D waves with small-amplitude noise

The transition delay obtained in the presence of the

steady streaks is displayed in Figure 8. The uncontrolled

reference case is given by the two-dimensional forcing at

F = 120 (exciting two-dimensional TS-waves) and a steady

forcing random in the spanwise direction. The amplitude

of the random forcing is more than one order of magni-

tude lower than that for the TS-wave. The described setup

will lead to K-type breakdown characterised by an aligned
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pattern of Λ-vortices which subsequently break down to

turbulence. When increasing the streak amplitude, the

transition location moves monotonically downstream. The

skin-friction coefficient cf (Fig. 8a))remains at the laminar

value for the two cases with streaks of largest amplitude

(streaks C and D), an increase of cf by a few percent be-

ing only observable where they reach their peak amplitude.

The explanation for the observed stabilisation is provided

in Figure 8b) where the shape factor H12 associated to the

base flows under consideration is reported. The presence

of the streaks progressively reduces the value of H12 in the

initial laminar region thus stabilising the flow. Figure 8c)

shows the level of streamwise velocity perturbation in the

boundary layer, accounting for the presence of the streaks.

For large amplitudes of the latter, urms,max is dominated by

the steady contribution, so the curves basically display the

streamwise streak development. Conversely, in the absence

of streaks the pertubation consists mainly of TS-waves and

the breakdown can be identified by the sharp rise in the fluc-

tuation level at higher Rex. For intermediate values of the

streak amplitudes, both the initial amplitude of these span-

wise modulation and the breakdown further downstream can

be seen.
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Figure 8: a) Skin friction coefficient cf , b) shape factor H12,

and c) urms,max averaged in time and spanwise direction.

Streak C, streak D, streak E, streak

F, case N (uncontrolled).

Results of the Fourier analysis are presented in Figure

9 for streaks C, D and E. For the largest streak ampli-

tude, streak C considered in Figure 9a), the fundamental

steady streak can be seen as the only dominant mode (0, βst).
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Figure 9: Energy integrated in the wall-normal direc-

tion for selected From a) to c): Streaks C, D, E, re-

spectively. Steady streak (0, βst), TS-wave

(ω0, 0), first harmonic of streak (0, 2βst), first

harmonic of streaky TS-wave (ω0, βst), oblique mode

(ω0, βst/3), sum of all displayed modes.

Both the two-dimensional and oblique TS-waves are quickly

damped, and the first harmonic of the streak (0, 2βst) re-

mains as the second largest mode. For this the mode as-

sociated with the TS-wave (ω0, 0) does not experience any

significant growth. In this case, the flow is well described

by the linear evolution of TS-waves in a spanwise modu-

lated boundary layer as in the analysis by Cossu and Brandt

(2004).

On the other hand, the simulations with streaks of lower

amplitudes, cases D and E, Ast = 5% and 2.6% respectively,

(Figs. 9b) and c)) highlight a new physical phenomenon

observed at those low streak amplitudes when streaks and

TS-waves have similar strength. Thus, more complex non-

linear interactions between both disturbances can take place.

Initially, the (0, βst) streaky mode is dominating, reducing

the growth of the streaky TS-waves (ω0, 0 . . . 2βst). (Com-

parison with the uncontrolled case is not shown here due to

lack of space.) Further downstream, Rex > 4 · 105, how-

ever, a significant growth of oblique modes (ω0, βst) is seen.

This induces, by nonlinear interactions, a strong amplifi-

cation of the steady (0, 2βst) mode, i.e. a doubling of the

initial streaks is observed (see also the visualisation in Fig-

ure 11b)). Towards the end of the domain, also a growth

of the mode (ω0, βst/3) can be observed, eventually lead-

ing to breakdown further downstream, as partially shown

in Figure 11b)). Note that the streak doubling occurs also
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without the presence of the noise (see below), but in that

case it is not followed by turbulent breakdown. The latter

is associated to the growth of oblique modes of subharmonic

frequency and wavenumber, i.e. the mode (ω0, βst/3).

Flow visualisations

Instantaneous visualisations of the flow field are shown

in Figure 10 for five streak amplitudes, streaks A, C, D, F

and N, and with the same boundary layer excitation (TS-

waves and three-dimensional steady noise). In these top

views of the three-dimensional flow, light grey isosurfaces in-

dicate vortical structures identified by using the λ2 criterion,

the second largest eigenvalue of the Hessian of the pressure,

whereas isosurfaces in lighter and darker grey visualise low-

and high-speed streaks, respectively. In the case of streak A,

Fig. 10a), breakdown occurs well within the computational

domain. Streak A is indeed unstable to linear perturbations

(Andersson et al., 2001). The relevant vortical structures

at the late stage of transition are quasi-streamwise vortices

aligned in a staggered pattern and following the spanwise os-

cillations of the low speed streak. The scenario observed is

the same as that arising from the sinuous secondary instabil-

ity of a steady streak examined by Brandt and Henningson

(2002). This scenario has been identified by the latter au-

thors as the most likey to occur in the case of steady streaks

of amplitudes Ast larger than approximately 26% of the free-

stream velocity. Conversely, streak C is not strong enough

to undergo direct secondary instability leading to transition.

However, it is strong enough to substantially quench the

growth of the TS-waves. In agreement with the experimental

findings, a clean spanwise-modulated base flow can there-

fore be seen in Figure 10b); the slow downstream decay of

the streak amplitude is also evident. Further decreasing the

streak amplitude, nonlinear development of the TS-waves is

observed. For the case in Figure 10c) using streak D with

steady random noise, this leads to the formation of aligned

Λ-structures, associated with the streak doubling discussed

above. Considering streak E in Figure 11b) amplification

of oblique modes is observed at the end of the computa-

tional domain, triggering transition of the new streaky base

flow, dominated by the doubled mode (0, 2βst), close to the

outflow. For streaks C and D, however, breakdown is not

occurring within the computational domain. The streak of

lowest amplitude (streak F), conversely, is not able to re-

duce the TS-waves enough to prevent transition: turbulent

flow can indeed be seen at the end of the computational

domain in Figure 10d). The last plot, Fig. 10e), displays

the uncontrolled case. Aligned Λ-structures, typical of the

K-type scenario, can clearly be observed. In summary, Fig-

ure 10 depicts the various possible transition mechanisms in

a boundary layer with streamwise streaks: From the classic

K-type scenario (at low streak amplitude) to bypass tran-

sition of high-amplitude streaks. In between these limiting

cases, stabilisation and transition delay is achieved by means

of spanwise modulations of the base flow by means of mod-

erate amplitude streaks.

The case of richest nonlinear interaction between streaks

and TS-waves of the same order of amplitude, leading

to the streak doubling, is further examined in Figure 11.

In Fig. 11a), the clean case is considered, i.e. only two-

dimensional TS-waves and streaks are excited in the numer-

ical simulation without any additional noise. Figure 11b)

displays the flow when steady three-dimensional noise is also

added by a streamwise localised forcing, whereas the data in

Fig. 11c) pertain to the flow with time-dependent three-

dimensional noise. Noise obviously needs to be added to

trigger laminar-turbulent transition. The streak doubling is

clearly observed in the clean case as well. This feature is

therefore neither affected nor triggered by the presence of

steady noise. However, in the presence of noise, transition

can be observed at the end of the computational domain: Λ

and hairpin vortices can be distinguished in the flow. In the

case of time-dependent noise transition occurs much earlier,

however still later than in the uncontrolled case (not shown

here). The streak doubling is present also in this case even

though it is not so evident in the present figure, but can

clearly be identified via Fourier transform (not shown). The

results confirm that for the parameter settings considered

here the subharmonic breakdown is the most rapid one. The

computations presented have also been performed with un-

steady noise and the results give a picture of the effect of the

streaks on the subharmonic transition scenario (and associ-

ated delay) similar to the effect on the transition induced by

the three-dimensional steady noise.

The figure also shows another important finding: The

noise forced upstream obviously survives during the streak

dubling process and subsequently determines the transition

scenario observed further downstream.

CONCLUSIONS

The experimental results presented by Fransson et al.

(2006) have been successfully reproduced in our numeri-

cal simulations using LES. We are indeed able to show the

stabilising effect of finite amplitude steady streaks on the

evolution of TS-waves and the following transition delay in a

realistic numerical setup. The use of LES allowed very large

computational domains both in the streamwise and span-

wise direction. Further, random background noise of steady

and unsteady nature is excited in the flow in addition to the

disturbances we wish to consider (streaks and TS-waves),

in order to trigger transition in a natural way. The effect

of varying the streak amplitude is analysed, and a new phe-

nomena is outlined at low streak amplitudes (or for lower TS

frequencies) where more complicated nonlinear interactions

are obviously possible. The interaction between TS-waves

and streaks of comparable amplitudes leads indeed to a sig-

nificant growth of oblique modes (ω0, βst). This induces, by

nonlinear interactions, a strong amplification of the steady

(0, 2βst) mode, i.e. a doubling of the initial streaks is ob-

served.

Additionally, the effect of the streak spanwise scale is

considered. The results indicate that stabilisation and tran-

sition delay is possible if the streak wavenumber does not

correspond to those of the natural secondary instability of

the TS-waves, in the latter case transition promotion is ob-

served. However, if the TS-waves are very weak and the

streaks are able to keep their amplitudes to those character-

istics of a linear behaviour breakdown is not occurring.

Results presented here are mainly for the case where

small-amplitude steady noise was used to trigger natural

transition. A series of simulations was also performed with

time-dependent three-dimensional random excitations. The

results are similar to those presented and are therefore not

reported in detail.

The response of the boundary layer to fully three-

dimensional excitations, an important study which was not

carried out in the experiments, is being performed. The

results indicate that the passive control strategy proposed

by Cossu and Brandt (2002) and verified by Fransson et al.

(2006) is going to be successful when the streaks interact
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a)

b)

c)

d)

e)

Figure 10: Top view of the three-dimensional flow structures for streaks A, C, D, F, N (uncontrolled), from a) to e). Green

isocontours represent the λ2 = −0.00008 vortex-identification criterion, red and blue isocontours are positive and negative

disturbance velocity u′ = ±0.07, respectively. Flow from left to right.

a)

b)

c)

Figure 11: Top view of the three-dimensional flow structures for streak E (same contour levels as in Figure 10). a) clean

TS-wave, b) steady noise, c) unsteady noise.

with TS-waves of low amplitudes. If, on the other hand,

the transition scenario is not characerised the exponential

growth of TS-waves (e.g. bypass transition), the control with

streamwise streaks appears to be not as successful. However,

this will be considered in more detail in future investigations.
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