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ABSTRACT

In this contribution we investigate the development of

turbulent spots in supersonic boundary layers by means of

direct numerical simulations. The spot structure is analysed

and mean velocity profiles and Reynolds stresses are deter-

mined applying ensemble averaging over many simulations.

The near field of the spots reveals waves propagating away

from the spot in semi-circular patterns. Spot characteris-

tics such as the approximate self-similarity and the resulting

spreading angle and effects of Mach and Reynolds numbers

are discussed and compared with results from literature.

INTRODUCTION

The occurrence of turbulent spots in laminar flow was

reported in early transition experiments (Emmons, 1951;

Schubauer and Klebanoff, 1955). The transition process is

described as a randomly distributed emergence of turbulent

spots which initially grow linearly. They subsequently merge

and develop into turbulent flow. The assumption of approx-

imate linear growth characteristics of the spot (also called

self-similarity) together with its random distribution func-

tion has been taken as a basis for transition modelling. In

order to obtain knowledge about their spreading mechanism,

the growth of individual turbulent spots has been investi-

gated. Simulations for incompressible boundary layers (see

e.g. Breuer and Haritonidis, 1990; Singer and Joslin, 1994,

among others) provided details about the flow structure of

turbulent spots.

Turbulent spot growth in high-speed boundary layers

has been studied far less frequently. The influence of the

Mach number on spot growth has been discussed based on

experimental results (Fischer, 1972; Fiala et al., 2006) but

not finally explained. Recently, direct numerical simulations

(DNS) of spot growth in compressible boundary layers were

performed by Krishnan and Sandham (2006a,b, 2007). In

the present contribution, we study the growth of turbulent

spots in laminar boundary layers at different Mach numbers

also by means of DNS. After briefly describing the numerical

approach we present an analysis of a transitional boundary

layer with respect to spot structure and turbulence statistics.

The analysis is continued by investigating the Mach number

effect on spot growth. The near field of turbulent spots is

investigated and the growth is quantified and compared with

the literature.

SIMULATION METHODOLOGY

Supersonic isothermal-wall boundary layers on a flat

plate with a wall temperature equal to the adiabatic laminar

boundary-layer solution are considered. At the outer edge

of the computational domain non-reflecting boundary condi-

tions are applied. Dirichlet boundary conditions with sponge

zones are used at the inflow and outflow boundaries. In

the spanwise direction periodicity is applied. To specify the

initial and boundary conditions a boundary-layer similar-

ity solution according to Howarth-Dorodnitsyn (Stewartson,

1964) is used. At moderate Reynolds numbers, differences

between the boundary-layer approximation and the Navier-

Stokes solution exist which are on the order of the small

physical disturbances present in our simulation. Therefore,

in our simulations a forcing term is applied to the Navier-

Stokes equations that maintains the laminar boundary layer

solution when no disturbances are present.

A sixth-order compact finite-difference scheme (Lele,

1992) is used for spatial discretisation and a low-storage

third-order Runge-Kutta method (Williamson, 1980) or the

classical forth order Runge-Kutta method are employed for

time-marching. The convective terms are expressed in skew-

symmetric form following Honein and Moin (2004) to en-

hance numerical stability. The viscous terms are expanded

to damp grid-to-grid oscillations.

A vortex pair (emulating an oscillating membrane) is su-

perimposed on the laminar boundary-layer solution to spec-

ify the initial disturbance. In the present study we adopt the

disturbance definition used by Breuer and Haritonidis (1990)

for triggering spots in incompressible flat-plate boundary

layer flow,

Ψ = ǫ · (x/lx)(y/ly)(z/lz)3e−(x/lx)
2
−(y/ly)

2
−(z/lz)

2

(1a)

(ρu)′ = 0, (ρv)′ = Ψy , (ρw)′ = −Ψz (1b)

(triggering disturbance). The dimensions of the vortex pair

in terms of the boundary layer displacement thickness are

lx = 10/3, ly = 4, lz = 4/5 and the strength is ǫ = 1 for all

simulations where (x, y, z) and (u, v, w) are the coordinates

and velocities, respectively, in the streamwise, spanwise and

wall-normal directions. Variables are non-dimensionalised

with the freestream velocity U∞ and the displacement thick-

ness δ1 at the triggering position of the spot.

We start with considering a transonic boundary layer

transition at M = 1.1, Re = 800 denoted by case A1.

Here the Reynolds number is defined by Re = U∞δ1/ν∞
with values taken at the triggering position. Box dimen-

sions and resolutions are given in Table 1. Due to the lack

of any temporal or spatial homogeneity statistical properties

are determined by averaging ensembles of different realisa-

tions of the spot. For this purpose the spots are triggered

by superimposing small random disturbances to the vortex

pair disturbing the laminar boundary-layer solution. The

random noise has a homogeneous isotropic energy spectrum

with a Fourier amplitude distribution according to

|ûn| = |v̂n| = |ŵn| =
1
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(|K| = wavenumber magnitude, kp = 4.2). The phases of

the Fourier modes were chosen randomly (distributed uni-
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Table 1: Flow and simulation parameters.

M Re Lx Ly/2 Lz Nx Ny Nz

A1 1.1 800 175 37.5 37.5 767 384 195

A2 1.1 1500 175 37.5 37.5 1580 385 385

B1 5.0 3000 250 54 37.5 1116 294 294

B2 5.0 5000 210 51 37.5 1900 525 595

C 5.0 800 210 37.5 37.5 988 207 299

formly over [0, 2π)) and for each simulation the collectivity

of the phases comprises an independent uniform distribu-

tion. The homogeneous noise is modulated with the initial

disturbance of the vortex pair, resulting in

(ρu)′(un + 1), (ρv)′(vn + 1), (ρw)′(wn + 1) (3)

as the actual disturbance imposed. In this way the noise only

affects the main disturbance (but not the surrounding lam-

inar flow) and is made inhomogeneous, realising especially

the zero velocity at the wall. The slight spanwise asymme-

try of the spots generated in this manner is used to double

the statistical sample size by averaging over spanwise mirror

positions.

SPOT GROWTH

The initial disturbance is strong enough to cause a fast

development into a turbulent spot. The spot grows locally

without creating significant disturbances far from its centre

(Smaller initial disturbances at moderate Reynolds number

may extend over the whole computational domain before

becoming turbulent).

Figures 1-3 show iso-contours of the wall-normal vortic-

ity ωz and of the second invariant λ2 (see Jeong and Hussain

(1995)) for case A1. The spot shows the typical properties

such as the lifted tip, elongated streamwise structures in the

tail region and an arrowhead-like plan-view shape. Compar-

ing the visualisations of ωz at different times gives insight

into the disturbance development. Starting from the elon-

gated structures at early times a breakdown occurs and a

turbulent region is established. At the tail of the spot the

primary elongated structures are maintained and multiply.

No primary hairpin vortex of the type reported by Singer

and Joslin (1994) and Krishnan and Sandham (2006a) is

visible immediately after triggering. This is seen as the re-

sult of the different triggering procedure (in these previous

studies a blow mechanism was employed to trigger turbulent

spots). However, at a later stage a vortex system on the tip

appears like in Singer and Joslin (1994). Our results look

very similar compared to the incompressible case (Breuer

and Haritonidis, 1990).

Figure 4 shows Favre-averaged streamwise velocity

profiles in the mid-plane. The difference between the

laminar profile and the spot region is clearly visible. The

logarithmic region is only partially developed at this stage of

transition. Disturbances are shown by means of the stream-

wise Reynolds normal stress ρ̄ gu′′u′′ in Figure 5. Strong

fluctuations are visible in the core of the spot and at the

lateral tails, whereas in the region of the tip vortex system

the fluctuations are rather small. The Reynolds shear stress

−ρ̄ gu′′w′′ (Figure 6) has its maxima at the same locations.

HIGHER MACH AND REYNOLDS NUMBERS

Apart from the transonic boundary layers at M = 1.1

(case A1) discussed previously we also consider supersonic

boundary-layer flows at M = 5 (case B). Reynolds number

effects are considered at both Mach numbers: The cases A1

and B1 are complemented by the corresponding cases A2

and B2 at higher Reynolds numbers. Furthermore, we in-

vestigate the effect of wall cooling at M = 5 at moderate

Reynolds number (case C). Table 1 summarises the respec-

tive flow and simulation parameters. In contrast to case A1

we apply a spanwise-symmetry condition at the mid-plane

y = Ly/2 in all other cases. On the one hand, this sup-

presses any asymmetric flow structures. On the other hand,

the saving of computational effort allows to consider other

spot features of particular interest, e.g. the near field. Exper-

iments and simulations with broken symmetry (such as case

A1 in the present contribution or Levin (2005)) indicate that

turbulent spots are likely to develop in a symmetric manner.

No noise is imposed in cases A2-C.

We first consider the transonic flow case A2. An increase

of the Reynolds number at the triggering position leads to an

enhanced growth of the spot and results in a larger extent of

the spot at an earlier time (Figure 7) compared to the lower

Reynolds number case (Figure 3). A similar phenomenology

is found for spots in the high-supersonic regime (Figures 8,

9) which will be discussed below.

Straightforward comparisons of results at different Mach

numbers are difficult. The desirable choice of an equal

Reynolds number would raise the question of how to choose

the reference viscosity (freestream or at the wall) and the

reference length (e.g. displacement or momentum thickness).

These quantities show a different ratio when the Mach num-

ber changes. For the present investigation, the Reynolds

number has been chosen heuristically to provide a similar

development of the disturbance (all boundary layers are sig-

nificantly linearly unstable). A similar problem arises for

the triggering procedure (Eq. (1)) which delivers the desired

results but e.g. the size of the vortex pair could in principle

also be related to a reference other than the displacement

thickness.

Unlike in the transonic case, at high Mach number domi-

nant spanwise structures close to the wall are present during

the whole transition process. They have been observed also

by Krishnan and Sandham (2006a) in their M = 6 case and

have been associated with the presence of a Mack mode.

Starting from the tip of the spot the spanwise structures

decrease in magnitude towards the tail (Figure 8 bottom

and mid-plane view). They are large and ordered com-

pared to the typical hairpin vortices. Due to the presence of

the spanwise-directed structures, hairpins (visible in the top

view) are located away from the wall. The phenomenon is

seen as a purely transitional one. Our simulation at higher

Reynolds number shows more-turbulent behaviour at the

wall (see bottom view of case B2, Figure 9). At the tip

streamwise structures are dominant but degenerate towards

the centre of the spot. Investigations of fully developed com-

pressible turbulent boundary layers (e.g. Maeder et al., 2001)

and wave-induced transition (Adams and Kleiser, 1996) have

not indicated any dominance of large-scale spanwise struc-

tures.

One explanation of the different boundary-layer proper-

ties in dependency of Mach number can be given by linear

stability theory. In general instabilities in boundary layers

have large amplitudes in specific critical layers where the

linear eigensolution phase velocity equals the velocity of the
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base flow (Maslowe, 1986). For the transitional M = 1.1 case

the least stable mode is a viscous one similar to a Tollmien-

Schlichting wave with an oblique orientation. At M = 5.0

the so-called Mack mode is dominant, i.e. a second inflec-

tional (inviscid) two-dimensional mode. The corresponding

critical layer is located farther away from the wall than

that of the dominant mode of the transonic boundary layer.

The Mack mode shows acoustic behaviour at the wall and

vortical one at the critical layer. Wave-induced transition

based on this mode has been investigated by Adams and

Kleiser (1996). As far as the properties of the laminar flow

continue into the transitional region for the M = 5 case

the Mack mode can be associated with the observed struc-

tures as claimed by Krishnan and Sandham (2006a). High

vorticity close to the critical layer leads to small-scale struc-

tures whereas pressure fluctuations close to the wall generate

large-scale spanwise structures in a more ordered way. An

estimate of the wavelength and comparison to inviscid so-

lutions (Mack, 1984) suggests the presence of a higher than

second mode. A further aspect is the steep temperature

gradient at a large distance from the wall. In a turbulent

boundary layer it can feed the large temperature fluctuations

which are dominant there. Large temperature fluctuations

are predicted by Morkovin’s hypothesis and have been previ-

ously confirmed by Maeder et al. (2001) using DNS. Together

with the locally smaller viscosity these effects dominate com-

pared to the region of steepest velocity gradient close to the

wall. The turbulent motion is fed in the region of large tem-

perature gradient leading to the presence of a wide range of

scales of motion associated with various structures. Close

to the wall fluctuations are driven by high velocity gradi-

ents but high viscosity permits large-scale motion only, as is

observed with the spanwise structures. Further downstream

mixing leads to large temperature gradients closer to the

wall and the effect becomes weaker.

In order to investigate the effect of wall temperature, the

simulation C has been performed with a cooled wall in which

the wall temperature is set equal to the free-stream temper-

ature. The iso-surfaces of λ2 (Figure 10) show a different

spot shape compared to the adiabatic wall case (Figures 8,

9). The effect of spanwise structures close to the wall is more

pronounced than in case B1. Typical turbulent structures

are just about to develop at this time instant.

NEAR FIELD OF TURBULENT SPOTS

A widely discussed point is the occurrence of waves in

conjunction with turbulent spots. Wygnanski et al. (1979)

found waves on the tail which generated new spots. Only

a fraction of later investigations confirmed the existence of

waves following the spot (Singer, 1996). An evaluation of

the characteristics of the near field might bring insight into

this aspect. The iso-contours of λ2 in Figures 3 and 7-9 show

semi-circular patterns reminiscent of disturbances propagat-

ing away from a point source. This effect appears more

dominant for the high Reynolds number simulations (Fig-

ures 7, 9 (cases A2, B2)) than for lower Reynolds numbers

(Figures 3, 8 (cases A1, B1)) at the specific λ2 iso-value

chosen. The downstream-propagating disturbances origi-

nate from the turbulent region of the spot. The vortex

system at the tail moves with the spot but does not emit

disturbances. The semi-circular wave pattern with some

irregularities appears to be dominated by one mode, accom-

panied by further, possibly subharmonic modes of smaller

magnitude. Note that the waves originating from periodic

neighbours of the spot interact with each other and cre-

ate interference patterns (see Figures 7, 8). For case B2

the dominant wavelength is smaller than of the least stable

second-mode instability according to inviscid theory (Mack,

1984). These observations, which are different from those

of Wygnanski et al. (1979) may be attributed to differences

in characteristic parameters such as the Mach number. At

early stages the waves can be attributed to the primary vor-

tex system not being fully turbulent, while at later stages

the spreading structures clearly emanate from the core of the

turbulent spot. Our study differs from most of the previous

investigations, in which no waves were shown surrounding

the spot, by the presence of significant compressibility ef-

fects. However, the discrepancy in observing the presence of

waves might perhaps also be explained by the weakness of

the effect. The existence of propagating waves in the vicinity

of the spot can be expected if some linear eigensolution ex-

ists with a group velocity larger than the propagation speed

of the border of the spot. In any case disturbances radiate

from the spot into the near field since turbulence radiates

noise in general. There is no indication of the creation of

new turbulent spots by the surrounding waves. The growth

of radiated disturbances and subsequent breakdown into tur-

bulence appears possible but was not observable within our

limited computational domain. It has been discussed in the

literature whether the spreading of turbulent spots can be

associated with a wave-induced transition scenario. Within

the relatively small area of waves surrounding the turbulent

spots no analogy between the turbulent spot growth and

wave-induced transition scenarios can be established.

SPOT GROWTH RATES

Early experiments (see e.g. Emmons (1951)) report a self-

similarity of turbulent spots based on a linear growth of the

spot size which is quantified by its constant spreading an-

gle. Based on experimental results, Fischer (1972) showed

a reduction of the growth rate with increasing Mach num-

ber. The spot growth in our simulations has been estimated

in the time frame between the onset of turbulence and the

end of the computations and self-similarity can be confirmed

within a certain accuracy. The spot edges have been ar-

bitrarily defined by ωz = ±0.1 iso-values. The spreading

half-angles estimated from our spot simulations are shown in

Figure 11, confirming the tendency of decreasing spreading

angles with increasing Mach number. However, it must be

mentioned that according to our simulations the Reynolds

number at the triggering position also has a strong influ-

ence on the observed spreading. This is an effect known

from parallel (fixed Reynolds number) flows such as plane

Couette flow (Lundbladh and Johansson, 1991) but needs

further clarification for growing boundary layers with con-

tinuously increasing Reynolds number. It is likely that the

Reynolds numbers range in Fischer (1972) (the values are

not documented) is higher than in our simulations and thus

presumably lead to more perfect linear growth. Reynolds

number effects are only one possible reason for the differ-

ent spreading rates seen in the experimental results: other

parameters such as freestream turbulence might have an in-

fluence as well. The correlation of Fischer (1972) is based on

a limited variety of experiments. A wider range of spreading

angles appears possible and may explain some discrepancies

between simulations and experiments. An estimate of the

growth rate for the cooled wall simulation (case C) is small

compared to the adiabatic case B. This suggests stronger

Mach number effects on the spot growth for non-adiabatic

boundary layers.
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Note that for the related case of a point source distur-

bance within a compressible boundary layer (Balakumar and

Malik, 1992) spreading angles similar to those of turbulent

spots (Fischer, 1972) have been determined.

CONCLUSIONS

Simulations of turbulent spots growing in supersonic

boundary layers have been performed. At high Mach num-

ber the transition process within the boundary layer pro-

ceeds at a certain distance from the wall first. Close to

the wall a sublayer exists where disturbances are only weak.

It has been shown for all Mach and Reynolds numbers in-

vestigated that turbulent spots generate disturbances which

propagate away in the streamwise and lateral directions,

forming semicircular wave patterns. The investigation of a

cooled wall revealed a multitude of large corrugated vortical

structures together with distinct streamwise elongated struc-

tures at the onset of transition. Self-similarity of the spot

growth described in the literature could be largely confirmed.

The spreading angles lie within or close to the experimental

range (Fischer, 1972), Figure 11.
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Figure 1: Iso-surfaces of ωz = ±0.1, single sample, case A1,

t = 77.
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Figure 2: Iso-surfaces of ωz = ±0.1, single sample, case A1,

t = 228.
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Figure 3: Iso-surfaces of λ2, case A1, t = 228, bottom-view,

mid-plane side-view, top-view. Bottom and top view are

coloured with streamwise velocity, dark: low values, light:

high values.
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Figure 4: Profiles of Favre-averaged streamwise velocity ũ,

case A1, t = 228.
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Figure 5: Reynolds normal stress ρ̄ gu′′u′′, case A1, t = 228,

mid-plane side-view, z=3-plane top-view, light: low values,

dark: high values.
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Figure 6: Reynolds shear stress −ρ̄ gu′′w′′, case A1, t = 228,

mid-plane side-view, z=3-plane top-view, light: low values,

dark: high values.
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Figure 7: Iso-surfaces of λ2, M = 1.1, Re = 1500, case A2,

t = 185, arrangement as in Figure 3.
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Figure 8: Iso-surfaces of λ2, M = 5, Re = 3000, case B1,

t = 338, arrangement as in Figure 3.
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Figure 9: Iso-surfaces of λ2, M = 5, Re = 5000, case B2,

t = 153.7, arrangement as in Figure 3.

 0
 5

 10
 15
 20

    

-30

-20

-10

 0

 10

 20

 30

 150  200  250  300

Figure 10: Iso-surfaces of λ2, M = 5, Re = 800, TW = T∞,

case C, t = 332, mid-plane side-view and top-view.
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Figure 11: Spreading half-angle (estimated), + case A1, ×
case A2, ∗ case B1, ◦ case B2, ⋄ case C, shaded area exper-

imental correlation of Fischer (1972).

842


	TSFP5 Author indexA4.pdf
	Sheet1




