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ABSTRACT

The characteristics of large-scale, periodic features as-

sociated with separation behind a three-dimensional hill-

shaped obstruction in a duct are explored using proper

orthogonal decomposition (POD) and extended POD, with

particular emphasis being placed on the question of whether

or not these features depend on the Reynolds number. De-

spite the wide range of Reynold number investigated (Re =

1300, Re = 13, 000 and Re = 130, 000), significant simi-

larities among corresponding low-order POD modes and in

the flow structure of the reconstructed flow fields for the

three flows are found. These suggest a single mechanism

for the formation of large-scale features associated with pe-

riodic shedding, regardless of the Reynolds number. The

POD spectra also show strong similarities, especially above

Re=13,000.

INTRODUCTION

For over two decades, a large proportion of the research

into wall-turbulence has been devoted to identifying distinct

types of structure in sheared near-wall layers. It is now

commonly accepted that near-wall flows are dominated, at

least at relatively low Reynolds numbers, by large-scale, en-

ergetic, hairpin-like, vortical structures, with legs anchored

close to the wall and heads extending to the middle part

of the boundary layer (Zhou et al., 1999). These structures

are continually deformed by shear into elongated streamwise

streaks that are self-sustaining or self-regenerating (Jimenez

and Pinelli, 1999). One important reason for the intense in-

terest in coherent-structure identification and classification

is that friction drag is closely linked to the near-wall struc-

tures, and any promising attempt to control drag rely on a

modification of these structures or an intervention into the

mechanism that sustain them - although there is uncertainty

on whether the above structural mechanisms, observed at

low values of the Reynolds number, pertain to the much

higher values encountered in practice.

While hairpin-shaped vortices have been studied princi-

pally in the context of simple near-wall shear, very similar

structures have been observed in other wall-bounded con-

figurations, including ones in which near-wall layers are

subjected to major distortions by geometric obstacles. One

example is the flow around a hemisphere on a flat wall,

studied extensively by Acarlar and Smith (1987). Based

on observations of the behaviour of large-scale structures in

the flow, Acarlar and Smith (1987) characterise the flow as

comprising three distinct parts: the tip – located between

two subsequent hairpin vortices, the head – located near the

top part of the flow, and the legs – dominated by streamwise

vorticity. The head contains both transverse and streamwise

vorticity, which makes its visualisation difficult using classi-

cal tools. Regular patterns are observed up to ReR = 3400

(with R being the radius of the hemisphere). At higher val-

ues, however, these coherent structures become elusive, and

their existence is somewhat speculative. One important pa-

rameter in this respect is the size of the sphere compared to

boundary layer thickness. For low values of this ratio, and

at low Reynolds number, hairpins created by the hemisphere

tend to be assimilated into the hairpins created naturally

within the turbulent boundary layer. At higher Reynolds

number, however, the size of hairpins in the boundary layer,

scaled on the viscous layer, is small and then there is a scale

separation between the two families of hairpin structures.

Two further examples in which hairpin vortices have been

observed are, first, the flow behind a triangular tab on a

flat plate, in which Dong and Meng (2004) described the

existence of Ω-shaped vortices downstream of the tab; and

second, the flow behind a hemispherical pimple on a cylin-

der aligned in the streamwise direction, in which Hsieh and

Wang (1996) found hairpin-type structures aft of the pimple.

This paper reports an investigation into the flow struc-

ture, in general, and hairpin-shaped features, in particular,

in the wake following separation from the leeward side of

a 3d hill-shaped obstacle immersed in a turbulent flat-plate

boundary layer (within a duct) of thickness 0.5 times the

hill height at a Reynolds number of 130,000 (based on the

hill height and free-stream velocity). This configuration has

become, over the past 5 years, a popular test case for RANS

and LES prediction schemes. This popularity stems from

the combination offered by this case of geometric simplicity,

physical complexity – associated with a generic separation

from a curved surface – and the availability of very detailed

LDA and HWA experimental data reported by Simpson et

al. (2002). Among a number of computational studies for

this case reported over the past two years, that of Tessicini

et al. (2007), undertaken with LES and hybrid LES-RANS

methods, is probably the most comprehensive, and this also

reviews earlier studies. All these studies focused, almost ex-

clusively, on mean-flow properties - in particular, the flow

topology on the hill surface, the mean velocity and the tur-

bulence energy. However, the paper by Tessicini et al also

contains a brief discussion of some unsteady features, includ-

ing a fleeting exposure of the vortical structure in the wake

behind the hill. In contrast, this paper provides a detailed

examination of structural features that illuminate important

physical processes that arise in the course of the highly un-

steady separation process from the curved hill surface.

Conventionally, the structural features of flow fields pre-

dicted with simulation techniques is visualised (or attempted
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to be visualised) by means of (combinations of) iso-contours

for vorticity, pressure and/or several structure-identification

criteria, such as ”Q” or ”λ2” 1. At low Reynolds numbers,

these methods are quite effective, as the flow is dominated

by relatively large-scale structures embedded within a rather

smooth “background flow”. However, at high values of

the Reynolds number, the flow tends to be very complex

and fine-grained, containing structures that span a broad

range of length and time scales. In such circumstances, con-

ventional visualisation methods are much less effective or,

indeed, entirely ineffective. Here, we illustrate the effec-

tiveness of using a low-order representation of the predicted

flow using Proper Orthogonal Decomposition (POD). This

method is usually used to reduce the amount of information

required to describe complex turbulent flows, by focusing on

the most energetic scales. Here, the focus is on applying

this method to highlight major structural features. Another

novel feature of the present work is that the Reynolds-

number dependence of the structures is investigated, over

a range spanning from low to moderately high values, for a

fixed geometric configurations, based on data derived from

a set of simulations. This is in contrast to studies of Acar-

lar and Smith (1987) who focused on low Reynolds numbers

only and Persson et al (2006) who have studied the same test

case as that considered herein, but at a single Reynolds num-

ber. For turbulent boundary layers on flat plate, Liu et al.

(1994) have shown experimentally that the one-dimensional

spectra of the POD in the outer part of a boundary layer are

independent of the Reynolds number. This indicates that

the ”heads” of the hairpin vortices, which protrude into the

outer reaches of the log-law region, evolve independently of

the inner layer. Whether this insensitivity to Reynolds num-

ber applies here too is one issue that is addressed below,

using flow visualisation following filtering out of small scale

(low-energy) features of the flow via POD.

FLOW CONFIGURATION AND NUMERICAL METHODS

Fig. 1 shows the geometry of the three-dimensional hill,

the 1.5-million-node mesh used to discretize the flow do-

main and major mean-flow characteristics in the separated

region on the leeward side of the hill. The circular hill has

a height-to-base ration of 4, and is located in a duct of size

(16H × 3.205H × 11.67H), with H being the hill height. At

the intermediate and highest Reynolds number, the wall-

normal distance of the mesh plane closest to the wall is

located at around y+ =5 and 50, respectively. In both cases,

and especially the higher Reynolds-number value, this neces-

sitated the use of a hybrid LES-RANS approach, presented

in details in Tessicini et al. (2007).

The flow field was computed using an in-house multi-

block, finite volume code within which advection and

diffusion are approximated with a second-order central-

differencing schemes. Time marching is based on a

fractional-step method, with the time derivative being dis-

cretized by a second-order backward-biased approximation.

The flux terms are advanced explicitly using a second-order

Adams-Bashforth method. The velocity field is then cor-

rected via the pressure gradient by a projection onto a

divergence-free velocity field. The pressure is computed as

a solution to the pressure-Poisson problem by means of a

three-dimensional V-cycle multigrid algorithm, operating in

conjunction with a successive-line over-relaxation scheme.

1We note in passing, however, that is no consensus on what
constitute coherent structures (Dubief and Delcayre, 2000)

Figure 1: 3D hill geometry, computational domain and

mean-flow characteristics (gray region: zero-streamwise-

velocity surface).

The code is fully parallelised using MPI and was run on sev-

eral multi-processor computers, with up to 256 processors.

The inflow conditions were generated using a precursor

simulation at one particular Reynolds number, and then

rescaled to correspond to the appropriate Reynolds num-

ber at which the relevant 3d-hill simulation was performed.

The boundary layer thickness (δ99) was kept at 50% of the

hill height at all Reynolds numbers, corresponding to the

experimental conditions at Re = 130, 000. The rationale of

doing so is rooted in the wish to examine, in isolation, the

dependence of the flow structure to the Reynolds number.

POD AND EXTENDED POD

POD was originally applied to turbulent flows, as a

statistical-analysis tool, by Lumley (1967). POD, also

known as Karhunen-Loève Decomposition or Principal-

Component Analysis, is a procedure for extracting a particu-

lar basis for a modal decomposition of an ensemble of signals.

POD is a linear procedure, which is one of its limitations,

but unlike linear-stability theory, it does not rely on any as-

sumptions about the linearity or otherwise of the problem

being analysed: a POD analysis essentially operates on data

originating from either an experiment or simulation, and it

provides a rigorous mathematical basis for extracting spatial

and temporal structures, based on predetermined and well-

founded criteria. The following summarises the method as

far as it pertains to the present study.

A set of realizations of the velocity field U(X) on a

spatio-temporal domain S forms the subject of the analy-

sis. The POD modes are obtained by searching the vector

field Φ(X, t) (with X = (x, y, z)) that is closest to U, on av-

erage. Every flow realization can then be decomposed into
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the series:

Ui(X, t) =

M
∑

n=1

an(t)Φn
i (X) (1)

where i denotes the i-th component of U, M the number of

modes considered, Φn
i are the eigenvectors and an are the

time-dependent coefficients of the decomposition.

The usefulness of POD in fluid mechanics is due to the

fact that it provides an optimal decomposition of the kinetic

energy integrated over the domain S, with

(U, U) =
∑

n

λn (2)

where λn are the eigenvalues associated with the eigenvector

Φn
i .

Two different types of POD are commonly used, depend-

ing on the type of signal considered. The direct method,

originally proposed by Lumley (1967), uses a spatial corre-

lation tensor, defined by Rij(X, X′) = 〈U(X, t), U(X′, t)〉,
for which the size of the problem is equal to N × Nc, N

being the number of nodal points, and Nc being the number

of components of U.

The other method, proposed by Sirovich (1987), is to

use a temporal correlation tensor, defined by Rij(t, t′) =

〈U(X, t), U(X, t′)〉. The size of the problem is here much

smaller, being equal to the number of realisations M of the

flow. This method, called snapshot POD, can be used if the

number of points is much greater than the number of snap-

shots. This is the usual practice adopted for post-processing

PIV data, while both methods can be used with similar ef-

fectiveness to post-process numerical data. In a separate

study on free mixing layers, Lardeau et al. (2007) explain

and demonstrate the relative advantages and disadvantages

of both methods. It is the latter method that is applied

herein to the hill flow.

As the Reynolds number of the hill flow is relatively high,

most of the interesting features of flow, especially in the post-

separated leeward side of the hill, are of the same order, in

terms of energy content, as those in the oncoming boundary

layer. Hence, when performing the decomposition, it is not

readily possible to separate features originating from these

two regions. To overcome this type of difficulty, a modified

version of POD, called Extended POD, was introduced by

Maurel et al. (2001), and then generalized by Boree (2003).

This method allows the interaction between different ener-

getic parts associated with different domain portions to be

identified. More generally, Boree (2003) has shown that the

extended POD can also be used to study the correlation

of any quantity with the velocity field. The principle is to

compute the POD modes on a domain S (adopting Boree’s

notation) and then use the coefficients of the decomposi-

tion and the associated eigenvalues to define a new family

of modes. In specific terms, the extended modes of the new

vector V(X′, t) on a domain Γ (identical to or different from

S) are defined as:

Ψp(X′) =
〈ap(t)V(X′ , t)〉

λp
(3)

where ap(t) and λp are respectively the random coefficients

and the eigenvalues associated with the POD on the domain

S for the quantity U (Eq. 1). For time-averaged data, the

domains S and Γ are spatial domains and thus,

Ψp(X′) =
1

λpT

∫ T

0

ap(t)V(X′ , t)dt (4)

where T is the integration time. The following decomposi-

tion is used to define the parts of V in the domain Γ which

is correlated with U in the domain S. An important result

presented by Boree (2003) is that Vc is the only part of V

correlated with U. The correlated and decorrelated part are

given respectively by

Vc(X
′, t) =

M
∑

n=1

anΨn(X′)

Vd(X′, t) = V(X′, t) − Vc(X
′, t) (5)

This make the extended POD useful for studying spatial and

temporal interactions between different regions and related

structures within a single flow.

RESULTS

Simulations and associated POD processing have been

performed for three Reynolds numbers: Re=1,300, 13,000

and 130,000, based on the hill height and free-stream ve-

locity. In the following, for each Reynolds number, 780

snapshots, extending over a period of 180 time units, have

been used to compute the eigenvectors in Eq. (1). While

POD spectra have been constructed with up to 780 modes,

to examine the distribution of energy across the modes,

only the first four modes (excluding the mean flow) have

been processed to generate the results to follow, in order

to bring out the large-scale structures of the flows. The

conditions at the lowest value are transitional, and the sim-

ulation is, effectively, a DNS. At the two higher values,

the dynamic Smagorinsky model has been used in conjunc-

tion with the zonal LES-RANS scheme, the latter allowing

a substantial reduction in the computational cost relative

to wall-resolved LES. For the highest value, Tessicini et al.

(2006) provide a broad range of comparisons with experi-

mental data to demonstrate the predictive effectiveness of

the zonal LES-RANS scheme, relative to coarse-mesh and

nearly-wall-resolving fine-mesh LES. As observed in Tes-

sicini et al. (2007), the flow at Re = 130, 000, aft of the

hill, is characterised by distinctly periodic features which are

broadly symmetrical. In the mean, the hill-topology maps

contain two distinctive focal points, which indicate that vor-

ticity is shed from the hill surface, with the vortex lines

anchored to the hill surface. Both these observations, taken

together, suggest the periodic formation, shedding and sub-

sequent stretching of Ω-shaped vortical structures of the kind

referred to here as “hairpin vortices”. The desire to gain bet-

ter insight into this process has motivated the present POD

study and the exploration of its dependence on the Reynolds

number.

Fig. 1, lower plot, conveys the principal mean-flow fea-

tures by way of streaklines and the zero-streamwise-velocity

surface for the highest Reynolds number only. For the low-

est value (not shown here), the recirculation zone extends

well beyond the hill base, up to x = 4H, with the hill-base

radius being at x = 2H. The topology observed in Fig. 1 is

very similar to the one found by Acarlar and Smith (1987)

behind a hemisphere. For the two higher values of Reynolds

number, the length of the recirculation zone is substantially

reduced, due to the fully turbulent state of the flow up-

stream of the hill crest, with reattachment occurring close

to the foot of the hill, at ≈ 2H. However, for all three cases,

the streakline patterns are similar, indicating the same qual-

itative mean-flow features.

The instantaneous flow structure behind the hill is very

complex, even at the lowest Reynolds number. Observations
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Figure 2: Re = 1, 300; top: velocity vectors and iso-contours

of the kinetic energy in plane (y, z) located at x = 6.15H, for

the first two modes Φ
1 and Φ

2, Eq. 1, representing 12.5%

and 10% of the total energy, respectively; bottom: time-

evolution of the coefficients an(t).
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Figure 3: Re = 13, 000; top: vectors and iso-contours of the

kinetic energy in plane (y, z) located at x = 2.75H, for the

first two modes Φ
1 and Φ

2, Eq. 1, representing 8% and 7%

of the total energy, respectively; bottom: time-evolution of

the coefficients an(t).

of laminar flow around hemispheres reveal the formation of

a regular train of hairpin vortices, while in the present case,

successive vortices shed from the surface around the hill crest

interact non-linearly with one another and with small hair-

pin vortices emanating from the base of the hill.

A differentiation of the structures associated with sep-

aration from those within the turbulent boundary layer is

possible, in principle, using the “snapshot POD” method

applied to the whole 3D-flow domain. At low Reynolds num-

bers, the energy tends to be concentrated in a few low-order

modes, with 30% of the fluctuating energy in the first 6

modes. At higher Reynolds numbers, the number of modes

that need to be included to capture the same amount of en-

ergy may exceed 20 or 50. These energy levels have been

determined from POD energy spectra, which reveal charac-
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Figure 4: Re = 130, 000; top: vectors and iso-contours of the

kinetic energy in plane (y, z) located at x = 2.75H, for the

first two modes Φ
1 and Φ

2, Eq. 1, representing 8.5% and

8% of the total energy, respectively; bottom: time-evolution

of the coefficients an(t).

Re = 1, 300 Re = 13, 000

Re = 130, 000

Figure 5: Isosurface of Q-criterion using the reconstructed

field from the first four extended POD modes

teristic -11/9 slopes, consistent with the behaviour observed

by Knight and Sirovich (1990) for high Reynolds number and

for a wide range of flow configurations. In the present flow, a

qualitatively similar slope is found even for the lowest value

examined, for which the flow condition is not fully turbulent.

The above relationship between modes and levels of energy

has unfortunately frustrated efforts to distinguish contribu-

tions from separation-related and boundary-layer-inherent

structures, the former being relatively weak. Thus, a recon-

struction with low-order modes only reveals a combination

of large-scale features associated both with separation and

with the turbulent boundary layer. An approach found to

be more effective than 3D POD is to focus on 2D spanwise

planes and then to reconstruct the 3D flow from a succession

of 2D POD analyses.

One observation made by Tessicini et al. (2007) was that,

at given x location, two broadly symmetric vortices appeared

to be “shed” at regular intervals. Thus, attention is initially

focused here on one plane located downstream of the re-
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circulation region. Figs. 2, 3 and 4 show the vector field

associated with the first two spatial POD modes Φ
1 and

Φ
2, as well as the time-evolution traces of the coefficients

an(t) associated with the modes n=1 - 4. The combination

of these two POD elements, in accordance with Eq. (1),

gives an approximation of the fluctuating flow field that con-

tains the most energetic structures. Strong similarities are

observed among corresponding plots for the three Reynolds

numbers. First, modes 1 and 2 both feature two large, (size-

wise) asymmetric vortices (denoted A and B). For mode 1,

for all Reynolds number, the maximum of energy is located

below vortex B and between the two counter-rotating vor-

tices. As the Reynolds number increases, the centres of the

vortices move towards the wall. Mode 2 follows a similar pat-

tern, with the maximum of energy located below vortex A.

More generally, for both modes, the maximum of energy is

always located under the largest vortex. Further significant

similarities are found in the time traces of the coefficients

an(t). For Re = 1, 300, low-amplitude high-frequencies os-

cillations are observed between t = 30 and t = 48, followed

by higher amplitude lower-frequency oscillations in the range

48 < t < 80). This is in contrast to a3(t) and a4(t), which

do not feature a bi-modal character and are dominated by

higher frequencies than those in a1(t) and a2(t). Similar fea-

tures also arise for the two other Reynolds numbers. Another

interesting observation from the time traces is the time-shift

between consecutive modes, especially between modes 1 and

2. This shift is most clearly recognised from Fig. 4 in the

time period between t = 50 − 90. This shift corresponds to

a phase angle between modes a1(t) and a2(t), and can be

interpreted as signifying a tilting of vortices A and B from

left to right and vice versa, qualitatively similar to the phase

angle observed in POD analysis of any von Kàrmàn vortex

street.

The level of energy carried by the first four modes in the

POD applied to the 2D planes is higher than in the full 3D

snapshot POD, and fewer modes are needed to reconstruct

a reduced representation that contains a significant propor-

tion of the fluctuating energy. In the following, only the first

four modes have been used, representing, collectively, 33%,

24% and 20% of the total energy for the three Reynolds

number, respectively. The choice of using this limited num-

ber of modes may be justified on the basis of the observed

dominance of a few large and regular features in the modes

Φ
i. For i=1 and 2, only two big vortices are present (Fig.

2, 3 and 4), and for i=3 and 4, four vortices can be observed

for all cases (not shown here). For i=5 and above, the num-

ber of vortices increases, and these are randomly scattered

in the (y, z) plane, making the reconstruction more “noisy“

and less distinct. While this choice of modes is somewhat ar-

bitrary, it is recalled that the aim of this paper is to extract

the large-scale features of the flow, rather than to extract

features to a particular level of energy.

Iso-surfaces of the Q criterion at one particular instant

in time are shown on Fig. 5. Broadly symmetric hairpin-

shaped vortices are clearly seen for the two lower Reynolds

numbers, while for the highest value, only two separated legs

can be observed. At Re = 13, 000, secondary vortices are

present on both sides of the hill. At the highest Reynolds

number, the legs do no seem to be attached, and this is

confirmed by space-time plots, which indicate that the sep-

aration from the top of the hill is dissociated from the legs

observed in Fig. 5.

One important drawback of focusing attention on iso-

surfaces of one particular quantity at one particular instant

is that these only provide a narrow window to the flow

field. In fact, for the highest Reynolds number case (Fig.

5), this visualisation does not represent well the highly dy-

namic state of the flow. To give a better view, the first four

modes were used to reconstruct the flow field at one par-

ticular streamwise location and in time, and the result is

shown in Fig. 6 in the form of space-time plots of the Q cri-

terion (the time axis is directed from the back towards the

front). For the lowest Reynolds number, hairpin-type struc-

tures are clearly shed at a regular frequency, and the shape

of consecutive structures is very similar to that seen in Fig.

5, although their orientation is inverted, due to the particu-

lar time axis used. POD is very informative and rewarding,

for this particular case, as a means of educing the biggest

coherent structures of the flow. In fact, all other types of

decomposition attempted - e.g. using POD modes built at

different streamwise locations or across the z-wise symmetry

plane of the hill – gave similar results. The only significant

difference was in the amount of energy represented by the

first four modes.

As is evident from Fig. 6, the hairpin-type structures at

the two higher Reynolds numbers do not emerge as clearly as

they do at the lowest value, especially not at Re = 130, 000.

At this value, the vortices corresponding to A and B (Fig.

4), shed from the sides of the hill, seem to be completely

dissociated from the one shed from the top of the hill, i.e.

the one that would normally form the head of the hairpin

structure. In fact, this dissociation also applies, to a lesser

degree, to the lower Reynolds numbers, and this is why, even

if the threshold for the Q-criterion is progressively reduced,

the two legs never fully join in the visualisations of Fig. 6.

One possible explanation for the different behaviour of

the reconstructed fields, despite strong similarities in the

modes Φ
1 and Φ

2, may be derived from the differences ob-

served in the time-evolution of the modes a1 and a2. For

the lowest Reynolds number, Fig. 2 shows that a maximum

in the amplitude of mode 1 is always preceded, with a very

short time delay, by a maximum for a2, and this observa-

tion also extends to the minima. Thus, vortices A and B

are shed at almost the same time. This close to in-phase

process also occurs for the intermediate Reynolds number –

for example, between t = 20 and t = 40 – and within this

period, hairpin-like vortices are observed in Fig. 6. How-

ever, when a maximum, positive, value of a1 corresponds

to a minimum, negative, value of a2 – as occurs at around

t = 68 for Re = 13, 000 – the spatial modes Φ
1 and Φ

2

are not additive but subtractive. This phase inversion is

also observed at different positions on Fig. 4 for the high-

est Reynolds number (at t = 10, 22, 85, etc.), and this may

at least be a contributory reason for the absence of clear

symmetric hairpin-shaped structures, as those observed at

the lower Reynolds numbers. This phase shifting also in-

dicates that the dynamics at higher Reynolds number are

much more complex, even if the low-order POD modes show

fundamentally similar features.

CONCLUSIONS

The structure of a separated flow behind a 3D hill has

been investigated by way of 3D and 2D POD analyses, with

attention focusing on low-order modes. The main objective

has been to illuminate the nature of coherent structures as-

sociated with weak periodic events observed in earlier LES

computations, and to investigate whether the mechanism

is Reynolds-number dependent. A full low-order 3D POD

analysis was found to be ineffective in efforts to separate the

weak differences between similarly energetic structures origi-
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Re = 1, 300 Re = 13, 000

Re = 130, 000

Figure 6: Space-time iso-surfaces of the Q-criterion using the

first four extended-POD modes at x = 6.15H for Re = 1, 300

and at x = 2.75H for Re = 13, 000 and 130, 000.

nating from the upstream boundary layer and the separation

region. In contrast, 2D POD, applied to selected stream-

wise planes, has been shown to offer valuable insight into the

evolution of large-scale unsteady structures. Significant sim-

ilarities in the shape of the POD modes (eigenvectors) have

been observed across a wide Reynolds-number range. At

moderate Reynolds numbers, the POD analysis has revealed

the periodic formation and ejection of large hairpin-like vor-

tices. At the highest Reynolds number, these structures are

much less pronounced, but time-traces of the POD coeffi-

cients nevertheless show clear evidence of periodic ejections

of the same type. The presence (or absence) of clearly de-

fined hairpin-like vortices for the different Reynolds numbers

is argued to be linked to particular features in the time evo-

lution of the modes. Further analysis in this direction would

be necessary to confirm the nature of the mechanism. Very

highly-resolved LES, currently in progress, are expected to

offer a better understanding of the flow dynamic for the high-

est Reynolds number.
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