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ABSTRACT

In this paper, we study the turbulent dispersion of a pas-

sive scalar released from a transient point source within an

obstacle array using an unsteady Reynolds-averaged Navier-

Stokes (URANS) method. The numerical results are vali-

dated against a set of high-quality water channel measure-

ments. A modification to the modelled transport equation

for the turbulence kinetic energy (TKE) is suggested, which

leads to significant improvements in the prediction of the

TKE levels within and above the obstacle array. The tempo-

ral and spatial evolution of the concentration cloud spread is

investigated. A new closure model for the scalar dissipation

rate is proposed for the transport equation of the concentra-

tion variance, and predictions of the concentration variance

in a dispersing cloud are compared with the experimental

measurements.

INTRODUCTION

The environmental and toxicological impact arising from

the dispersion of contaminants (e.g., toxic chemical, bio-

logical, or radiological materials) released into the urban

environment, where the population density is high, has be-

come an increasingly important problem in recent years.

Over the past several years, considerable advances have been

made in the physical and numerical modelling of passive

scalar dispersion in urban flows. Recent important field

studies of urban flow and dispersion include the Mock Ur-

ban Setting Trial (MUST) (Biltoft, 2001; Yee and Biltoft,

2004) conducted at U.S. Army Dugway Proving Ground in

northwestern Utah in September 2001, and the Joint Urban

2003 Experiment (Allwine et al., 2004) conducted in Okla-

homa City, Oklahoma in July 2003. In particular, MUST

was designed to provide physical insights into the instanta-

neous dispersion of an inert tracer through a large regular

array of building-like obstacles. The near-field dispersion of

a contaminant cloud in the MUST array has been physically

modelled in a wind tunnel simulation at 1:50 scale (Gailis

and Hill, 2006), in a water channel simulation at 1:205 scale

(Yee et al., 2006; Gailis et al., 2007), and numerically mod-

elled using a RANS approach (Hsieh et al., 2007). In this

paper, we apply a URANS method to numerically simulate

the dispersion of a tracer released from a transient point

source within the MUST array, and compare the model pre-

dictions with detailed measurements provided by a water

channel simulation (Yee et al., 2006).

In order to establish a reliable numerical model for de-

scribing the transport and dispersion of a passive scalar,

it is necessary to understand the micro-mixing processes of

the scalar and to be able to quantify the rate at which the

small-scale scalar fluctuation is destroyed through molecular

diffusion. To this purpose, it is of great research inter-

est to study the transport of the scalar variance. Warhaft

and Lumley (1978) and Béguier et al. (1978) studied the

ratio between the dissipation time scale for the scalar vari-

ance and the integral time scale for the turbulent flow field.

Fackrell and Robins (1982) and Sykes et al. (1984) investi-

gated the scalar dissipation length scale for modelling scalar

variance transport for the case of a point source release.

Hsieh et al. (2007) proposed an explicit semi-empirical al-

gebraic scalar dissipation length scale model for studying

concentration variance. In this study, we propose an alterna-

tive explicit semi-empirical algebraic dissipation length scale

model for studying concentration variance.

EXPERIMENTAL AND NUMERICAL APPROACHES

In this section, we first describe the physical modelling of

the MUST array conducted in a water channel simulation,

and then describe the numerical algorithm for simulating the

dispersion of a tracer released from a transient point source

within the obstacle array. Finally, we propose a new scalar

dissipation length scale for concentration variance.

Physical modelling and water channel measurements

The water channel simulations of flow and dispersion in

the MUST array were conducted at Coanda R&D Corpora-

tion (Burnaby, BC, Canada). The test section of the water

channel was 10 m × 1.5 m × 0.9 m in the streamwise (x),

spanwise (y) and wall-normal (z) directions, respectively.

The dimension of the MUST obstacle was L × W × H =

2.42 m × 12.2 m × 2.54 m in the original full-scale field test

(Biltoft, 2001; Yee and Biltoft, 2004). A physical model

of the MUST array at 1:205 scale was used in the water

channel experiments [see Fig. 1 for a photograph of the

physical model of the MUST array and Figs. 2(a) and (b)

for a description of its geometry]. The Reynolds number of

the flow in the water channel simulation was approximately

ReH = 4700 [based on the free stream velocity Ub = 0.38

m s−1 and obstacle height H = 1.05L, where L = 11.8 mm

(at a 1:205 scale) is the length of the obstacle used in wa-

ter channel simulation]. In our analysis of the experimental

results and numerical simulations, flow quantities were non-

dimensionalized using Ub and L (implying that the time scale

for non-dimensionalization was ts = L/Ub = 0.031 s). As
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shown in Figs. 2(a) and (b), the ground-level point source

was located at row 1.5 (midway between the first and second

rows of the obstacle array) along the centerline (y/L = 0)

of the fifth column of obstacles. The diameter of the point

source was d0 = 2.8 mm. The duration of the puff released

from the point source was 1.25 s, and during this period of

time a fluorescein dye (tracer) was released at a volume flow

rate of 24 ml min−1. A series of 100 individual puffs was re-

leased in each experiment, enabling ensemble-averaged cloud

concentration statistics to be obtained.

The velocity field was measured using a 4-beam 2-

component TSI fibre-optic laser doppler anemometer (LDA)

powered by an argon-ion laser. Titanium dioxide particles

were used as seed particles. The velocity data were collected

with a frequency ranging from 50 to 500 Hz and a sampling

time of 500 seconds was used at each measurement location.

The concentration field was measured using a laser in-

duced fluorescence (LIF) linescan system. The linescan LIF

system allows simultaneous multi-point concentration mea-

surements to be made along the laser beam. Here, sodium

fluorescent dye was used as the tracer and was illuminated

using an argon-ion laser. The intensity of this illumination

was measured using a Dalsa monochrome digital linescan

CCD camera with 12-bit amplitude resolution (4096 digiti-

zation levels) at a rate of 300 lines per seconds. The total

sampling time for each measurement position was 1000 sec-

onds. Each linescan consisted of 1024 pixels, which gave

a spatial resolution of between about 0.5 to 1 mm in the

spanwise direction.

Governing equations and numerical algorithm

The flow and concentration fields are described by the

conservation laws of mass, momentum and concentration for

a neutrally-stratified incompressible flow expressed in the

usual Reynolds-averaged form. In addition to these conser-

vation laws, the transport equations for TKE k, the rate of

dissipation ǫ of TKE and concentration variance c′2 are also

used. These governing equations assume the following form

in a Cartesian coordinate system:
∂ūi
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∂(ūjk)

∂xj
=

∂

∂xj

��
ν +

νt

σk

� ∂k

∂xj

�
+ Pk − Cǫ0 ǫ, (3)

∂ǫ

∂t
+

∂(ūjǫ)
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Here, c̄ is the mean concentration, S is the source density of

the tracer, D is the molecular diffusivity, ν is the kinematic

viscosity of the fluid, and νt
def
= Cµk2/ǫ is the kinematic

eddy viscosity. The closure constants are given as follows:

Cµ = 0.09, σk = 1.0, σǫ = 1.3, Cǫ1 = 1.44 and Cǫ2 = 1.92.

The Reynolds stresses are modelled using the conventional

linear eddy-viscosity assumption:

u′

iu
′

j =
2

3
kδij − νt

�
∂ūi

∂xj
+

∂ūj

∂xi

�
. (7)

In Eqs. (5) and (6), the turbulent fluxes of concentration

and concentration variance are modelled using the standard

 

Fig. 1: MUST array in water channel.

gradient diffusion hypothesis, which take the following forms

u′

jc′ = −
νt

σc

∂c̄

∂xj
and u′

jc′2 = −
νt

σc

∂c′2

∂xj
, (8)

respectively. Here, σc is the turbulent Schmidt number set

to 0.9.

Equations (1)–(4) represent the standard k–ǫ model for

predicting the turbulent flow field, except that an additional

coefficient Cǫ0 is incorporated into the k-equation to adjust

the balance between production and dissipation of TKE. It

has been confirmed by some previous investigations (Lien

and Yee, 2004; Hsieh et al., 2007) that the standard k–ǫ ap-

proach tends to underpredict the TKE levels for flows over

obstacle arrays. In the next section, we will compare the

predictions for TKE obtained using two different values of

Cǫ0; namely, 1.0 corresponding to the standard k–ǫ model

and 0.7 for our modified model. We will demonstrate that

this simple empirical modification of the k-equation is ef-

fective for improving prediction of TKE levels in obstacle

arrays in comparison to those provided by the standard k–ǫ

model.

The numerical simulations were performed using two

self-developed computer codes: urbanSTREAM and urba-

nEU. Here, urbanSTREAM is a general curvilinear second-

order accurate fully conservative and implicit finite-volume

code designed for the numerical simulation of urban flow;

and, urbanEU is an Eulerian grid urban dispersion model

based on the numerical solution of a K-theory advection-

diffusion equation (Yee et al., 2007). The flow solver for

urbanSTREAM is based on numerical algorithms described

by Lien and Leschziner (1994a). The SIMPLE algorithm was

used for pressure correction and checkerboard oscillations in

the pressure field arising from a state of pressure-velocity

decoupling on a collocated grid were removed using the mo-

mentum interpolation scheme described by Rhie and Chow

(1983). Convective fluxes at the faces of a control vol-

ume were approximated using a second-order accurate total-

variation-diminishing (TVD) scheme (Lien and Leschziner,

1994b) implemented using a deferred correction method.

At the inlet, Dirichlet boundary conditions were used for

both the flow and concentration fields. The inlet flow con-

ditions were obtained from the experimental measurements,

and the values of concentration and concentration variance

at the inlet were set to zero. At every solid boundary sur-

face, no-slip and impermeability wall boundary conditions

were applied for the flow field (mean velocity and turbulence

quantities k and ǫ), and zero-flux boundary conditions were

used for the concentration and concentration variance fields.
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As shown in Figs. 2(b) and (c), the grid lines have been re-

fined close to the source location and near every solid surface.

At every solid surface, the generalized wall function proposed

by Kim (1995) was applied, which is dependent on the local

pressure gradients and the non-equilibrium flow state, and

thus, constitutes a useful near-wall treatment for a complex

flow which potentially can involve separation, recirculation

and reattachment. For all flow variables, zero-flux bound-

ary conditions were applied at the upper free surface of the

computational domain, fully developed boundary conditions

were used at the outlet, and periodic boundary conditions

were applied in the spanwise direction.

A total time of 20 seconds was simulated using URANS

with a temporal resolution of 0.04 seconds per time step. In

this study, two different grids and computational domains

were used in order (i) to determine if the computed solution

was grid-independent, (ii) to investigate the sensitivity of the

predicted concentration and concentration variance fields

with respect to the degree of resolution of the small point

source used in the experiments, (iii) to accurately quantify

the temporal and spatial evolution of the cloud centroid and

spread, and (iv) to investigate the sensitivity of the scalar

variance dissipation model to the size of the computational

domain. For this purpose, the non-dimensional size for the

large and small computational domains used in this study

were, respectively, as follows: 685.6L × 41.5L × 60L and

105.6L×41.5L×30L, with 224×53×30 and 264×119×42

control volumes (in the streamwise, spanwise, and wall-

normal directions, respectively). Both the large and small

computational domains tested in the simulation include 12

rows and 5 central columns of obstacles. An upstream fetch

of 15L (distance between the inlet plane and the windward

face of the first row of obstacles) was used for both the large

and small computational domains. The major difference be-

tween these two computational domains lay in the extent of

the downstream fetch between the last row of obstacles and

the outlet plane.

Scalar variance dissipation model

In order to close Eq. (6), the concentration variance dis-

sipation rate ǫc
def
= 2D ∂c′

∂xj

∂c′

∂xj
needs to be modelled. One of

the most popular methods for this closure is to assume that

the dissipation time scale (tǫc) that is characteristic of those

eddy motions that destroy the scalar variance c′2 is propor-

tional to the integral time scale (tǫ = k/ǫ) of the turbulent

flow. In this case, ǫc can be modelled as

ǫc = Cχ1

1

tǫc
c′2 = Cχ1

ǫ

k
c′2. (9)

The value of the closure constant Cχ1
varies in the literature

and is usually set to 2 following the suggestion of Béguier

et al. (1978). The turbulent length scale of the flow field

corresponding to tǫ is evaluated as Λk = k3/2/ǫ.

For the case of a transient puff release from a point

source, there are two stages of diffusion; namely, the initial or

meandering phase where the cloud length scale Λ is smaller

than the dominant large (energy containing) eddies and the

cloud meanders due to the motion of large eddies, and the

late phase where Λ grows bigger than the length scale of the

large eddies and the cloud spreads with constant diffusivity

(Sykes et al., 1984). In general, the model represented by

Eq. (9) cannot correctly represent the scalar dissipation in

the early meandering stage of cloud diffusion, because Λ for

a very compact source is generally much smaller than the

integral length scale Λk of turbulence in the initial stage of
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Fig. 2: Geometry of the MUST array for the small compu-

tational domain (L = 11.8 mm).

cloud development. From these considerations, Fackrell and

Robins (1982) proposed an alternative model in which the

scalar dissipation length scale Λc is represented as follows:

ǫc = Cχ2

k1/2

Λc
c′2. (10)

The key issue in this model is the determination of the

value of Λc. Sykes et al. (1984) proposed an ordinary dif-

ferential equation for quantifying the temporal evolution of

Λc. Hsieh et al. (2007) evaluated Λc using the “size” of the

cloud defined as the geometric mean of the cloud spreads in

the three coordinate directions:

Λc3D = Λc3D(t) =
�
σx(t)σy(t)σz (t)

�1/3
, (11)

where σx(t), σy(t) and σz(t) are the cloud spreads in the x-,

y-, and z-directions, respectively, at time t after the release.

For example, the streamwise cloud spread is defined as

σx(t) =

�RRR
(x − x̄)2c̄(x, y, z, t)dxdydzRRR

c̄(x, y, z, t)dxdydz

�1/2

, (12)

where the streamwise cloud centroid is

x̄ = x̄(t) =

RRR
xc̄(x, y, z, t)dxdydzRRR
c̄(x, y, z, t)dxdydz

. (13)

Figures 3 and 4 show the temporal and spatial evolution

of the cloud centroid and spreads calculated using the large

computational domain. It is seen from these two figures that
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Fig. 4: Time evolution of the

cloud spread along the three

coordinate directions.

the cloud centroid and spreads in the streamwise direction

evolve at a rate that is at least one order of magnitude larger

than those in the spanwise and wall-normal directions. The

cloud is greatly stretched/enlongated in the streamwise di-

rection in comparison with the other two directions. What

this implies is that for the small computational domain, the

leading edge of the cloud is already at or beyond the outflow

plane of the computational domain by the time the stream-

wise component of the cloud centroid “arrives” at the last

row of obstacles (which occurs at approximately 5.6 s after

the release). To avoid this undesirable condition (whereby

the streamwise dimensions of the cloud may be distorted ow-

ing to an insufficient downstream fetch in the computational

domain), we modified Eq. (11) to determine the “size” of

the cloud based on only the spanwise and wall-normal cloud

spreads, viz.

Λc2D = Λc2D(x, t) =
�
σy(x, t)σz(x, t)

�1/2
, (14)

where the cloud spreads σy(x, t) and σz(x, t) are evaluated

locally in the vertical y-z plane. The spanwise cloud (puff)

spread σy(x, t) is determined as

σy(x, t) =

�RR
(y − ȳ)2c̄(x, y, z, t)dydzRR

c̄(x, y, z, t)dydz

�1/2

, (15)

with the spanwise cloud centroid in the local y-z plane eval-

uated as

ȳ = ȳ(x, t) =

RR
yc̄(x, y, z, t)dydzRR
c̄(x, y, z, t)dydz

. (16)

The expression for σz(x, t) is analogous to Eq. (15).

The proposed model for concentration variance dissipa-

tion derives from the general form of Eq. (10), which is

ǫc =
k1/2

Λc
c′2. (17)

with Λc being defined as

Λc = Λc(x, t) = max

�
Λ0, min

�
Λc2D

Cχ21

,
Λk2D

Cχ22

��
. (18)

Here, Cχ21
= Cχ22

= 1.5 are two model constants, and

Λ0 is the initial puff size taken as Λ0 = d0/2. This model

ensures that the scalar dissipation scale Λc is greater than or

comparable to the initial source size (as it must be), and also

avoids any potential numerical instability (such as if Λc → 0)

in Eq. (17). Also in Eq. (18), Λk2D is the integral length

scale of turbulence averaged over a vertical cross-section of

the cloud, viz.

Λk2D = Λk2D(x, t) =

RR
Λk c̄(x, y, z, t)dydzRR
c̄(x, y, z, t)dydz

. (19)

Equation (18) also ensures that the dissipation length scale

for concentration variance is associated with eddies smaller

than the local cloud size (characterized by Λc2D) at the ini-

tial meandering stage, and is limited by the integral length
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Fig. 5: Mean velocity profile at two different streamwise lo-

cations.
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Fig. 6: Streamwise turbulence intensity at two different

streamwise locations (obtained using Cǫ0 = 1.0).
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Fig. 7: Streamwise turbulence intensity at two different

streamwise locations (obtained using Cǫ0 = 0.7).

scale of turbulence (characterized by Λk2D) when the cloud

spread becomes larger than the energy containing eddies of

the flow in the second stage of cloud diffusion.

RESULTS AND ANALYSIS

In this section, we analyze the predicted results on the

flow and concentration fields and compare them with the

water channel measurements. Owing to page limitations,

we will only display and discuss the predicted and measured

fields at row 3.5 and row 6.5 along the central column of

obstacles. For the concentration and concentration variance

fields, we will also display and discuss the predicted and

measured field properties at two different heights; namely,

at z/H = 0.75 within the canopy and at z/H = 1.5 above

the canopy.

Figures 5(a) and (b) compare the predicted mean veloc-

ity profiles with two sets of 2-D LDA measurements (i.e.,

the u-v components and u-w components) at two different

streamwise locations. As can be seen from these figures, the

agreement between the predicted and experimental results

is excellent. Figures 6 and 7 show the predicted streamwise

velocity standard deviations, or, root-mean square (rms)

values [u′

rms
def
= (u′u′)1/2] for two different choices of Cǫ0

[cf. Eq. (3)]. As seen in Fig. 6, for the standard k-ǫ approach

with Cǫ0 = 1.0, u′

rms is significantly underpredicted (by ap-

proximately 30%), an observation that is consistent with the

results of Hsieh et al. (2007) based on the steady RANS ap-
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proach. Figure 7 is obtained using Cǫ0 = 0.7 based on the

modified k-equation, which shows a significant improvement

in the predicted levels of u′

rms. An explanation for this im-

provement is that the closure coefficient Cǫ0 compensates

for the deficiency in the linear eddy viscosity assumption

for modelling of the Reynolds stress tensor. Although slight

differences exist, the mean and rms streamwise velocity pre-

dicted using the large and small computational domains are

in good agreement as shown in Figs. 5–7, suggesting that

we have obtained a grid-independent solution for the flow

field. Figure 8 displays the complex pattern of vortex shed-

ding, which is visualized here using the normalized mean

spanwise velocity within the obstacle array (obtained on the

small computational domain). From the figure, it is observed

that when the flow passes by an obstacle, symmetrical vor-

tical structures are generated, and these vortical structures

are much larger at the front and rear edges of the array

than inside the array where the size of the flow structures

are inhibited due to the presence of the obstacles.

Figure 9 displays the isopleths for the cloud dosage

D(t)
def
=

R t
0

c̄dt, normalized using the source concentration

cs. As expected, the figure shows that the dosage is the

greatest along the central (y/L = 0) column and/or closer

to the source location (x/L = 3.665). As the distance

from the central column increases (i.e., |y/L| increases), the

dosage decreases. In fact, the dosage field of the dispersing

cloud within the obstacle array possesses a Gaussian distri-

bution. This feature is further demonstrated in Figs. 10(a)–

(d), which exhibit the lateral distribution of the normalized

dosage at different downstream locations. By comparing

Fig. 10(a) with 10(b) and Fig. 10(c) with 10(d), it is evident

that the dosage is more widely distributed in the downwind

location (row 6.5) in comparison with that in the upwind

location (row 3.5). By comparing Fig. 10(a) with 10(c)

and Fig. 10(b) with 10(d), it is observed that the dosage

level within the canopy (z/H = 0.75) is, in general, larger

than that above the canopy (z/H = 1.5). This observa-

tion is consistent with the physical process that after the

puff is released into the flow from the ground-level point

source, the size of the cloud grows and the cloud centroid

increases in height as the flow sweeps material around and

over the obstacles in the downwind direction. In our numer-

ical simulations, we observed that the lateral distribution of

the dosage is influenced significantly by the Schmidt num-

ber σc used in the model. Furthermore, if values for σc

were restricted within the interval [0.9, 1.0], the predicted

dosages were generally in good agreement with the experi-

mental measurements as is evident in Fig. 10 (obtained using

σc = 0.9).

Figures 11(a)–(d) compare the predicted and measured

results for the temporal development of the normalized mean

concentration c̄/cs at different locations. In general, it is ob-

served that the instantaneous peak value of the normalized

concentration is overpredicted by the numerical simulations

in comparison with the experimental data. Figures 12(a)–

(d) compare the normalized concentration standard devia-

tion (c′2)1/2/cs predicted by the simulations with the ex-

perimental measurements. Although the level of (c′2)1/2/cs

is generally well predicted, it is observed that the predicted

time of the peak value occurs earlier (by about 1 s) relative

to that seen in the measurements. Considering an uncer-

tainty of ±0.5 s in the determination of the exact release

time of the puff, this discrepancy between the predicted and

observed values is not significant.

From Figs. 10–12, it is confirmed that we have obtained a

Fig. 8: Vortex shedding visualized using the normalized

spanwise velocity vn
def
= v̄/Ub (at the height z/H = 0.61).

Fig. 9: Puff cloud visualized using normalized dosage

cn
def
= D(t)/cs isopleths displayed on a logarithmic scale at

t = 20 s (at the height z/H = 0.61).
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Fig. 10: Normalized puff dosage D(t)/cs at t = 20 s at two

different streamwise locations.

grid-independent solution for the concentration and concen-

tration variance fields, because little difference can be seen

between the predictions obtained using the large and small

computational domains. Also, it should be noted that for

the dispersion results shown here (both predicted and mea-

sured), the concentration and concentration variance fields

are insensitive to the precise source location and size of the
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control volume used for representing the source, as long as

the source was situated within the large recirculation zone

on the lee side of the obstacle. The large recirculating eddy

behind the obstacle mixes the tracer from the source rapidly

into the recirculation bubble, and in so doing, smears out

any differences in the treatment of the precise location and

size of the point source.

CONCLUSIONS AND DISCUSSIONS

The transient release of a passive tracer from a ground-

level point source in the MUST array has been studied using

a URANS method. In comparison with water channel mea-

surements, the numerical simulation has successfully pre-

dicted the velocity, TKE, concentration and concentration

variance fields. The proposed modification to the k-equation

within the standard k–ǫ model is effective for improving the

prediction of the TKE levels. However, whether this modi-

fication is necessary for alternative k-ǫ approaches (e.g., use

of implicit or explicit nonlinear algebraic models for the

Reynolds stress tensor) for the simulation of MUST dis-

persion is a subject for future investigation. The proposed

dissipative length scale model is insensitive to the size of the

computational domain in the streamwise direction, it is ca-

pable of reflecting the mechanism of the two stages of cloud

dispersion for the transient release of a passive scalar from

a point source, and it has also been demonstrated to be ca-

pable of correctly simulating the transport of concentration

variance for the MUST dispersion test case. Although the

test results are encouraging, the model proposed here still

needs to be further validated using a number of different test

cases of obstacle arrays.

REFERENCES

Allwine, K. J., Leach, M. J., Stockham, L. W., Shinn, J. S.,

Hosker, R. P., Bowers, J. F., and Pace, J. C., 2004, “Overview
of Joint Urban 2003—An atmospheric dispersion study in Ok-
lahoma City”. Symposium on Planning, Nowcasting, and

Forecasting in the Urban Zone, Seattle Washington, American
Meteorol. Soc.
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Fig. 11: Time evolution of the cloud concentration at two

different streamwise locations.
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Fig. 12: Time evolution of the concentration variance at two

different streamwise locations.

Lien, F.-S. and Yee, E., 2004, “Numerical modelling of the

turbulent flow developing within and over a 3-D building ar-
ray, part I: a high-resolution Reynolds-averaged Navier-Stokes
approach”, Boundary-Layer Meteorol., vol. 112, pp. 427–466.

Rhie, C. M. and Chow, W. L., 1983, “Numerical study of
the turbulent flow past an isolated airfoil with trailing edge sep-
aration”, AIAA J., vol. 21, pp. 1525–1532.

Sykes, R. I., Lewellen, W. S., and Parker, S. F., 1984, “A
turbulent-transport model for concentration fluctuations and
fluxes”, J. Fluid Mech., vol. 139, pp. 193–218.

Yee, E. and Biltoft, C. A., 2004, “Concentration fluctuation
measurements in a plume dispersing through a regular array of
obstacles”, Boundary-Layer Meteorol., vol. 111, pp. 363–415.

Yee, E., Gailis, R. M., Hill, A., Hilderman, T., and Kiel, D.,
2006, “Comparison of wind-tunnel and water-channel simula-

tions of plume dispersion through a large array of obstacles with
a scaled field experiment”, Boundary-Layer Meteorol. vol. 121,
pp. 389–432.

Yee, E., Lien, F. S., and Ji, H., 2007, Technical Description
of Urban Microscale Modeling System: Component 1 of CRTI
Project 02-0093RD, DRDC Suffield TR 2007-067, Defence R&D

Canada – Suffield, 55 pages.
Warhaft, Z. and Lumley, J. L., 1978, “An experimental study

of the decay of temperature fluctuations in grid-generated tur-

bulence”, J. Fluid Mech., vol. 88, pp. 659–684.

802


	TSFP5 Author indexA4.pdf
	Sheet1




