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ABSTRACT

DNSs are carried out for passive heat transport in a tur-

bulent channel flow with square bars on one wall. The total

heat transfer depends on w/k, the pitch to height ratio of

the roughness and it is maximum for w/k = 7. Instanta-

neous contours of streamwise velocity and scalar fluctuations

are closely similar for w/k = 1. The mean temperature,

scaled on wall units, has a slope which depends on w/k.

The concept of a temperature roughness function is there-

fore questionable unless a virtual origin is used.

INTRODUCTION

Turbulent transport of a passive scalar plays an impor-

tant role in atmospheric flows. The passive scalar may be

the temperature, humidity or some chemical species. The

transport of pollution and heat out of the streets of a city

into the overlying boundary layer is not understood suffi-

ciently well and fluxes cannot be quantified with any degree

of confidence. The scalar concentration at the street level

is determined by the fluxes, and it is therefore important

that these fluxes be quantified properly. In the atmospheric

boundary layer, the surface is rough due to the buildings,

hills and valleys. Coceal et al. (2006) and Orlandi &

Leonardi (2006) analysed the flow field over an array of

staggered and aligned cubes which mimic building blocks.

Recently, Tseng et al. (2007) performed a LES of the flow

field and the pollution concentration over a real city.

The study of turbulent heat or mass transport is of spe-

cial interest in engineering, especially for heat exchangers.

Kim & Moin (1989), Kasagi et al. (1992), Kawamura et al.

(1999) studied the transport of a passive scalar in a turbu-

lent channel flow with smooth walls. However, the surface of

heat exchangers is deliberately rough. For instance, rough-

ness elements (turbulators) are usually placed on the walls of

the internal channels of a turbine blade to enhance the heat

transfer (Han et al. 2000). Recently with the use of a cluster

of computers, it has been possible to perform Direct Numer-

ical Simulations (hereafter DNS) of the flow over a rough

wall. Leonardi et al (2003) studied how the pitch to height

ratio of a square bar roughness influences the frictional and

form drag and their correlation with the roughness function.

Ashrafian et al. (2004) have performed a DNS of the turbu-

lent channel flow with a square bar roughness on both walls

with a small k/h ratio. Bhaganagar et al. (2004) considered

a egg-carton roughness underlying the differences between

a 2D and a 3D roughness. Another kind of roughness has

been recently studied by Ikeda & Durbin (2007) who con-

sidered square bar elements with different heights. Miyake

et al. (2001) considered the transport of passive scalar over

a rough wall. They studied the effect of square bars with

w/k = 6 (w is the spacing between roughness elements and

k is the roughness height) on the temperature field. The

roughness was simulated with a body force method, i.e. a

force is added to the RHS of the Navier Stokes equation so

that the velocity is equal to zero at the grid points relative

to the roughness.

The present paper is an extension of Miyake’s work and

of Leonardi et al (2003)’s parametric study. DNSs are car-

ried out for passive heat transport in a turbulent channel

flow with square bars on one wall. Several values of w/k are

considered (w/k = 1, 3, 7, 11, 14, 29). The Reynolds number

Re = Ubh/ν was set to 7000; here, Ub is the bulk velocity

and ν is the kinematic viscosity, h the channel half height.

The computational box is 6h×2.1h×πh in x1 (streamwise),

x2 (wall-normal) and x3 (spanwise direction) respectively

(Fig.1). The additional 0.1h increase in channel height cor-

responds to the cavity height where the square elements are

placed. The plane of the crests is at x2/h = −1. The in-

stantaneous temperature (T ) is set to T = 1 on the lower

wall and to T = −1 on the upper wall. The Prandtl number

Pr is set equal to 1. The flow can be assumed to be “fully

rough” since k+ ranges from about 40 for w/k = 1 to about

80 for w/k = 7.

The dependence of the heat flux, temperature rms and

correlation between temperature and velocity are discussed

in the paper.

NUMERICAL PROCEDURE

The non-dimensional Navier-Stokes and continuity equa-

tions for incompressible flows are:

∂Ui

∂t
+

∂UiUj

∂xj
= −

∂P

∂xi
+

1

Re

∂2Ui

∂x2
j

+ Πδi1 , ∇ · U = 0

(1)

Π is the pressure gradient required to maintain a constant
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flow rate, δij is the Kronecher delta, Ui is the component of

the velocity vector in the i direction and P is the pressure.

The energy equation is

∂T

∂t
+

∂TUj

∂xj
=

1

Re Pr

∂2T

∂x2
j

, (2)

where T is the temperature and Pr = ν/α is the Prandtl

number, with α the thermal diffusivity.

The Navier-Stokes and energy equations have been dis-

cretized in an orthogonal coordinate system using the stag-

gered central second-order finite-difference approximation.

Here, only the main features are recalled since details of the

numerical method can be found in Orlandi (2000). The dis-

cretized system is advanced in time using a fractional-step

method with viscous terms treated implicitly and convective

terms explicitly. The large sparse matrix resulting from the

implicit terms is inverted by an approximate factorisation

technique. At each time step, the momentum equations are

advanced with the pressure at the previous step, yielding an

intermediate non-solenoidal velocity field. A scalar quantity

Φ projects the non-solenoidal field onto a solenoidal one. A

hybrid low-storage third-order Runge-Kutta scheme is used

to advance the equations in time. The roughness is treated

by the efficient immersed boundary technique described in

detail by Orlandi & Leonardi (2006). This approach allows

the solution of flows over complex geometries without the

need of computationally intensive body-fitted grids. It con-

sists of imposing Ui = 0 on the body surface which does

not necessarily coincide with the grid. To avoid that the ge-

ometry is described in a stepwise way, at the first grid point

outside the body, the second derivatives in the Navier Stokes

equations are discretized using the distance between the ve-

locities and the boundary of the body rather than using the

mesh size.

MEAN FLOW AND TEMPERATURE

Instantaneous contours of temperature are shown in

Fig.1 superimposed on the time averaged streamlines.

Leonardi et al. (2003) showed that the square bars on the

bottom wall induce a separation at the trailing edge of the

roughness elements. For w/k < 7, the reattachment is on the

opposite vertical wall while for w/k ≥ 7, the flow reattaches

on the bottom wall upstream of the subsequent element,

where a new separation region is formed. For w/k = 1, the

flow almost skims the rough wall and the ejections of hot

fluid out of the cavities resemble those on a smooth wall.

Djenidi et al. (1999), using LDV, observed similar ejections

out of 3 − 4 consecutive cavities. They speculated that this

was caused by the passage of a streamwise vortex over the

cavities. Leonardi et al. (2004) calculated 2D correlation

contours with one point fixed on the wall for a range of w/k.

For w/k = 1, they observed an inclination of the correlation

contours similar to that of a smooth wall. As a consequence

of the weak disturbance associated with this particular ge-

ometry, the temperature gradient in x1 does not vary much

when compared to that at larger w/k. By increasing w/k,

Leonardi et al. (2004) showed that the velocity contours

increase their inclination with respect to the flow direction.

This is due to the increased intensity of the wall–normal ve-

locity fluctuations. The separated flow induces wall-normal

velocities at the plane of the roughness crests which modify

the structure of the overlying flow and enhance the mix-

ing. In fact, Orlandi et al. (2006) showed that for various

roughness shapes and densities the wall–normal velocity rms

w/k = 1

w/k = 3

w/k = 7

Figure 1: Geometrical sketch of the rough wall and color

contours of temperature for w/k = 1, 3, 7. The rough wall

(lower) is hot, the smooth (upper) cold. Contours from T =

1 (light) to T = 0.6 (dark) are shown.

is maximum in the range 3 ≤ w/k ≤ 10. Temperature con-

tours agree well with velocity correlation contours calculated

in Leonardi et al. (2004). The instantaneous contours of

temperature for w/k = 7 shown in Fig.1 are almost perpen-

dicular to the flow direction. The contour T = 0.6 gives

an approximate idea of how far the hot fluid extends away

from the wall. For w/k = 7, the hot fluid penetrates more

into the core of the flow. Therefore, the effect of the rough-

ness on the overlying flow depends strongly on the roughness

density. The case w/k = 3 is intermediate presenting both

vertical and inclined ejections.
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Figure 2: Mean temperature distribution: ( ) smooth

channel, ( ) w/k = 1, ( ) w/k = 3, ( )

w/k = 7, ( ) w/k = 29.

A quantitative indication of the influence of roughness
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on the mean temperature can be obtained by averaging the

temperature with respect to time as well as streamwise and

spanwise directions (Fig. 2).

With respect to the smooth wall channel, the roughness

shifts the zero crossing of the temperature profile upward.

This is due to the increase in heat transfer from the rough

wall (hot) to the smooth wall (cold). For w/k = 7, the

zero crossing is very close to the upper wall. The global

temperature of the flow (i.e. the integral of the temperature

over the whole domain Tt =
∫ 1

−1
〈T 〉dy) increases as w/k

increases, up to a maximum for w/k = 7, which is the most

effective configuration for optimising the heat transfer. The

temperature distribution for w/k = 29 almost overlaps that

for w/k = 1. This means that for large values of w/k, the

flow behavior returns to that expected over a smooth wall.

HEAT FLUX
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Figure 3: Mean temperature gradient distribution: ( )

w/k = 1, ( ) w/k = 3, ( ) w/k = 7.

With respect to the smooth wall, the mean tempera-

ture gradient decreases in the inner part of the channel and

increases on the upper smooth wall. At the crest plane,

the mean temperature gradient decreases as the width of

the cavity increases (Fig.3). The total heat transfer q is

the sum of the molecular conduction ( 1
PrRe

∂〈T 〉
∂y

) and of

the turbulent heat flux −〈Tv〉, (angular brackets denote

averaging with respect to time as well as streamwise and

spanwise directions, T is the instantaneous temperature and

v is the wall–normal velocity fluctuation). Since the walls

are isothermal, the heat flux has to be constant within the

channel, i.e. all the heat transported from the hot wall has to

exit from the upper wall. The turbulent heat flux increases

as w/k increases with a maximum for w/k = 7 (Fig.4). The

distribution is constant with x2 across a large section of the

channel, diminishing very near the wall where v = 0. For

w/k = 3, 7, the heat transfer at the crest plane is almost en-

tirely due to the wall-normal velocity fluctuations. In fact,

the contribution from d〈T 〉/dy decreases with an increase in

w/k (see Fig.3). The opposite occurs on the bottom wall,

where v = 0, so that the heat transfer is associated with the

gradient of 〈T 〉. Consequently, on the bottom wall, for both

w/k = 3 and 7 d〈T 〉/dy is steeper than over a smooth wall

because the heat transfer is larger.

The variation of the molecular conduction and turbulent

heat flux induce variation of the rms temperature distribu-

tion. The product −〈Tv〉∂〈T 〉/∂y represents the production

in the transport equation of the temperature variance. In

a smooth wall channel, the temperature variance has three

peaks, one on the centerline and the other two near the walls.
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Figure 4: Turbulent heat flux averaged in time spanwise

and streamwise directions: ( ) smooth wall, ( )

w/k = 1, ( ) w/k = 3, ( ) w/k = 7.
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Figure 5: Temperature rms averaged in time spanwise and

streamwise directions: ( ) smooth wall, ( )

w/k = 1, ( ) w/k = 3, ( ) w/k = 7.

For w/k = 1, 〈T 2〉 is only slightly different from the smooth

wall distribution. The peak at the centerline is shifted up-

ward. In Fig.2 the zero crossing of the mean temperature

was observed to be shifted towards the smooth wall. For

w/k = 3, the peak of temperature rms increases and ap-

proaches the upper wall. For w/k = 7, only the two peaks

near the walls can be observed. This is, in fact the case

where the zero crossing of the mean temperature is closest

to the upper wall. The temperature gradient is smallest in

the inner channel and largest near the walls. As a conse-

quence, for w/k = 7, the production term in the transport

equation for 〈T 2〉 is large only near the walls and leads to a

distribution very different from that over a smooth wall. If

the temperature is thought as the concentration of a passive

scalar, the small value of 〈T 2〉 near the crest plane means

that the roughness can be used to improve the mixing.

To emphasize the effect the roughness has on 〈Tv〉 and
1

RePr
d〈T 〉/Dy their value on the crests plane are shown as

a function of w/k in Fig.6. Despite 〈Tv〉 and 1
RePr

d〈T 〉/Dy

vary as shown in Fig.3 and 4 their sum is constant with x2.

On the crest plane (x2 = −1), for small w/k, the molecular

conduction dominates over the turbulent heat flux, while

for large w/k the former is negligible with respect to the

latter (Fig.6). The total flux is maximum for w/k = 7 the

configuration for which 〈v2〉 is maximum (see Orlandi et al.

2006).

To understand how the roughness enhances the heat

transfer, color contours of the vertical velocity rms in the
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Figure 6: Dependence of the total heat flux ( ), molec-

ular conduction ( ) and turbulent heat flux ( )

on w/k.

w/k = 1

w/k = 3

w/k = 7

Figure 7: Color contours of 〈vv〉 averaged with respect to

time and spanwise direction (dark high).

roughness layer are shown in Fig.7. Square cavities do not

affect 〈vv〉 significantly. By increasing the width of the cav-

ity, a waviness can be seen in the contours of 〈vv〉. For

w/k = 3, the largest values of 〈vv〉 can be observed within

the cavity at about the crest plane. This may be due to the

instability of the shear layer developing from the roughness

crests and its interaction with the following element. For

w/k = 7, an increase of 〈vv〉 similar to that for w/k = 3 can

be observed on the cavity. However, the impingement of

the flow on the upstream wall of the element promotes large

ejections. In this region, the intensity of 〈vv〉 is largest.

Because of the increased wall–normal velocity fluctua-

tions, the heat is transported out of the wall into the core

of the flow. Contours of 〈Tv〉 are shown in Fig.8. There is a

strong correspondence between 〈vv〉 and 〈Tv〉 for w/k = 1

and 3. In fact, for the latter, the turbulent heat flux is max-

imized near the leading edge of an element and on the top of

the cavities. Although 〈vv〉 is approximately the same, 〈Tv〉

is larger at the upstream wall of an element than at top of

the cavity. This is because the temperature is larger at the

w/k = 1

w/k = 3

w/k = 7

Figure 8: Color contours of 〈Tv〉 averaged in time and span-

wise direction (dark high).

leading edge (where T = 1) than on the top of the cavity. For

w/k = 7, the higher values of 〈Tv〉 originate near the leading

edge of the element and are then diffused for about half a

wavelength. The streamwise variation of the heat flux may

require a study of the temperature conduction within the

solid walls. The present results are valid for highly conduc-

tive materials, while the conjugate heat transfer approach

should be used when the conduction is small. Orlandi et al.

(2007) have recently investigated the conjugate heat trans-

fer on a turbulent channel flow for different materials. An

inhomogeneous temperature within the material may cause

structural problems.

The turbulent viscosity hypothesis assumes a correlation

between d〈u〉/dy and 〈uv〉. The ratio νT = 〈uv〉/(d〈u〉/dy)

is the turbulent viscosity. Similarly, the gradient diffusion

hypothesis is based on the correlation between d〈T 〉/dy and

〈Tv〉 and the ratio αT = 〈Tv〉/(d〈T 〉/dy) is the turbulent dif-

fusivity. The roughness increases both 〈uv〉 and 〈Tv〉 while

the gradients of u and T decrease especially near the cavities.

As a consequence both νT and αT vary relative to a smooth

wall channel (Fig.9). By increasing w/k, νT and αT increase

due to the wall–normal velocity fluctuations. The larger in-

crease is observed for w/k = 7. The effect of w/k on both

νT and αT extends far from the wall. Even at the center-

line, the values of the turbulent viscosity and diffusivity are

much larger than over a smooth wall. On a rough wall the

strain is less important than in the case of a smooth channel.

It appears that the signature of the rough wall is the wall–

normal velocity distribution determined by the separations

on the roughness elements and the instabilities of the shear

layer. It seems also that the local disturbance on the rough

wall, depending on the particular value of w/k, affects the

flow even far from the wall. The turbulent Prandtl number

PrT = νT /αT is about 1.1 near the smooth wall (Antonia

& Kim 1991). For a rough wall (Fig.9b) it increases near the

crests plane, up to 2 for w/k = 7. This means that near the

wall, 〈Tv〉 dominates 〈uv〉 while the opposite is observed in

the inner part of the channel.
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Figure 9: a) Turbulent viscosity (symbols) and gradient dif-

fusion (lines), b) turbulent Prandtl number for ( )

smooth wall, ( ) w/k = 1, ( ) ◦ w/k = 3,

( ) • w/k = 7.

SIMILARITY BETWEEN VELOCITY AND TEMPERA-

TURE

There is a close similarity between u and T near a smooth

wall and a strong correspondence of velocity and thermal

streaks, (Iritani et al. 1985, Antonia et al.1988, Kim & Moin

1989, Kasagi et al. 1992). Color contours of temperature are

superimposed on contours of u fluctuations in Fig.10. For

w/k = 1, there is a good correspondence between the two

fields. High speed streaks, which are regions of high veloc-

ity fluid, correspond to colder fluid and vice versa. In fact,

low speed streaks are associated with ejections of hot fluid

with lower momentum. For w/k = 1, velocity and ther-

mal streaks exhibits almost the same behaviour as over a

smooth wall. For larger w/k, the coherence in x1 decreases

and streaky structures are hardly observed. The correlation

in x3 (spanwise direction) increases, then the structures are

shorter and wider. The similarity between velocity and tem-

perature still holds. This agree with the results of Orlandi &

Leonardi (2004) who modeled a rough wall with the combi-

nation of an artificial smooth wall with wall–normal velocity

disturbances taken from a simulation over a rough wall.

The mean temperature distribution on the smooth wall,

scaled in wall units (∆T+ = (〈T 〉 − 〈T 〉c)/T ∗, where 〈T 〉c
is the mean temperature at the crest plane, T ∗ = q/Uτ ,

Uτ =
√

Pd + Cf , Pd is the pressure drag and Cf the fric-

tional drag), overlaps the mean velocity distribution in the

viscous sublayer and part of the log region (Fig.11). This

is expected since for Pr = 1 there is correspondence of

the velocity and temperature equations (see also Orlandi

& Leonardi 2004). For different values of Pr, the tem-

perature and velocity distributions differ. The slope of the

w/k = 1

w/k = 3

w/k = 7

Figure 10: Color contours of temperature (dark high) su-

perimposed to contour of streamwise velocity fluctuations

(dark positive). The distance from the plane of the crests is

about 0.015h which corresponds to 6, 10 and 12 wall units

for w/k = 1, 3, 7 respectively.
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Figure 11: Temperature and velocity profiles in wall units on

the rough wall. Lines, temperature legend as Fig.2. Symbols

velocity profile: smooth wall, ◦ w/k = 1.

log–region depends strongly on Pr (Kawamura et al. 1999)

On the other hand, on the rough surface, the mean temper-

ature in wall units exhibits a downward shift with respect to
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the smooth wall distribution which is similar to the velocity

roughness function (Fig.11). This agrees with the results of

Miyake et al. (2001) who, for w/k = 6, observed a down-

ward shift of the temperature profile of about 6 wall units.

However, the velocity and temperature profiles in wall units,

do not overlap as for a smooth wall (Fig.11). Further the

definition of the temperature roughness function is more am-

biguous than that of the velocity roughness function since

the slope of the mean temperature in the log region seems

to depend on the value of w/k. Since roughness increases

the turbulent Prandtl number, the slope of the log–region is

expected to change. Another reason for the change in this

slope is the origin in y. While for the velocity profiles a vir-

tual origin is introduced to have a slope of the log–region

equal to κ = 0.41, for the temperature profiles the origin

is taken on the crest plane. If the same were done for the

velocity profiles, a variation of the slope of the log-region

would ensue. The maximum velocity roughness function is

observed for w/k = 7 (see Leonardi et al. 2003), the con-

figuration for which Uτ is maximum. Perhaps surprisingly,

the maximum downward shift of the temperature profile is

obtained for w/k = 29 and not w/k = 7 ( for which the

heat flux is maximum). In fact, on the crest plane, d〈T 〉/dy

decreases as w/k increases (see Fig.6). It follows that, near

the wall, ∆T is smaller for w/k = 29 than w/k = 7. The

temperature is normalized by T ∗ = q/Uτ . For w/k = 7,

both q and Uτ have maximum values; their ratio is 0.032.

For w/k = 29, even if both q and Uτ are smaller, their ra-

tio T ∗ = 0.039 is larger. The maximum downward shift is

larger than for w/k = 29.

CONCLUSION

The present simulations clearly demonstrate that rough-

ness can be very effective in enhancing the turbulent (and

total) heat transfer. The maximum heat flux occurs when

w/k is equal to 7; this is the geometry for which the drag

is maximum. While the velocity roughness function reflects

the total drag, the temperature roughness function is not

a good indicator of the total heat flux but is a measure of

the ratio of the total heat flux to Uτ . Since the slope of

the temperature log-law depends on w/k, the temperature

roughness function is not without ambiguity and cannot be

relied upon on defining the heat transfer near a rough wall.
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