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ABSTRACT

In real applications of heat transfer between two isother-

mal walls, the constant temperature is applied at the ex-

ternal side of the solid walls, which have a thickness and a

thermal conductivity depending on the material used. Usu-

ally, in numerical simulations the solid layer is neglected and

the constant temperature is assigned at the no-slip bound-

ary. In the present simulations the Navier-Stokes equations

together with four transport equations for a passive scalar,

which can represent either concentration or temperature, are

solved. The evolution of the passive scalars differs only for

the conductivity in the solid, while the diffusivity of the fluid

is the same. The Reynolds number effect has been investi-

gated by two simulations one at Rτ = 180 and the other

at Rτ = 335, where Rτ = uτ h/ν is the friction velocity

Reynolds number. Two point correlations, flow visualiza-

tions and probability density function of the thermal field

have been evaluated to quantify how deeply the effect of the

turbulent flow penetrates inside the solid.

INTRODUCTION

In the numerical simulations of heat transfer in turbu-

lent channel, usually, temperature boundary conditions are

assigned on the solid walls. This is a condition that does not

reproduce real conditions or laboratory experiments, where

the temperature is maintained constant on the external side

of the walls. In these circumstances the thickness and the

thermal conductivity of the wall play an important role,

which, to our knowledge, has been rarely investigated by

direct numerical simulations. Previous DNS, Kim & Moin

(1992), at low Re numbers, and Kawamura et al. (2004),

at high Re, were focused on the influence of the fluid Pr

number. By adding a uniform volumetric heating into the

scalar transport equation, as for the total velocity stress, the

sum of the wall-normal turbulent and molecular heat fluxes,

normalised by the wall heat flux, decreases linearly from 1

to 0 at the centerline. Without the constant heat source, the

total heat flux is constant across the channel. This case was

considered by Johansson & Wikstrom (1999) at Rτ = 180

and 265; they analysed the issues related to the Reynolds

averaging turbulence models. Orlandi & Leonardi (2004a),

at Rτ = 180 and 395 fixed Pr = 1, and validated their finite

difference second order method, by comparing their results

with those obtained by Johanson & Wikstrom (1999) by a

pseudospectral method. In addition by adding a realistic

transpiration at the solid wall they made an attempt to un-

derstand the effects of rough walls on heat transfer.

In the present simulations the same numerical method

of Orlandi & Leonardi (2004a) has been used to couple

the transfer of the passive scalar in the solid with that in

the fluid. The immersed boundary technique described by

Leonardi & Orlandi (2004b) was employed to this purpose.

In presence of straight walls the method is simple due to

the periodicity in two directions. A particular attention is

necessary in the passive scalar equation to get a continuous

heat flow at the interface between solid and fluid.

PHYSICAL AND NUMERICAL MODEL

The incompressible non-dimensional Navier-Stokes and

continuity equations may be written as:

∂Ui

∂t
+

∂UiUj

∂xj
= −

∂P

∂xi
+Πδi3 +

1

Re

∂2Ui

∂x2
j

;
∂Ui

∂xi
= 0 , (1)

where Re = (Uch/ν) is the Reynolds number, Uc is the lam-

inar Poiseuille centerline velocity, Π is the pressure gradient

required to maintain a constant flow rate, Ui is the com-

ponent of the velocity vector in the i direction, P is the

pressure, x1, x2 and x3 are the streamwise, wall-normal and

spanwise directions; h is the half channel width. The compu-

tational domain extend in both side up to 1.2h; in the 0.2h

thick layers there is a conducting solid. To impose, in this

layer, a zero velocity, the immersed boundary technique, de-

scribed by Leonardi & Orlandi (2004b), is used. In presence

of straight walls the method is very simple to insert in a code

(Orlandi 2000) solving the flow with two periodic and one

non homogeneous directions. Π is evaluated by a discrete in-

tegral of the RHS of the discretized streamwise momentum

equations. With the method of Leonardi & Orlandi (2004b)

the total mass is fully conserved. Moreover, the staggered

scheme, for inviscid conditions with free-slip boundaries, in

the limit of ∆t = 0, for any kind of non-uniform grid in the

normal direction, conserves the total kinetic energy. This

requirement is important to have a stable time integration

scheme.

Combined with the Navier-Stokes equations, the equa-

tion for the passive scalar θ = T/T0 is considered

∂θ

∂t
+

∂θUj

∂xj
=

1

Re PrF

∂2θ

∂x2
j

(2)

T0 is the constant temperature at x2 = ±1.2, with opposite

sign in the two sides. Eq.(2) holds in the region with the fluid

and does not require any condition at the interface between
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Figure 1: a) Θ, b) heat flux Q = αi∂Θ/∂x2 profiles varying

PrS; solid 0.0134, dashed 0.134, dotted 10.5, dashdotted

30.8.

the fluid and the solid. In the solid layers the θ transport

equation is

∂θ

∂t
=

1

Re PrS

∂2θ

∂x2
j

(3)

θ indicates the temperature field for each solid conductiv-

ity αS . In the simulations the fluid Prandtl number is

PrF = ν/αF = 1. Four values for the solid Prandtl number

PrS = ν/αS have been assumed: 0.0134, 0.134, 10.5 and

30.8. These correspond to different materials: the first is

an ideal material with a conductivity higher than copper

(0.134). The last two correspond respectively to marble and

glass.

The Navier-Stokes equations have been discretized in

an orthogonal coordinate system using a staggered central

second-order finite-difference approximation. More details of

the numerical method can be found in Orlandi (2000). The

discretized system is advanced in time using a fractional-step

method with viscous terms treated implicitly and convec-

tive terms explicitly. The large sparse matrix resulting from

the implicit terms is reduced in sparseness by FFTs in the

homogeneous directions. Tridiagonal solvers in the non-

homogeneous directions permit to get the solution at the

new time step. The reduced wavenumber instead of the real

wavenumber maintains the second-order accuracy of stag-

gered finite differences. The same discretization and time

advancement procedure is used for the passive scalar trans-

port equations. The non-uniform grid in the x2 direction

gives a better resolution near the interface, this is obtained

by two hyperbolic tangent transformations, both in the re-

gion with the fluid and with the solid. The continuity of the

first derivative at the interface permits to yield the stretch-

ing parameter in the conducting layer by fixing the desired

number of point in this layer and the stretching parameter

in the fluid side. The number of grid points depend on the

Reynolds number, while the size of the computational box

is the same for the streamwise (4π) and for the spanwise

(2π) directions. For the low Reynolds number the grid is

129 × 193 × 129 respectively in the streamwise,normal and

spanwise direction. In the normal direction 24 points are

assumed for each conducting layers. The resolution of the

turbulent flows is almost identical to that used in Kim et al

(1987). At the higher Re the number of points was doubled

in the homogeneous directions. The number of points in the

conducting layers increased to 32 and to get, near the solid

boundaries, the resolution close to that in the pseudospec-

tral simulations, the number of points inside the channel was

increased to 352. In the present simulations the resolution

in wall units is smaller than that in Kim et al (1987), they

used 256 × 193 × 192 in a computational box 2π by π in

the homogeneous directions. In addition the cos coordinate

transformation locates the first grid point closer to the wall

than the hyperbolic tangent. The DNS of turbulent chan-

nels are very sensitive to the grid points distribution near the

walls then some small discrepancy between our results and

the pseudospectral should be expected. In an unpublished

study, it has been shown that this 2nd order finite difference

method, with an identical resolution of the pseudospectral

simulations, produces identical velocity and vorticity rms

profiles.

At the interface the heat flux in the two side must be

equal; numerically to reach this goal is convenient to define

θ at the same location of U2 and the diffusivities at the cen-

ter of the cell. At the steady state the heat flux, across the

three layers, should be constant with and without fluid mo-

tions. The stationary solution of Eq.(3) and Eq.(2) without

convective terms, has been assumed as the initial condition

to reach the statistically steady state in presence of fluid mo-

tion. This steady state conducting solution has a physical

interest, in fact for PrS = 30.8 reproduces the insulated win-

dows in building constructions, where the thin layer of air,

between the solid walls, does not move. In Fig.1 the tem-

perature profiles and the heat flux for the four diffusivity

above mentioned are given. The dimensionless temperature

in the case with fluid at rest is indicated by Θ to distin-

guish it from θ in presence of the flow. Fig.1a shows that

for high conducting walls, the temperature decreases in the

fluid layer of thickness 2h, with Pr = 1. For low conducting

walls, the temperature decreases in the solid. Fig.1b, from

the numerical side, shows that the heat flux, as expected, is

constant; from the physical side shows that for glass the heat

flux is largely reduced. This solution was obtained by solv-

ing Eq.(2) and Eq.(3) in the x2 direction with Ui = 0. By

taking at t = 0 θ = ±1 on the external walls and θ = 0 else-

where, the convergence to the steady state is faster as PrS

is higher. By assigning the steady thermal field together

with a fully developed turbulent velocity field the statisti-

cally steady state, for the thermal field, was achieved in a

reduced amount of CPU time.

RESULTS

The present paper is in large part devoted to analyse the

statistics related to the temperature, however it is worth to

show that the statistics of the velocity components agree

with those by Kim et al. (1987) that are considered as

reference results. In the coordinate transformation it is im-

portant to find a satisfactory stretching parameter for the

hyperbolic tangent. For instance when the first grid point is

at y+ = 0.26, the results, in the viscous region, differ from

those by Kim et al. (1987) where the first grid point was at

y+ = 0.05. By changing the stretching parameter to have

the first grid point at y+ = 0.076 there is an improvement.

Fig.2a shows a good agreement between the mean velocity

profiles, in wall units. Both simulations present a downward

shift of the log region, by increasing the Reynolds number.

The present Rτ = 330 is slightly smaller than Rτ = 395

in Kim et al. (1987), therefore the profiles of the normal

stresses can not perfectly overlap those of the pseudospec-

tral simulations. Fig.2b shows the same < u′2
1 >+1/2 near

the wall, but the peak values differ, in particular at high

Re. This shift is due, in a reduced manner, to the different

Rτ . The present simulations show a small dependence of the

peaks, on Re, with respect to that found in the pseudospec-

tral simulations. This is related to the different resolution

in the homogeneous directions. Here ∆x1 = 16, ∆x3 = 8

while in Kim et al. (1987) ∆x1 = 10, ∆x3 = 6.5. Fig.2

indeed shows that the present numerical method produces

a satisfactory turbulent flow between one heated and one

cooled wall. This flow will affect the heat transfer, which
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Figure 2: a) Mean velocity, b) streamwise velocity rms in

wall units: solid symbols Kim et al. (1987), solid line high

Re, dashed line low Re.
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Figure 3: a) θ, b) θ − Θ profiles varying PrS; solid 0.0134,

dashed 0.134, dotted 10.5, dashdotted 30.8, thick lines for

Rτ = 330, thin lines for Rτ = 180

depends also on the thermal conductivity of the solid walls.

This last dependence, not often studied, is the phenomenon

investigated in the present study.

Regarding the temperature rms, it has been observed a

convergence, to a statistical steady state, slower than that

of the velocity rms, and faster as higher is the conductivity

of the solid. The statistics were evaluated by the uncorre-

lated fields, saved after the transient ends. By increasing

the Reynolds number the number of fields needed to reach

the statistical convergence increases; depending also on the

order and kind of statistics. For the mean temperature pro-

files few fields are enough. The number increases for the

normal correlations, and a greater number is needed for the

correlation between temperature and velocity. This explains

the small oscillations, around the expected linear profile, for

some of the total heat fluxes. To eliminate the oscillations

on < θ′u′
2 >, it is necessary to have more than the 200 fields

here used.
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Figure 4: Normalised heat flux varying PrS ; solid 0.0134,

dashed 0.134, dotted 10.5, dashdotted 30.8, thick lines for

Rτ = 330, thin lines for Rτ = 180

Fig.3a shows that Re number affects the mean temper-

ature for high conducting materials, and that the greatest

influence occurs for copper. For insulating materials the

temperature decreases in the solid, and then the effect of

the flow characteristic is negligible. To emphasize the ef-

fects of the flow characteristics is convenient to plot Θ − θ.

In fact, in Fig.3a, it is difficult to appreciate the difference

between marble and glass, on the other hand, in Fig.3b is

clear that for glass (the most insulated material) the influ-

ence of the flow is small, and that there is no difference

between the two Reynolds numbers. To understand that

only in presence of turbulent flows there are changes on the

heat transfer, it is important to remember that Θ is also

the solution for laminar flows. This has been verified by a

simulation at Re = 1000 with a small initial velocity pertur-

bation, on the Poiseuille profile. It has been observed that

the initial Θ profile does not change. So we can conclude

that, with poorly conducting materials, the strength and the

shape of the near wall vortical structures, Re dependent, do

not affect the heat transfer; is important that the structures

persist to weakly affect the mean temperature profiles. For

high conducting materials, Fig.3b shows that with copper

there is the greatest effect, and that a further increase of the

conductivity brings to a decrease on θ − Θ. The evaluation

of the correlations and flow visualizations permit to explain

this occurrence.

The constant heat flux,

q = −
1

Pe
∂θ/∂x2+ < θ′u′

2 > (4)

increases when the flow is turbulent. In Eq.(4) Pe = RePrS

in the solid layers (Pe indicates the Peclet number), and

Pe = RePrF in the fluid. To quantify the effects of the

turbulence is worth to normalize the heat fluxes with Q (the

heat flux for laminar flow given in Fig.(1)). Fig.4 shows that

for low conducting materials the heat flux at any Reynolds

number remains almost constant and equal to that without

motion. On the other hand, a large increase with Re occurs

for high conducting materials, and this increases by increas-

ing the thermal conductivity. It is interesting to notice that

for copper at Rτ = 180, the heat flux increases 7 times larger

than the heat flux for laminar flow. Hamilton et al. (1995)

found that Rτ = 100 is the minimum friction Reynolds num-

ber to have the streaky structures near the wall. Even if we

did not measure the heat transfer at Rτ = 100; we can as-

sume that it is close to that in a laminar regime, hence the

heat transfer increases seven times by doubling Reτ up to

Rτ = 180. A further doubling of Reτ increases the heat flux

respect to Reτ = 180 of a factor 11/7. A further increase of

Reτ should give a lower augmentation, therefore a limit on

the heat transfer with Reτ would exist. To find this limit,

simulations at higher Re are necessary, and these will be

performed in the near future.
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0.0134, dashed 0.134, dotted 10.5, dashdotted 30.8, thick

lines for Rτ = 330, thin lines for Rτ = 180
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Figure 6: a) θ∗ , b) < θ′2 >1/2 profiles versus y = 1 −

|x2| varying PrS ; solid 0.0134, dashed 0.134, dotted 10.5,

dashdotted 30.8, thick lines for Rτ = 330, thin lines for
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The turbulent contribution < θ′u′
2 > /Q to the total

heat flux (shown in Fig.5 ) is predominant in the central

region of the channel. The amount due to the mean tem-

perature gradient overcomes the turbulent flux only in the

region near the wall, this term is of the same order of Q, as it

can be appreciated by comparing Fig.4 and Fig.5. We would

like to remind that the flat behavior of < θ′u′
2 > in the cen-

tral region of the channel occurs with isothermal walls and

absence of heat sources.

By scaling θ∗ = |(θ− θI)/(θc − θI)|, with θI the temper-

ature at the interface and θc that at the centerline (here

θc = 0), near the wall a linear profile, with a constant

slope independent on Re, is obtained (Fig.6a). The effect

of the Reynolds number is to shift upward the profile. This

was also observed in channels with a fix temperature on

the walls. In that set-up, also < θ′2 >1/2 had a similar

trend near the wall. The conjugate heat transfer gives pe-

culiar profiles of < θ′2 >1/2 in the solid and in a reduced

measure near the wall. For instance in Fig.6b, for copper,

the temperature fluctuations are higher than those for the

highest conducting material. Despite this occurrence in the

solid, the highest temperature fluctuations in the fluids are

achieved at the high conductivity of the solid. Contrary to

the expectations the maxima of < θ′2 >1/2 are reached at

low instead of high Re. This strange behavior is explained

by a comparison between two-point U1 and temperature cor-

relations. Fig.7 shows that, near the wall, the growth of

θ̂ =< θ′2 >1/2 − < θ′2 >
1/2
I

/ < θ′2 >
1/2
c − < θ′2 >

1/2
I

increases with Re, and that the highest values are reached at
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Figure 7: Normalised temperature rms varying PrS ; solid

0.0134, dashed 0.134, dotted 10.5, dashdotted 30.8, thick

lines for Rτ = 330, thin lines for Rτ = 180
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Figure 8: a) Spanwise, b) streamwise two point correlations

for temperature and velocity inside the fluid at a distance

y ≈ 15 wall units: solid symbols velocity at high Re open at

low Re; for temperature solid 0.0134, dashed 0.134, dotted

10.5, dashdotted 30.8, thick lines for Rτ = 330, thin lines

for Rτ = 180

small Re. If the conductivity is low, glass for instance, the

reduction of < θ′2 >1/2 in the fluid leads to smaller values

than those at the wall. Also this can be explained through

two-point correlations or flow visualizations.

Kim & Moin (1992) by DNS obtained a strong correlation

between negative values of θ′ and u′
1, which was, previously,

postulated by the experimentalist (Kline et al. 1967) in the

detection of the high and low speed structures by flow visu-

alizations. This is in particular true if PrF = 1 and with a

well defined source of the passive scalar. In the present sim-

ulations the near wall structures should affect the thermal

fields also in the interior of the solid. It can be expected that

in materials with low conductivity the influence in the solid

is weak, and strong in material with high conductivity. The

near wall structures are elongated in the streamwise direc-

tions (between 600 and 800 wall units) and are separated by

100 wall units, hence are closer when Re increases. Even if

in the solid the wall units do not have a physical meaning the

two-point correlations are plotted versus the distance in wall

units, to have an immediate impression of the persistence of

the shape of the high- and low-speed streaks in the solid. At

a distance from the wall where there is the maximum of tur-

bulent kinetic energy, the two-point U1 correlations in the

streamwise (Fig.8a) and in the spanwise (Fig.8b) directions,

are almost independent on Re. The two-point correlations of

temperature are similar to the velocity for high conducting

782



-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 200  400  600  800  1000  1200  1400  1600  1800  2000

PSfrag replacements

R
1
1

l+1 (a)

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 50  100  150  200  250  300  350  400  450  500

PSfrag replacements

R11

l+1 (a)

R
3
3

l+3 (b)

Figure 9: a) Spanwise, b) streamwise two point correlations

for temperature inside the solid at a distance from the wall

y = 0.015 compared with those of the streamwise velocity

(Fig.8): solid symbols velocity at low Re open at high Re; for

temperature solid 0.0134, dashed 0.134, dotted 10.5, dash-

dotted 30.8, thick lines for Rτ = 330, thin lines for Rτ = 180

walls and low Re. On the other hand, for low conducting

walls the figures show that an increase of Re leads to a re-

duction on the amplitude of the negative peak and to a shift

toward greater distances. Fig.8a shows that at high Re and

low conductivity the minimum occurs at the end of the com-

putational box, implying that the structures are very long.

This is the reason why at high Re a greater box than that

in Kim et al. (1987) was used.

To understand how deep the effects of the near wall

vortical structures penetrate in the solid, the two-point cor-

relations of the thermal field were evaluated at a distance

y = 0.015 from the wall, this distance is half of the distance

where the correlations in Fig.8 were evaluated. Fig.9a shows

that for low conducting materials the structures are much

longer than the computational box. Together with Fig.9b

we can assert that, for glass, there is a substantial loss of

any kind of thermal field structure. With a good approx-

imation the temperature is almost constant in the solid at

a very small distance from the interface. For the marble at

small Re a sensible reduction of the longitudinal correlation

appears (R11 = 0.4), and a clear alternation of positive and

negative thermal fluctuations is not reached. Only for very

high conducting materials and at low Re the vortical struc-

tures affect the thermal field inside the solid. Fig.9b indeed

shows that the size and the distance between positive and

negative fluctuations is greater than that for the high- and

low-speed streaks.

Flow visualizations produce a further information to un-

derstand what happens inside the solid. In Fig.10 color

contours of θ′ scaled with the local rms (the normalised

quantities are indicated by q̃, i.e. θ̃ = θ′/ < θ2′ >1/2 ),

are plotted at the same location where Fig.9a and Fig.9b

were evaluated. Isocontours of u′
1, also scaled by the local

rms in the flow side at the distance of Fig.8, are superim-

posed. Near the wall there is a large probability to have

u′
1 > 0 associated to u′

2 < 0 and vice-versa. So near the

hot wall an ejection u′
2 > 0 contributes to transport high

temperature away from the wall into the fluid hence θ′ > 0.

The opposite is expected for the inrush (u′
2 < 0 , θ′ < 0).

The final result is to have in correspondence with low-speed

(a)

(b)

Figure 10: Flow visualizations of normalized θ′ at y =

−0.015, color contours (red yellow > 0, blue green < 0),

superimposed to normalised u′
1 at y = 0.032 (solid > 0,

dashed < 0); a) PrS = 0.0134, b) PrS = 30.8.

streaks (dashed lines) hotter regions (red or yellow) and vice-

versa for the high-speed streaks. It is important to notice

that these visualizations are done in the side of the hot wall

(−1 < x2 < 0) where 〈θ′u′
1〉 is negative. Near the opposite

wall 〈θ′u′
1〉 is positive and an opposite behavior is expected.

Fig.10 shows that 〈θ′u′
1〉 < 0 for the high and low conducting

walls. Fig.10, in addition clearly demonstrates that the al-

ternate regions of positive and negative θ′ are very elongated

for the lowest conducting fluids. The fluctuating gradients

are largely reduced and very seldom high temperature fluc-

tuations occur. For the highest conducting solid (Fig.10a)

the regions of positive and negative θ′ correspond well to the

low- and high-speed regions.

It is difficult to reconcile the two-point temperature cor-

relations in Fig.9b (several fields) with the visualizations in

Fig.10b (one field). Hence to understand the occurrence of

strong events inside the solid and their dependence on the

conductivity, the probability density functions of the quanti-

ties in the flow visualizations can be of great help. The pdf,

in fact, have a clear physical meaning, being evaluated by

several fields so the number of samples are greater than those

in the visualizations. For instance at high Re are N ≈ 107

and at low Re N ≈ 106 . By plotting in the same figure the

pdf of θ̃ and of ũ1 it is possible to quantify the different oc-

currences of strong events. The pdf are evaluated near the

hot wall at the same distance of two-point correlations and

visualizations. Fig.11a shows a rather good independence

on Re. θ̃ and −ũ1 are negatively skewed, for θ̃ a small ten-

dency toward a Gaussian distribution can be appreciated for

low conducting walls. Fig.11b shows that the pdf of θ̃ inside

the wall is close to the velocity near the wall, only for high

conducting materials. For the other materials, by decreasing

the conductivity there is a reduction of the strong negative

fluctuations and that the temperature is not correlated with

the flow field.

In studying flow turbulence, the statistics of the deriva-

tives rather than the statistics of the variables are of interest.

In fact, only the derivatives, show non Gaussian distribu-

tions. In horizontal planes at a distance from the interface

derivatives in the streamwise and spanwise directions can be

evaluated, and due to the shape of the structures should have

different distributions. Fig.12a shows that the velocity gra-

dient skewness is negative (−∂u′
1/∂x1 is plotted) and highly

intermittent; with high conducting materials the correspon-
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Figure 11: Probability density function of ũ1 and θ̃ at a) y =

0.035 inside the fluid, b) y = −0.015 inside the solid; solid

symbols velocity at low Re open at high Re; for temperature

solid 0.0134, dashed 0.134, dotted 10.5, dashdotted 30.8,

thick lines for Rτ = 330, thin lines for Rτ = 180
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Figure 12: Probability density function of a) ∂̃q/∂x1 and θ̃,

b) ∂̃q/∂x3 at a) y = −0.015 inside the solid; solid symbols

q = u1 at low Re open at high Re; when q is temperature

solid 0.0134, dashed 0.134, dotted 10.5, dashdotted 30.8,

thick lines for Rτ = 330, thin lines for Rτ = 180

dence between thermal and velocity fields is a good. By

reducing the conductivity the fields are less correlated. This

is a sign that the fluctuating temperatures are distributed

in structures much longer than those associated to the ve-

locity distributions (symbols in the figures). For glass, at

high Re, the strange shape of the pdf is related to the very

small value of the rms of ∂θ/∂x1, with a large part of points

without gradients and several points where the gradients are

more than twice its rms. The high intermittent character of

the longitudinal derivatives is clearly shown for any quantity

Fig.12a. The distribution radically change for the spanwise

derivatives, it remains negative skewed (positive in Fig.12b

for the velocity derivative). ∂θ/∂x3 does not follow ∂u3/∂x3

at all, it becomes independent on the conductivity and Re.

Inside the solid the distribution is close to be Gaussian. The

independence on PrS and on Re was found also in the fluid

side near the wall, with the difference that in the fluid the

distribution has quite strong tails.

CONCLUSIONS

In this study DNS of convective turbulent heat transfer

demonstrate that to have results of practical interest it is

important to consider also the heat transfer in the conduct-

ing materials of the walls. In these preliminary studies it

has been assumed that the thickness of the wall does not

vary, also this parameter plays a role. In addition there are

applications where the conductivity of the two walls may be

different. Several other parameters can be varied and to un-

derstand the effect of each requires an enormous amount of

simulations. The most important conclusion, then, is that,

the previous DNS, with the temperature assigned on the no-

slip wall is quite far from the real applications, in particular

for poor conducting walls. The effect of the Re number has

been investigated, instead the fluid Prandtl number has been

neglected. PrF = 1 is a satisfactory assumption for air. For

water PrF is greater and hence a finer resolution is required

to describe the stronger temperature gradients.

The present paper was devoted mainly to heat transfer,

but the same procedure can be used to understand the mass

transfer. The main application for mass transfer can be

usefull for biological applications, where the passive scalars

can react both in the fluid and in the tissue layers. It is not

too difficult to add in the transport equations the chemical

reactions, but if the reactions are stiff a particular care is

needed in the time integration procedure. Despite the added

difficulties this study shows that the immersed boundary

technique here used is very promising.
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