
HYBRID RANS-LES MODELING FOR NON-EQUILIBRIUM TURBULENT FLOWSBruno ChaouatDepartment of Computational Fluid Dynamis, ONERABP 72 - 92322 Châtillon edex, FraneBruno.Chaouat�onera.frRoland ShiestelIRPHE CNRS/Universit�es d'Aix-Marseille I & IITehnopôle Château-Gombert, BP 146 - 13384 Marseille edex 13, FraneRoland.Shiestel�irphe.univ-mrs.frABSTRACTThe partially integrated transport modeling (PITM)method for subgrid turbulene quantities viewed as a ontin-uous approah of hybrid RANS/LES methods with seamlessoupling between the two extreme limits that are the fullstatistial and diret numerial simulation depending on thespetral uto� loation is onsidered (Shiestel and Dejoan,2005). In this framework, the PITM version based on thetransport equations for the turbulent stresses together withthe dissipation rate equation proposed reently (Chaouatand Shiestel, 2005) is now developed in a more generalformulation based on an aurate energy spetrum E(�)valid for both large and small eddy ranges and that al-lows to alibrate more aurately the sgs�2 funtion usedin the � transport equation. The model is here proposedin an extended approah that an be applied to a largerrange of ows by onsidering the turbulene length saleLe = k3=2=(�sgs + �<) built by means of the total turbu-lent energy k and the total dissipation rate � inluding thesubgrid zone dissipation �sgs and the resolved part of thedissipation rate �<. The present model is �rst tested onthe deay of homogeneous isotropi turbulene referring tothe experiment of Comte-Bellot and Corrsin. Then, initialperturbed spetra E(�) with a peak or a defet of energyare onsidered for analyzing the model apabilities in non-equilibrium ow situations. The seond test ase hosen isthe well known fully turbulent hannel ow that allows to as-sess the performane of the model in non homogeneous ows,and espeially, its apaity to reprodue the ow anisotropy.INTRODUCTIONMathematial turbulene modeling methods suh asthe RANS method (Launder, 1989; Speziale, 1991) or theLES method have made signi�ant progress in the pastdeade for prediting various pratial turbulent shearows. Generally, the RANS models appear well suited tohandle engineering appliations involving strong e�ets ofstreamline urvature, adverse pressure gradient enounteredfor instane in aeronautis appliations (Chaouat, 2007)whereas LES subgrid models (Lesieur, 2005) are ratherused for simulating aademi ows with emphasis on theow strutures, the two-point orrelations and the energyspetrum. All these various approahes have often beendeveloped along independent lines and the onnetionbetween them is generally not learly established. In thisframework, the partially integrated transport modeling

(PITM) for the subgrid turbulene quantities viewed as aontinuous approah of hybrid RANS/LES methods withseamless oupling (Shiestel and Dejoan, 2005; Chaouat andShiestel, 2005) gains major interest on the fundamentalpoint of view beause it bridges these di�erent levelsof desription in a onsistent way (Hanjali et al., 2004;Chaouat and Shiestel, 2007) that takes advantage of RANSand LES approahes. Hybrid RANS/LES methods are nowmore and more widespread suh as for instane the PANSmodel (Girimaji et al., 2006) that appeared in this line ofthought with great similarities with the PITM approah.The PITM model takes its physial foundation in thespetral spae that onsider the Fourier transform of thetwo-point utuating veloity orrelation equations with anextension to non-homogeneous turbulene (Chaouat andShiestel, 2007). Beause of its formulation, it appears wellsuited for simulating ows on relatively oarse grids whenthe spetral uto� is loated before the inertial zone.The present paper presents the main features of thePITM that allows transposition of turbulene modeling fromRANS to LES. New developments that extend the originalPITM formulation (Chaouat and Shiestel, 2005) to a largerrange of ows are then proposed.PITM APPROACH TO SUBGRID-SCALE TURBULENCEMODELSGeneral formalismFor large eddy simulations, the spetrum is partitionedusing a uto� wave number �. In lassial LES, this uto�is loated in the beginning of the inertial range of eddies butin the present approah, like in very large eddy simulations(VLES), the uto� may be loated before the inertial range.Another wave number �d loated at the end of the inertialrange of the spetrum is also used, assuming that the en-ergy pertaining to higher wavenumbers is entirely negligible.This pratie, inspired from multiple sale modeling (Shi-estel, 1987) avoids onsidering in�nite limits and moleularvisosity e�ets in the far end of the spetrum. When non-homogeneous turbulene is onsidered (this is indeed theusual ase), the onept of tangent homogeneous spae ata point of the non-homogeneous ow �eld is used (Chaouatand Shiestel, 2007). One may remark also that the uto� isnot neessarily equal to the grid spaing, it an be dissoi-ated in a sub�lter model. In this ase, it is then possible to
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de�ne the large sale utuations (resolved sales) u<i andthe �ne sales (modeled sales) u>i through the relationsusing the wave number �u<i = Zj�j�� bu0i(X;�) exp (j��) d� (1)u>i = Zj�j�� bu0i(X;�) exp (j��) d� (2)When the uto� vanishes, the full integration in the tan-gent homogeneous spae exatly orresponds to the statis-tial mean, that guarantees exat ompatibility with RANSequations. In this framework, the instantaneous veloityui is deomposed into a statistial part huii, a large saleutuating u<i and a small sale utuating u>i suh thatui = huii + u<i + u>i . The �rst two terms orrespond tothe �ltered veloity �ui suh that �ui = huii + u<i . The ve-loity utuation u0i ontains a large-sale and a small-saleparts, u0i = u<i + u>i . This partiular �lter, as a spetraltrunation, presents some additional useful properties thatare not veri�ed for progressive �lters. In partiular, the largesale and small sale utuations are unorrelated (Shiestel,1987) h'> <i = 0 implying for instane the relationRij = huiuji � huii huji = 
u0iu0i� = Du<i u<j E+ Du>i u>j E(3)The transport equation for the �ltered Navier-Stokes equa-tions takes the form��ui�t + ��xj (�ui�uj) = �1� ��p�xi + � �2�ui�xj�xj � ��(ui; uj)�xj (4)in whih, following Germano's derivation (Germano, 1992),the subgrid-sale tensor is de�ned by the relation(�ij )sgs = �(ui; uj) = uiuj � �ui�uj (5)As a result of interest, the transport equation for thesubgrid-sale tensor takes a generi form if written in termsof entral moments (Germano, 1992). So that, the resultingequation an be rearranged as��(ui; uj)�t + ��xk ��(ui; uj)�uk� =��(ui; uk) ��uj�xk � �(uj ; uk) ��ui�xk+� �p; �ui�xj + �uj�xi ��1� ��(p; ui)�xj � 1� ��(p; uj)�xi � ��(ui; uj ; uk)�xk+� �2�(ui; uj)�xk�xk � 2�� � �ui�xk ; �uj�xk� (6)with the general de�nition �(f; g) = fg� �f�g and �(f; g; h) =fgh� �f�(g; h)� �g�(h; f)� �h�(f; g)� �f�g�h for any turbulentquantities f , g, h. Equation (6) will then be solved nu-merially in spae and time. Using the de�nition D=Dt =�=�t+ �uk�=�xk, equation (6) readsD(�ij)sgsDt = (Pij)sgs + (	ij )sgs + (Jij)sgs � (�ij)sgs (7)where in this equation, the prodution term (Pij)sgs is givenby (Pij)sgs = �(�ik)sgs ��uj�xk � (�jk)sgs ��ui�xk (8)

The orresponding equation for the sub�lter energy is ob-tained by half the traeDksgsDt = Psgs + Jsgs � �sgs (9)where Psgs = (Pmm)sgs=2 and �sgs = (�mm)sgs=2. Beauseof the nie properties of the trunation �lter in Fourier spae,one an see that the mean statistial and �ltered equationsan both be written in a similar form. As a onsequene,the losure approximations used for the statistial partiallyaveraged equations are assumed to prevail also in the aseof large eddy numerial simulations. The present formalismis indeed the essene of the PITM model, �rst developed byShiestel and Dejoan (2005) for the transport equation (9)of the subgrid-sale turbulent energy ksgs and subsequentlyby Chaouat and Shiestel for the transport equation (7) ofthe subgrid-sale turbulent stress tensor (�ij )sgs.Stress transport equation sub�lter modelIn the sub�lter models, as usual in statistial approahes,the redistribution term (	ij)sgs whih appears in equation(7) is deomposed into a slow part (	1ij)sgs and a rapid part(	2ij)sgs in the subgrid-sale range. This term is modeled inthe range [�; �d℄ where the wave number �d is loated at theend of the inertial range of the spetrum after the transferzone. The uto� wave number is generally omputed fromthe grid size suh as � = �=� where � = (�1�2�3)1=3.The slow term is modeled assuming that usual statistialReynolds stress models must be reovered in the limit ofvanishing uto� wave number � and also that the returnto isotropy is inreased at higher wave numbers, as also as-sumed in multiple-sale models (Shiestel, 1987)(	1ij)sgs = �sgs1 �sgsksgs �(�ij )sgs � 13 (�mm)sgsÆij� (10)(	2ij)sgs = �2 �(Pij)sgs � 13 (Pmm)sgsÆij� (11)where sgs1 is now a ontinuous funtion of the dimension-less parameter � = �Le involving the turbulene lengthsale Le = k3=2=(�sgs + �<) built by means of the total tur-bulent energy k = ksgs+kles and the total dissipation rate �inluding the dissipation in the subgrid zone �sgs, and the re-solved part of the dissipation rate �< = �(�u<i �u<i =�xj�xj)for the large-sale utuating veloities u<i that may be notnegligible in low Reynolds number ows. Aording to thelassial physis of turbulene, the oeÆient sgs1 must in-rease with the parameter � in order to inrease the returnto isotropy in the range of larger wave numbers. To do that,we suggest a simple empirial funtionsgs1 = 1 + �� �21 + �2 1 (12)where �� is a numerial onstant. This funtion satis�es thelimiting ondition lim�!0 sgs1 (�) = 1. As usual, thedi�usion proess (Jij)sgs is modeled assuming a gradientlaw(Jij)sgs = ��xk �� �(�ij)sgs�xk + s ksgs�sgs (�kl)sgs �(�ij )sgs�xl �(13)where s is a numerial oeÆient whih takes the value 0.22.Moreover, we assume (�ij)sgs = (2=3)�sgsÆij . In ontrastwith the two-equation model, it an be mentioned that theprodution term (Pij)sgs is allowed to beome negative. Insuh a ase, this implies that energy is transferred from the
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�ltered motions up to the resolved motions, known as bak-satter proess. Closure of equation (7) is neessary for thedissipation-rate whih is omputed by means of a transportequation. The dissipation-rate �sgs is therefore used for al-ulating the length sale without referring diretly to themesh size. That allows to simulate non-equilibrium owswhen the �lter width is no longer a good estimate of theharateristi turbulene length. As a result of the mod-eling (Chaouat and Shiestel, 2005), the modeled transportequation for the dissipation-rate �sgs taking into aount theonvetive and di�usive proesses readsD�sgsDt = �1 �sgsksgs (Pmm)sgs2 � sgs�2 �2sgsksgs + (J�)sgs (14)where(J�)sgs = ��xj �� ��sgs�xj + � ksgs�sgs (�jm)sgs ��sgs�xm � (15)In equation (14), sgs�2 is now a funtion of the dimension-less uto� wave number �. Intuitively, it is obvious thatthe usual � equation used in statistial modeling in whih thewhole spetrum is modeled annot be used without modi�a-tion in LES in whih just a part of the spetrum is modeled.This modi�ation is made through a variation of the oeÆ-ient sgs�2 and so the model is then able to \read "the sizeof the mesh in order to model only the appropriate portionof the turbulene �eld. This is the main feature of PITMapproahes whih are basially di�erent from an URANSapproah. The mathematial physis formalism developedin the spetral spae for the two-point tensor orrelation�ij = Dbu0i(X;�) bu0j(X;�)E, where bu0i denotes the Fouriertransform of the utuating veloity u0i, shows (Chaouat andShiestel, 2007) that the approah an be developed onsis-tently in non-homogeneous turbulene.Improved spetral modelThe analytial development of the dissipation rate equa-tion (Shiestel and Dejoan, 2005) shows that the oeÆientsgs�2 takes the expressionsgs�2 = �1 + ksgsk (�2 � �1) (16)In the present PITM formulation, the form of the funtionksgs=k in equation (16) has been improved and is now evalu-ated by means of an aurate energy spetrum E(�) inspiredfrom Von Karman like spetrum valid on the entire range ofwavenumbers E(�) = 23��L3e k �2[1 + ��(�Le)3)℄11=9 (17)where �� is a onstant oeÆient, instead of simply re-ferring to the Kolmogorov law valid in the inertial rangeE(�) = CK�2=3��5=3 as made previously (Chaouat andShiestel, 2005). The subgrid-sale turbulent kineti en-ergy is then omputed by integrating the spetrum E(�)in the wave number range [�;+1[, ksgs = R1� E(�)d� =1= �1 + ��(� Le)3)�2=9, providing the new expression ofsgs�2 , as a funtion of the dimensionless uto� wavenumber � sgs�2 (�) = �1 + �2 � �1[1 + �� �3 ℄2=9 (18)where �1 = 1:4 and �2 = 1:9. In order to satisfythe orret asymptoti behavior for the spetrum E(�),

lim�!1 E(�) = CK�2=3��5=3, the oeÆient �� is foundto take the theoretial value �� = (2=3CK )9=2 � 0:026. Sothat, the stress transport equation sub�lter model is �nallybased on the modeled equations (7) and (14). Figure 1desribes the evolution of the analytial dimensionless spe-trum E(�)=(kLe) de�ned by the relation (17) as well as theKolmogorov slope in Ck�2=3��5=3, versus the dimensionlesswave number �Le. As expeted, it appears that the an-alytial spetrum slope goes to the Kolmogorov slope forhigh wave numbers showing that the inertial zone is rapidlyreahed. In pratie, several trial and error tests have beenmade for seleting appropriate values for the two model o-eÆients �� and ��. These tests have lead to the optimizedoeÆient values �� = 1:5 and �� = (2=3Ck)9=2 = 0:161 forCk = 1.Limiting behaviorKeeping the tangent homogeneous spae in mind, onean remark �nally that for the ase of LES performed onvery large �lter widths, the �lter width need to be dissoi-ated from the grid itself, beause the grid must always be�ne enough to apture the mean ow non-homogeneities.When the uto� loation is large then, limiting behaviorsare obtained. The length sale k3=2sgs=�sgs is equal tok3=2sgs�sgs = k3=2�sgs �ksgsk �3=2 (19)Taking into aount the limiting value ksgs=k � 3=2Ck��2=3when ksgs � k, equation (19) shows that the subgrid har-ateristi length sale goes to the �lter widthk3=2sgs=�sgs = (3CK=2)3=2�=� (20)Moreover, the de�nition of sub�lter visosity implies�3=2sgs = 3=2� (k3sgs=�3=2sgs) = 3=2� �k3sgs=�2sgs� �1=2sgs or �sgs =3=2� �k3sgs=�2sgs� (�sgs=�sgs)1=2. Using then the previous re-sult on the length-sale together with the hypothesis ofequilibrium �sgs = 2�sgs 
 �Si;j �Si;j� where �Sij = (��ui=�xj +��uj=�xi)=2, one �nds that the limiting behavior for the sub-grid visosity �sgs is simply the Smagorinsky model�sgs = 1�2 �3CK2 �3 3=2� �2 �2 
 �Sij �Sij��1=2 (21)NUMERICAL METHODThe �nite volume tehnique is adopted for solving thefull transport equations in a onservative formulation. Thegoverning equation are integrated expliitly in time usinga fourth-order Runge-Kutta sheme whih is well appropri-ate for simulating unsteady ows. The numerial sheme isbased on a entered formulation with seond-order aurayin spae disretization that allows to minimize the dissipa-tive and dispersive numerial errors. Note that an upwindsheme with seond order spae disretization is howeverretained for solving the turbulent equations (7) and (14). Be-ause of the �ltered veloity gradients ��ui=�xj that evolvesrapidly in time, the turbulent equations are diÆult to solve.In that ase, it is more eÆient, from a numerial point ofview, to solve �rst the redundant equation (9) and equa-tion (14) that are strongly oupled and afterwards to solveequation (7) using the preeding k�sgs and ��sgs values. Inpartiular the Rotta term in the stress equations will beproportional to �(�ij )sgs � 23k�sgsÆij�. Still with the aim toimprove the numerial sheme stability, it is also useful toaverage in time the ratio T = ksgs=�sgs that appears in
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equation (14). This numerial proedure is of pratial in-terest when performing LES using the PITM model. Notethat this proedure an also be justi�ed from a physial pointof view sine the ratio T = ksgs=�sgs an be view as a har-ateristi time-sale of the turbulene. The soure terms inequation (7) are linearized to avoid numerial instabilities.Equation (7), rewritten in the ompat form�(�ij)sgs�t = A�Q (�ij )sgs (22)where A and Q denotes two matrix funtions of the quanti-ties (�ij)sgs, k�sgs and ��sgs is solved using the Jaobi iterativeimpliit method. Indeed, by using the matrix deompositionQ = D+R where D denotes a diagonal matrix and R a non-diagonal matrix, (�ij )p+1sgs is then solution of the iterativeequation(�ij )p+1sgs [I +DÆt℄ = (�ij )nsgs + [A �R (�ij)psgs℄Æt (23)where I is the identity matrix. The onvergene is then as-sumed when (�ij)n+1sgs = limp!1(�ij )psgs. Obviously, thenumerial proedure muh also satisfy the trae equalitykn+1sgs = (�nn)n+1sgs =2 pratially obtained within two or threeinternal iterations.SIMULATION OF HOMOGENEOUS TURBULENCEDeay of isotropi non-perturbed spetrumThe present PITM model is �rst tested in its two-equation ontrated form de�ned by equations (9) and (14)in the ase of deay of homogeneous isotropi turbulene re-ferring to the experiment of Comte-Bellot (Comte-Bellot andCorrsin, 1971) to hek the behavior of the model (not on-erned with the anisotropy aspets). Three-dimensional tur-bulent energy spetra have been measured at di�erent timeadvanement and the initial Reynolds number Rt = k2=(��)is about 792. The PITM simulation is performed on amedium grid N = 803 for a box-size L = 1:256 m. Thewave-numbers are de�ned by � = 2�=n where n variesfrom �N=2 + 1 to N=2 leading to a minimum wave-number�min = 2�=(N�) = 0:05 m�1 and a maximum wave-number �max = �=� = 2 m�1 of the grid. In the presentase, a large uto� wave-number is retained, � = �max = 2m�1, so that the initial ratio to the subgrid-sale energyto the total energy ksgs=k is about 0.36. The initial ve-loity �eld has been produed from a random generatorenforing the given energy spetrum. Figure 2 shows theevolution of the omputed three-dimensional spetra fromthe initial time (tU0=M =42) for the two time advanements(tU0=M =98, 171) ompared to the Comte-Bellot data. Onean observe that the numerial spetrum omputed at thetime tU0=M =98 agrees well with the data in the Comte-Bellot experiment but the other one omputed at the timeadvanement tU0=M =171 slightly deviates from the data.In fat, a more deeply investigation reveals that the numer-ial slope omputed at tU0=M =171 exatly orresponds tothe ��5=3 Kolmogorov slope, as it an be seen on this �gure.There is no de�nite physial explanation unless perhaps toremark that the Comte-Bellot experiment is worked out ata relatively low Reynolds number. For this ase, this im-plies that the inertial zone transfer is very short. Figure 3shows the time deay of the turbulene, respetively for thesubgrid-sale energy ksgs, the resolved-sale energy kles andthe total energy in logarithmi oordinates. The deay lawgiven by the standard k� � model aording to the relation

k=k0 = t1=(1��2 ) (where k is obtained in the present LESby the sum of the subgrid and resolved-sales) leads to theslope of deay lose to n=1.1 that orresponds to the usualvalue �2 = 1:90.Deay of isotropi perturbed spetrumIn this ase, the initial Comte-bellot spetrum (�) attU0=M = 42 is arti�ially perturbed by modifying the en-ergy levels departing from usual equilibrium spetrum. Theaim is to study the inuene of initial spetral distribution onthe deay law as an illustration of out of spetral equilibriumsituations. Relative to the non-perturbed spetrum (�), theinitial spetra are therefore modi�ed, respetively, by in-reasing the large-sales (�) or by dereasing the large sales(). The PITM results as well as the initial perturbed spe-trum are plotted in �gure 4. A �rst observation reveals thatthe di�erent urves assoiated to the two perturbed spetra(�) and () are both idential at the beginning of deay butafterwards are departing from the deay urve orrespondingto the non-perturbed spetrum (�). As a result of interest,one an observe that a peak in large sale energy (resp. adefet in large sale energy) implies a derease (resp. aninrease) of the deay rate of turbulene. These results arefound to be in qualitative agreement with EDQNM spetralmodels preditions (Cambon et al., 1981). These evolutionsan be easily explained if one onsider that the di�erentia-tion between the urves an only our after the deay timethat is required to reah the perturbed energy zone (soureor sink) of the three-dimensional spetrum. Then, the urvesdeviate from eah other beause the small-sale energy de-reases more rapidly than the large sale energy as indeedthe time sale of small eddies is shorter. As known, note thatthis turbulene spetral e�et due to departure from equi-librium annot be reprodued using standard single-salestatistial turbulene models.SIMULATION OF NON-HOMOGENEOUS TURBULENCELow Reynolds PITM modelIn this setion, the present Reynolds stress PITM modelbased on the transport equations (7) and (14) is applied forperforming numerial simulations of the fully developed tur-bulent hannel ow. However, these equations must be mod-i�ed to aount for wall e�ets at low turbulent Reynoldsnumber. To do that, like in the Launder and Shima model(Launder and Shima, 1989), the funtion 1 in equation (12)depends on the seond and third subgrid-sale invariantsA2 = aijaji, A3 = aijajkaki and the atness parameterA = 1� 98 (A2 � A3) where aij = ((�ij )sgs� 23ksgsÆij)=ksgs.Moreover, the term (	ij)wsgs that takes into aount the wallreetion e�et of the pressure utuations is embedded inthe model for reproduing orretly the logarithmi regionof the turbulent boundary layer.Fully turbulent hannel owThe numerial simulation is performed on a mediummesh resolution requiring 32 � 64 � 84 grids with di�er-ent spaings �i. The uniform dimensionless spaings inthe streamwise and spanwise diretions are �+1 = 50:9,�+2 = 25:1. In the normal diretion to the wall, the gridpoints are distributed in nonuniform spaing with re�nementnear the walls. The �rst point is loated at the dimensionlessdistane �+3 = 0:5. The PITM simulation is ompared with
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the DNS data (Moser et al, 1999) for a Reynolds numberR� = 395. Figure 5 displays the evolution of the subgrid-sale oeÆient sgs�2 obtained from relation (16) and indi-ates that the PITM model (with this partiular hoie ofgrid) behaves like quasi-RSM model near the walls and LESnear the enter of the hannel sine the oeÆient sgs�2 de-reases from its RANS value to �1 . The mesh size � = �=�and the subgrid length sale Lsgs = �(3Ck=2)�3=2k3=2sgs=�sgsomputed from equation (20) are plotted in �gure 6 versusthe hannel height. As a result, one an see that these twosales present di�erent evolutions on�rming the interest toompute the length-sale from the dissipation-rate equation(14) although the length sales are of the same order ofmagnitude. Figure 7 reveals the sharing out of turbulentenergy among the subgrid and resolved turbulene sales.Note that the anisotropy of the subgrid-stresses is well re-produed beause the PITM disards the onept of eddyvisosity. Figure 8 desribes the evolution of the total tur-bulent stresses �11, �22 and �33 in the hannel with DNSomparisons at Reynolds number R� = 395. As shown, avery good agreement is obtained with the DNS data on-�rming that the total energy is well estimated.CONCLUSIONThe PITM approah viewed as a ontinuous hybridRANS/LES model has been developed in a more generalformulation based on an aurate energy spetrum E(�)and a turbulene length sale Le = k3=2=(�sgs + �<) thatis omputed at eah time advanement. This model hasbeen alibrated and suessfully tested on deay of homo-geneous isotropi turbulene referring to the Comte-Bellotexperiment and applied in situation of non-equilibrium ow.The performane of the model and espeially, its apabilitiesin the anisotropy predition have been demonstrated in thefully turbulent hannel ow test ase. So that, it looks as agood andidate for simulating turbulent ows that presentsomplex physis, providing the numerial sheme is suÆ-iently stable and aurate.REFERENCESCambon C., Jeandel, D. and Mathieu, J., 1981, \Spe-tral Modelling of Homogeneous Non-Isotropi Turbulene.",Journal of Fluid Mehanis, Vol. 104, pp. 247-262.Chaouat, B., and Shiestel, R., 2005, \A New PartiallyIntegrated Transport Model for Subgrid-Sale Stresses andDissipation Rate for Turbulent Developing Flows", Physisof Fluids, Vol. 17, nÆ6, 065106.Chaouat, B., 2007, \Reynolds Stress Transport Modelingfor High-Lift Airfoil Flows", AIAA Journal, Vol. 44, nÆ10,pp. 2390-2403.Chaouat, B., and Shiestel, R., 2007, \From Single-Sale Turbulene Models to Multiple-Sale and Subgrid-Sale Models by Fourier Transform", Theoretial and Com-putational Fluid Dynamis, Vol. 21, nÆ3, pp. 201-229.Comte-Bellot, G. and Corrsin, S., 1971, \Simple EulerianTime Correlation of Full and Narrow-Band Veloity Signalsin Grid-Generated, Isotropi Turbulene", Journal of FluidMehanis, Vol. 48, pp. 273-337.Germano, M., 1992, \Turbulene: the Filtering Ap-proah", Journal of Fluid Mehanis, Vol.238, pp. 325-336.Girimaji, S. S., Jeong, E. and Srinivasan R., 2006 \Par-tially Averaged Navier-Stokes Method for Turbulene: FixedPoint Analysis and Comparison with Unsteady Partially Av-eraged Navier-Stokes.", ASME, Vol. 73, nÆ3, pp. 422-429.
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Figure 1: Analytial energy spetrum.- - -: E(�)=kLe = CK(�Le)�5=3; |: E(�)=kLe =23�(Le�)2= �1 + �(�Le)3)�11=9
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Figure 2: Homogeneous deay of the energy spetra(� = 2 m�1). � � � Æ � � � : Comte-Bellot experiment(t U0=M =42, 98 and 171); - - : Kolmogorov spetrum with�5=3 slope; |: PITM simulation.
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Figure 3: Homogeneous deay of the turbulent kineti en-ergy. ...: ksgs=k0 ; - -: kles=k0 ; |: k=k0 = (ksgs + kles)=k0.
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Figure 4: Homogeneous deay of the turbulent energyk=k0 = (ksgs + kles)=k0; � = 2 m�1; (�) : |; (�) ...;() - - -.
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Figure 5: Subgrid-sale oeÆient sgs�2 obtained from re-lation (16).
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Figure 6: Subgrid length sale |: � = �=�;- - -: Lsgs = �(3Ck=2)�3=2k3=2sgs=�sgs
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Figure 7: Subgrid and resolved normal stresses i=1,2,3 fromtop. SGS: |; LES: - - -.
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Figure 8: Total turbulent stresses 
(�ii)1=2� =u� . N : i = 1,J: i = 2, I: i = 3. |: DNS.
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