HYBRID RANS-LES MODELING FOR NON-EQUILIBRIUM TURBULENT FLOWS

Bruno Chaouat
Department of Computational Fluid Dynamics, ONERA
BP 72 - 92322 Chatillon cedex, France
Bruno.Chaouat@onera.fr

Roland Schiestel
IRPHE CNRS/Universités d'Aix-Marseille | & 11
Technopble Chateau-Gombert, BP 146 - 13384 Marseille cedex 13, France
Roland.Schiestel@irphe.univ-mrs fr

ABSTRACT

The partially integrated transport modeling (PITM)
method for subgrid turbulence quantities viewed as a contin-
uous approach of hybrid RANS/LES methods with seamless
coupling between the two extreme limits that are the full
statistical and direct numerical simulation depending on the
spectral cutoff location is considered (Schiestel and Dejoan,
2005). In this framework, the PITM version based on the
transport equations for the turbulent stresses together with
the dissipation rate equation proposed recently (Chaouat
and Schiestel, 2005) is now developed in a more general
formulation based on an accurate energy spectrum E(k)
valid for both large and small eddy ranges and that al-
lows to calibrate more accurately the csgse, function used
in the e transport equation. The model is here proposed
in an extended approach that can be applied to a larger
range of flows by considering the turbulence length scale
Le = k3/2/(esgs + €<) built by means of the total turbu-
lent energy k and the total dissipation rate e including the
subgrid zone dissipation €sgs and the resolved part of the
The present model is first tested on
the decay of homogeneous isotropic turbulence referring to
the experiment of Comte-Bellot and Corrsin. Then, initial
perturbed spectra E(k) with a peak or a defect of energy
are considered for analyzing the model capabilities in non-
equilibrium flow situations. The second test case chosen is
the well known fully turbulent channel flow that allows to as-
sess the performance of the model in non homogeneous flows,
and especially, its capacity to reproduce the flow anisotropy.

dissipation rate <.

INTRODUCTION

Mathematical turbulence modeling methods such as
the RANS method (Launder, 1989; Speziale, 1991) or the
LES method have made significant progress in the past
decade for predicting various practical turbulent shear
flows. Generally, the RANS models appear well suited to
handle engineering applications involving strong effects of
streamline curvature, adverse pressure gradient encountered
for instance in aeronautics applications (Chaouat, 2007)
whereas LES subgrid models (Lesieur, 2005) are rather
used for simulating academic flows with emphasis on the
flow structures, the two-point correlations and the energy
spectrum. All these various approaches have often been
developed along independent
between them is generally not clearly established. In this
framework, the partially integrated transport modeling

lines and the connection
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(PITM) for the subgrid turbulence quantities viewed as a
continuous approach of hybrid RANS/LES methods with
seamless coupling (Schiestel and Dejoan, 2005; Chaouat and
Schiestel, 2005) gains major interest on the fundamental
point of view because it bridges these different levels
of description in a consistent way (Hanjalic et al., 2004;
Chaouat and Schiestel, 2007) that takes advantage of RANS
and LES approaches. Hybrid RANS/LES methods are now
more and more widespread such as for instance the PANS
model (Girimaji et al., 2006) that appeared in this line of
thought with great similarities with the PITM approach.
The PITM model takes its physical foundation in the
spectral space that consider the Fourier transform of the
two-point fluctuating velocity correlation equations with an
extension to non-homogeneous turbulence (Chaouat and
Schiestel, 2007). Because of its formulation, it appears well
suited for simulating flows on relatively coarse grids when
the spectral cutoff is located before the inertial zone.

The present paper presents the main features of the
PITM that allows transposition of turbulence modeling from
RANS to LES. New developments that extend the original
PITM formulation (Chaouat and Schiestel, 2005) to a larger
range of flows are then proposed.

PITM APPROACH TO SUBGRID-SCALE TURBULENCE
MODELS

General formalism

For large eddy simulations, the spectrum is partitioned
using a cutoff wave number k.. In classical LES, this cutoff
is located in the beginning of the inertial range of eddies but
in the present approach, like in very large eddy simulations
(VLES), the cutoff may be located before the inertial range.
Another wave number k4 located at the end of the inertial
range of the spectrum is also used, assuming that the en-
ergy pertaining to higher wavenumbers is entirely negligible.
This practice, inspired from multiple scale modeling (Schi-
estel, 1987) avoids considering infinite limits and molecular
viscosity effects in the far end of the spectrum. When non-
homogeneous turbulence is considered (this is indeed the
usual case), the concept of tangent homogeneous space at
a point of the non-homogeneous flow field is used (Chaouat
and Schiestel, 2007). One may remark also that the cutoff is
not necessarily equal to the grid spacing, it can be dissoci-
ated in a subfilter model. In this case, it is then possible to



define the large scale fluctuations (resolved scales) uy and
the fine scales (modeled scales) u? through the relations
using the wave number K

uf = [ @X ) exp (i) dr (1)
|| <te

uwp =
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[k|> ke

When the cutoff vanishes, the full integration in the tan-
gent homogeneous space exactly corresponds to the statis-
tical mean, that guarantees exact compatibility with RANS
equations. In this framework, the instantaneous velocity
u; is decomposed into a statistical part (u;), a large scale
fluctuating u and a small scale fluctuating u; such that
u; = (u;) +u +u;. The first two terms correspond to
the filtered velocity @; such that @; = (u;) + uf The ve-
locity fluctuation u} contains a large-scale and a small-scale
parts, u; = uf + ul> This particular filter, as a spectral
truncation, presents some additional useful properties that
are not verified for progressive filters. In particular, the large
scale and small scale fluctuations are uncorrelated (Schiestel,
1987) (¢~ <) = 0 implying for instance the relation

Rij = (uiug) — (i) (uy) = (ufuf) = (ufus) + (u?u?)
3)
The transport equation for the filtered Navier-Stokes equa-
tions takes the form
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in which, following Germano’s derivation (Germano, 1992),
the subgrid-scale tensor is defined by the relation

(7ij)sgs = 7(ui, uj) = winj — @l (5)

As a result of interest, the transport equation for the
subgrid-scale tensor takes a generic form if written in terms
of central moments (Germano, 1992). So that, the resulting
equation can be rearranged as
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with the general definition 7(f, g) = fg— fg and 7(f, 9,h) =
fgh — fr(g,h) — gr(h, f) — h1(f,g) — fgh for any turbulent
quantities f, g, h. Equation (6) will then be solved nu-
merically in space and time. Using the definition D/Dt =
/0t + uy0/0xy, equation (6) reads

D(7ij)sgs

o= (Pij)sgs + (Vij)sgs + (Jij)sgs

= (€ij)sgs (7)

where in this equation, the production term (P;;)sgs is given
by

317,]‘ oi;
= *(Tik)sgs@ - (Tjk)sgs (‘T’Bk

(I%‘)sgs (8)
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The corresponding equation for the subfilter energy is ob-
tained by half the trace

Dksgs

Dt = Psgs +Jsgs — €sgs

(9)
where Psgs = (Pmm )sgs/2 and €sgs = (€mm )sgs /2. Because
of the nice properties of the truncation filter in Fourier space,
one can see that the mean statistical and filtered equations
can both be written in a similar form. As a consequence,
the closure approximations used for the statistical partially
averaged equations are assumed to prevail also in the case
of large eddy numerical simulations. The present formalism
is indeed the essence of the PITM model, first developed by
Schiestel and Dejoan (2005) for the transport equation (9)
of the subgrid-scale turbulent energy ksys and subsequently
by Chaouat and Schiestel for the transport equation (7) of
the subgrid-scale turbulent stress tensor (7;;)sgs.

Stress transport equation subfilter model

In the subfilter models, as usual in statistical approaches,
the redistribution term (¥;;)s¢s which appears in equation
(7) is decomposed into a slow part (\Il}j)sgs and a rapid part
(\Il?j)sgs in the subgrid-scale range. This term is modeled in
the range [kc, k4] where the wave number k4 is located at the
end of the inertial range of the spectrum after the transfer
zone. The cutoff wave number is generally computed from
the grid size such as ke = 7/A where A = (A1A3A3)L/3.
The slow term is modeled assuming that usual statistical
Reynolds stress models must be recovered in the limit of
vanishing cutoff wave number k. and also that the return
to isotropy is increased at higher wave numbers, as also as-
sumed in multiple-scale models (Schiestel, 1987)

1 _ €sgs
(¥5j)sgs = —Csgs; P
sgs

()ugs = 5 rndegedis) (10

(¥)s90 = =2 ((Pougs = 3 (Prm)ugsdis) (1)
where csgs, is now a continuous function of the dimension-
less parameter 1 = keLe involving the turbulence length
scale Le = k3/2 /(€595 + €<) built by means of the total tur-
bulent energy k = ksgs + kjcs and the total dissipation rate e
including the dissipation in the subgrid zone €545, and the re-
solved part of the dissipation rate €< = v(du duy /dz;0z;)
for the large-scale fluctuating velocities u;~ that may be not
negligible in low Reynolds number flows. According to the
classical physics of turbulence, the coefficient csgs, must in-
crease with the parameter 7). in order to increase the return
to isotropy in the range of larger wave numbers. To do that,
we suggest a simple empirical function
1+ aynz

= 1 %¢ 12
1+ n?2 ! (12)

Csgsq

where a; is a numerical constant. This function satisfies the
limiting condition lim,, 0 csgs,(nc) = c1. As usual, the
diffusion process (J;;)sgs is modeled assuming a gradient

law
=
=— (v
oxy,
(13)

where c; is a numerical coefficient which takes the value 0.22.
Moreover, we assume (€;;)sgs = (2/3)€sgsdi;. In contrast
with the two-equation model, it can be mentioned that the
production term (P;;)sgs is allowed to become negative. In
such a case, this implies that energy is transferred from the

9(7ij)sgs
oxy,

ksgs

0 Tij)sgs
(Jij)sgs +c (Tkl)sgs (8'771)19)

€sgs



filtered motions up to the resolved motions, known as back-
scatter process. Closure of equation (7) is necessary for the
dissipation-rate which is computed by means of a transport
equation. The dissipation-rate esgs is therefore used for cal-
culating the length scale without referring directly to the
mesh size. That allows to simulate non-equilibrium flows
when the filter width is no longer a good estimate of the
characteristic turbulence length. As a result of the mod-
eling (Chaouat and Schiestel, 2005), the modeled transport
equation for the dissipation-rate esgs taking into account the
convective and diffusive processes reads

l)fsgs €sgs (I%nrn)sgs Eggs
—" = ~ 777 == J, 14
Dt Ceq ]C,sgs 2 Csgsen wos +( E)sgs ( )
where
0 66595 ksgs stgs)
J, = — |v—"—=+ce——(7j 15
Uedoos = o= (V520 40 228 10000 5222} 15)

In equation (14), ¢sgse, is now a function of the dimension-
less cutoff wave number 7.. Intuitively, it is obvious that
the usual € equation used in statistical modeling in which the
whole spectrum is modeled cannot be used without modifica-
tion in LES in which just a part of the spectrum is modeled.
This modification is made through a variation of the coeffi-
cient csgse, and so the model is then able to “read ”the size
of the mesh in order to model only the appropriate portion
of the turbulence field. This is the main feature of PITM
approaches which are basically different from an URANS
approach. The mathematical physics formalism developed
in the spectral space for the two-point tensor correlation
bij = <1Pi(X, n)uA’j(X, n)>, where u/; denotes the Fourier
transform of the fluctuating velocity u}, shows (Chaouat and
Schiestel, 2007) that the approach can be developed consis-
tently in non-homogeneous turbulence.

Improved spectral model

The analytical development of the dissipation rate equa-
tion (Schiestel and Dejoan, 2005) shows that the coefficient
Csgse, takes the expression

ksgs

Csgses = Ceq T (Ceq = Cey) (16)

In the present PITM formulation, the form of the function
ksgs/k in equation (16) has been improved and is now evalu-
ated by means of an accurate energy spectrum E (k) inspired
from Von Karman like spectrum valid on the entire range of
wavenumbers

2By LS kK2
[+ By(k Le)®)] '/

where (3, is a constant coefficient, instead of simply re-
ferring to the Kolmogorov law valid in the inertial range
E(k) = Cge2/3x75/3 as made previously (Chaouat and
Schiestel, 2005). The subgrid-scale turbulent kinetic en-
ergy is then computed by integrating the spectrum E(k)
in the wave number range [k, +0o[, ksgs = f;’: E(k)dk =

1/ [+ Bylke Le)®)] /2,

(w) = (17)

providing the new expression of

Csgses, as a function of the dimensionless cutoff wave
number 7,
Ceqg — Ceq
Cogaca () = Cey + — 2L (18)
[1+ By )/
where ¢.;, = 1.4 and ¢, = 1.9. In order to satisfy

the correct asymptotic behavior for the spectrum E(k),
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limy 500 E(k) = Cre2/3k=5/3, the coefficient By is found
to take the theoretical value 8, = (2/3Ck)%/? ~ 0.026. So
that, the stress transport equation subfilter model is finally
based on the modeled equations (7) and (14). Figure 1
describes the evolution of the analytical dimensionless spec-
trum F(k)/(kLe) defined by the relation (17) as well as the
Kolmogorov slope in Cje2/3k~5/3, versus the dimensionless
wave number k L.. As expected, it appears that the an-
alytical spectrum slope goes to the Kolmogorov slope for
high wave numbers showing that the inertial zone is rapidly
reached. In practice, several trial and error tests have been
made for selecting appropriate values for the two model co-
efficients o and By. These tests have lead to the optimized
coefficient values o, = 1.5 and B, = (2/3C)%/? = 0.161 for
Cr = 1.

Limiting behavior

Keeping the tangent homogeneous space in mind, one
can remark finally that for the case of LES performed on
very large filter widths, the filter width need to be dissoci-
ated from the grid itself, because the grid must always be
fine enough to capture the mean flow non-homogeneities.
When the cutoff location is large then, limiting behaviors
are obtained. The length scale ki’é?/esgs is equal to

Ky _ B (ksgs)3/2 (19)
€sgs €sgs k

Taking into account the limiting value ksgs /k ¢ 3/2C),ns >/*
when kg5 < k, equation (19) shows that the subgrid char-
acteristic length scale goes to the filter width

kShs [esgs = (3Ckc /2)*” Afm (20)
Moreover, the definition of subfilter viscosity implies
3/2 3/2 3/2 3/2 1/2
ng/s = Cy/ (k;o’gs/esés) = Cu/ (k‘::gs/fggs) 6s‘és Or Vggs =

32 (kg‘gs/eggs) (€sgs/Vsgs)'/?. Using then the previous re-
sult on the length-scale together with the hypothesis of
equilibrium €sgs = 2445 <S’i,j§i,j> where S'ij = (0u;/0x; +
01 /0x;)/2, one finds that the limiting behavior for the sub-
grid viscosity vsgs is simply the Smagorinsky model

3
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NUMERICAL METHOD

The finite volume technique is adopted for solving the
full transport equations in a conservative formulation. The
governing equation are integrated explicitly in time using
a fourth-order Runge-Kutta scheme which is well appropri-
ate for simulating unsteady flows. The numerical scheme is
based on a centered formulation with second-order accuracy
in space discretization that allows to minimize the dissipa-
tive and dispersive numerical errors. Note that an upwind
scheme with second order space discretization is however
retained for solving the turbulent equations (7) and (14). Be-
cause of the filtered velocity gradients da;/dx; that evolves
rapidly in time, the turbulent equations are difficult to solve.
In that case, it is more efficient, from a numerical point of
view, to solve first the redundant equation (9) and equa-
tion (14) that are strongly coupled and afterwards to solve
equation (7) using the preceding kj,, and €5y,
particular the Rotta term in the stress equations will be
proportional to ((7ij)sgs — 3kig50i;). Still with the aim to
improve the numerical scheme stability, it is also useful to
average in time the ratio 7' = ksgs/esgs that appears in

values. In



equation (14). This numerical procedure is of practical in-
terest when performing LES using the PITM model. Note
that this procedure can also be justified from a physical point
of view since the ratio T' = ksgs/€sgs can be view as a char-
acteristic time-scale of the turbulence. The source terms in
equation (7) are linearized to avoid numerical instabilities.
Equation (7), rewritten in the compact form

O(7ij)sgs

o (22)

=A-Q (Tij)sgs
where A and @ denotes two matrix functions of the quanti-
ties (7ij)sgs, ksgs and €5y, is solved using the Jacobi iterative
implicit method. Indeed, by using the matrix decomposition
@ = D+ R where D denotes a diagonal matrix and R a non-
diagonal matrix, (Tij)g’;sl is then solution of the iterative
equation

(7i)2s [T + D t] = (7ij)5gs +[A = R(7i5)

sgs sgs]ét (23)
where I is the identity matrix. The convergence is then as-
sumed when (T,'j);‘gtl = limp_ oo (7ij)8gs. Obviously, the
numerical procedure much also satisfy the trace equality
kR = (Tun)P5k' /2 practically obtained within two or three
internal iterations.

SIMULATION OF HOMOGENEOUS TURBULENCE

Decay of isotropic non-perturbed spectrum

The present PITM model is first tested in its two-
equation contracted form defined by equations (9) and (14)
in the case of decay of homogeneous isotropic turbulence re-
ferring to the experiment of Comte-Bellot (Comte-Bellot and
Corrsin, 1971) to check the behavior of the model (not con-
cerned with the anisotropy aspects). Three-dimensional tur-
bulent energy spectra have been measured at different time
advancement and the initial Reynolds number R; = k2/(ve)
is about 792. The PITM simulation is performed on a
medium grid N = 803 for a box-size I, = 1.256 m. The

wave-numbers are defined by « = 27/n where n varies
from —N/2 + 1 to N/2 leading to a minimum wave-number
Kmin = 2m/(NA) = 0.05 cm~! and a maximum wave-

number Kmgqz = /A =2 cm~! of the grid. In the present
case, a large cutoff wave-number is retained, kK = Kmaz = 2
cm~!, so that the initial ratio to the subgrid-scale energy
to the total energy ksgs/k is about 0.36. The initial ve-
locity field has been produced from a random generator
enforcing the given energy spectrum. Figure 2 shows the
evolution of the computed three-dimensional spectra from
the initial time (tUg /M =42) for the two time advancements
(tUg /M =98, 171) compared to the Comte-Bellot data. One
can observe that the numerical spectrum computed at the
time tUo/M =98 agrees well with the data in the Comte-
Bellot experiment but the other one computed at the time
advancement tUp/M =171 slightly deviates from the data.
In fact, a more deeply investigation reveals that the numer-
ical slope computed at tUp/M =171 exactly corresponds to
the k=5/3 Kolmogorov slope, as it can be seen on this figure.
There is no definite physical explanation unless perhaps to
remark that the Comte-Bellot experiment is worked out at
a relatively low Reynolds number. For this case, this im-
plies that the inertial zone transfer is very short. Figure 3
shows the time decay of the turbulence, respectively for the
subgrid-scale energy ksgs, the resolved-scale energy kj.s and
the total energy in logarithmic coordinates. The decay law
given by the standard k£ — ¢ model according to the relation
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k/ko = t'/(1=¢2) (where k is obtained in the present LES
by the sum of the subgrid and resolved-scales) leads to the
slope of decay close to n=1.1 that corresponds to the usual
value eo = 1.90.

Decay of isotropic perturbed spectrum

In this case, the initial Comte-bellot spectrum () at
tUo/M = 42 is artificially perturbed by modifying the en-
ergy levels departing from usual equilibrium spectrum. The
aim is to study the influence of initial spectral distribution on
the decay law as an illustration of out of spectral equilibrium
situations. Relative to the non-perturbed spectrum (a), the
initial spectra are therefore modified, respectively, by in-
creasing the large-scales (8) or by decreasing the large scales
(7). The PITM results as well as the initial perturbed spec-
trum are plotted in figure 4. A first observation reveals that
the different curves associated to the two perturbed spectra
(8) and () are both identical at the beginning of decay but
afterwards are departing from the decay curve corresponding
to the non-perturbed spectrum (a). As a result of interest,
one can observe that a peak in large scale energy (resp. a
defect in large scale energy) implies a decrease (resp.
increase) of the decay rate of turbulence. These results are
found to be in qualitative agreement with EDQNM spectral
models predictions (Cambon et al., 1981). These evolutions
can be easily explained if one consider that the differentia-
tion between the curves can only occur after the decay time
that is required to reach the perturbed energy zone (source
or sink) of the three-dimensional spectrum. Then, the curves
deviate from each other because the small-scale energy de-
creases more rapidly than the large scale energy as indeed
the time scale of small eddies is shorter. As known, note that
this turbulence spectral effect due to departure from equi-
librium cannot be reproduced using standard single-scale
statistical turbulence models.

an

SIMULATION OF NON-HOMOGENEOUS TURBULENCE

Low Reynolds PITM model

In this section, the present Reynolds stress PITM model
based on the transport equations (7) and (14) is applied for
performing numerical simulations of the fully developed tur-
bulent channel flow. However, these equations must be mod-
ified to account for wall effects at low turbulent Reynolds
number. To do that, like in the Launder and Shima model
(Launder and Shima, 1989), the function ¢; in equation (12)
depends on the second and third subgrid-scale invariants
A2 = a;jaj;, A3 =ajjajrar; and the flatness parameter
A=1-— %(AQ — Ag) where aj; = ((Ti]‘)sgs7%]659551‘]‘)/16595.
Moreover, the term (W;;)¥, ; that takes into account the wall
reflection effect of the pressure fluctuations is embedded in
the model for reproducing correctly the logarithmic region

of the turbulent boundary layer.

Fully turbulent channel flow

The numerical simulation is performed on a medium
mesh resolution requiring 32 x 64 x 84 grids with differ-
ent spacings A;. The uniform dimensionless spacings in
the streamwise and spanwise directions are AT = 50.9,
A;’ = 25.1. In the normal direction to the wall, the grid
points are distributed in nonuniform spacing with refinement
near the walls. The first point is located at the dimensionless
distance A;‘ = 0.5. The PITM simulation is compared with



the DNS data (Moser et al, 1999) for a Reynolds number
R, = 395. Figure 5 displays the evolution of the subgrid-
scale coefficient ¢sgse, Obtained from relation (16) and indi-
cates that the PITM model (with this particular choice of
grid) behaves like quasi-RSM model near the walls and LES
near the center of the channel since the coefficient csgse, de-
creases from its RANS value to ce; . The mesh size A = 7/k.
and the subgrid length scale Lggs = 7r(3C’k/2)*3/2Icg'§s2/esgS
computed from equation (20) are plotted in figure 6 versus
the channel height. As a result, one can see that these two
scales present different evolutions confirming the interest to
compute the length-scale from the dissipation-rate equation
(14) although the length scales are of the same order of
magnitude. Figure 7 reveals the sharing out of turbulent
energy among the subgrid and resolved turbulence scales.
Note that the anisotropy of the subgrid-stresses is well re-
produced because the PITM discards the concept of eddy
viscosity. Figure 8 describes the evolution of the total tur-
bulent stresses 711, T2 and 733 in the channel with DNS
comparisons at Reynolds number R, = 395. As shown, a
very good agreement is obtained with the DNS data con-
firming that the total energy is well estimated.

CONCLUSION

The PITM approach viewed as a continuous hybrid
RANS/LES model has been developed in a more general
formulation based on an accurate energy spectrum E(k)
and a turbulence length scale L. = k3/2/(esgs + €<) that
is computed at each time advancement. This model has
been calibrated and successfully tested on decay of homo-
geneous isotropic turbulence referring to the Comte-Bellot
experiment and applied in situation of non-equilibrium flow.
The performance of the model and especially, its capabilities
in the anisotropy prediction have been demonstrated in the
fully turbulent channel flow test case. So that, it looks as a
good candidate for simulating turbulent flows that presents
complex physics, providing the numerical scheme is suffi-
ciently stable and accurate.
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