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hiestel�irphe.univ-mrs.frABSTRACTThe partially integrated transport modeling (PITM)method for subgrid turbulen
e quantities viewed as a 
ontin-uous approa
h of hybrid RANS/LES methods with seamless
oupling between the two extreme limits that are the fullstatisti
al and dire
t numeri
al simulation depending on thespe
tral 
uto� lo
ation is 
onsidered (S
hiestel and Dejoan,2005). In this framework, the PITM version based on thetransport equations for the turbulent stresses together withthe dissipation rate equation proposed re
ently (Chaouatand S
hiestel, 2005) is now developed in a more generalformulation based on an a

urate energy spe
trum E(�)valid for both large and small eddy ranges and that al-lows to 
alibrate more a

urately the 
sgs�2 fun
tion usedin the � transport equation. The model is here proposedin an extended approa
h that 
an be applied to a largerrange of 
ows by 
onsidering the turbulen
e length s
aleLe = k3=2=(�sgs + �<) built by means of the total turbu-lent energy k and the total dissipation rate � in
luding thesubgrid zone dissipation �sgs and the resolved part of thedissipation rate �<. The present model is �rst tested onthe de
ay of homogeneous isotropi
 turbulen
e referring tothe experiment of Comte-Bellot and Corrsin. Then, initialperturbed spe
tra E(�) with a peak or a defe
t of energyare 
onsidered for analyzing the model 
apabilities in non-equilibrium 
ow situations. The se
ond test 
ase 
hosen isthe well known fully turbulent 
hannel 
ow that allows to as-sess the performan
e of the model in non homogeneous 
ows,and espe
ially, its 
apa
ity to reprodu
e the 
ow anisotropy.INTRODUCTIONMathemati
al turbulen
e modeling methods su
h asthe RANS method (Launder, 1989; Speziale, 1991) or theLES method have made signi�
ant progress in the pastde
ade for predi
ting various pra
ti
al turbulent shear
ows. Generally, the RANS models appear well suited tohandle engineering appli
ations involving strong e�e
ts ofstreamline 
urvature, adverse pressure gradient en
ounteredfor instan
e in aeronauti
s appli
ations (Chaouat, 2007)whereas LES subgrid models (Lesieur, 2005) are ratherused for simulating a
ademi
 
ows with emphasis on the
ow stru
tures, the two-point 
orrelations and the energyspe
trum. All these various approa
hes have often beendeveloped along independent lines and the 
onne
tionbetween them is generally not 
learly established. In thisframework, the partially integrated transport modeling

(PITM) for the subgrid turbulen
e quantities viewed as a
ontinuous approa
h of hybrid RANS/LES methods withseamless 
oupling (S
hiestel and Dejoan, 2005; Chaouat andS
hiestel, 2005) gains major interest on the fundamentalpoint of view be
ause it bridges these di�erent levelsof des
ription in a 
onsistent way (Hanjali
 et al., 2004;Chaouat and S
hiestel, 2007) that takes advantage of RANSand LES approa
hes. Hybrid RANS/LES methods are nowmore and more widespread su
h as for instan
e the PANSmodel (Girimaji et al., 2006) that appeared in this line ofthought with great similarities with the PITM approa
h.The PITM model takes its physi
al foundation in thespe
tral spa
e that 
onsider the Fourier transform of thetwo-point 
u
tuating velo
ity 
orrelation equations with anextension to non-homogeneous turbulen
e (Chaouat andS
hiestel, 2007). Be
ause of its formulation, it appears wellsuited for simulating 
ows on relatively 
oarse grids whenthe spe
tral 
uto� is lo
ated before the inertial zone.The present paper presents the main features of thePITM that allows transposition of turbulen
e modeling fromRANS to LES. New developments that extend the originalPITM formulation (Chaouat and S
hiestel, 2005) to a largerrange of 
ows are then proposed.PITM APPROACH TO SUBGRID-SCALE TURBULENCEMODELSGeneral formalismFor large eddy simulations, the spe
trum is partitionedusing a 
uto� wave number �
. In 
lassi
al LES, this 
uto�is lo
ated in the beginning of the inertial range of eddies butin the present approa
h, like in very large eddy simulations(VLES), the 
uto� may be lo
ated before the inertial range.Another wave number �d lo
ated at the end of the inertialrange of the spe
trum is also used, assuming that the en-ergy pertaining to higher wavenumbers is entirely negligible.This pra
ti
e, inspired from multiple s
ale modeling (S
hi-estel, 1987) avoids 
onsidering in�nite limits and mole
ularvis
osity e�e
ts in the far end of the spe
trum. When non-homogeneous turbulen
e is 
onsidered (this is indeed theusual 
ase), the 
on
ept of tangent homogeneous spa
e ata point of the non-homogeneous 
ow �eld is used (Chaouatand S
hiestel, 2007). One may remark also that the 
uto� isnot ne
essarily equal to the grid spa
ing, it 
an be disso
i-ated in a sub�lter model. In this 
ase, it is then possible to
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de�ne the large s
ale 
u
tuations (resolved s
ales) u<i andthe �ne s
ales (modeled s
ales) u>i through the relationsusing the wave number �u<i = Zj�j��
 bu0i(X;�) exp (j��) d� (1)u>i = Zj�j��
 bu0i(X;�) exp (j��) d� (2)When the 
uto� vanishes, the full integration in the tan-gent homogeneous spa
e exa
tly 
orresponds to the statis-ti
al mean, that guarantees exa
t 
ompatibility with RANSequations. In this framework, the instantaneous velo
ityui is de
omposed into a statisti
al part huii, a large s
ale
u
tuating u<i and a small s
ale 
u
tuating u>i su
h thatui = huii + u<i + u>i . The �rst two terms 
orrespond tothe �ltered velo
ity �ui su
h that �ui = huii + u<i . The ve-lo
ity 
u
tuation u0i 
ontains a large-s
ale and a small-s
aleparts, u0i = u<i + u>i . This parti
ular �lter, as a spe
traltrun
ation, presents some additional useful properties thatare not veri�ed for progressive �lters. In parti
ular, the larges
ale and small s
ale 
u
tuations are un
orrelated (S
hiestel,1987) h'> <i = 0 implying for instan
e the relationRij = huiuji � huii huji = 
u0iu0i� = Du<i u<j E+ Du>i u>j E(3)The transport equation for the �ltered Navier-Stokes equa-tions takes the form��ui�t + ��xj (�ui�uj) = �1� ��p�xi + � �2�ui�xj�xj � ��(ui; uj)�xj (4)in whi
h, following Germano's derivation (Germano, 1992),the subgrid-s
ale tensor is de�ned by the relation(�ij )sgs = �(ui; uj) = uiuj � �ui�uj (5)As a result of interest, the transport equation for thesubgrid-s
ale tensor takes a generi
 form if written in termsof 
entral moments (Germano, 1992). So that, the resultingequation 
an be rearranged as��(ui; uj)�t + ��xk ��(ui; uj)�uk� =��(ui; uk) ��uj�xk � �(uj ; uk) ��ui�xk+� �p; �ui�xj + �uj�xi ��1� ��(p; ui)�xj � 1� ��(p; uj)�xi � ��(ui; uj ; uk)�xk+� �2�(ui; uj)�xk�xk � 2�� � �ui�xk ; �uj�xk� (6)with the general de�nition �(f; g) = fg� �f�g and �(f; g; h) =fgh� �f�(g; h)� �g�(h; f)� �h�(f; g)� �f�g�h for any turbulentquantities f , g, h. Equation (6) will then be solved nu-meri
ally in spa
e and time. Using the de�nition D=Dt =�=�t+ �uk�=�xk, equation (6) readsD(�ij)sgsDt = (Pij)sgs + (	ij )sgs + (Jij)sgs � (�ij)sgs (7)where in this equation, the produ
tion term (Pij)sgs is givenby (Pij)sgs = �(�ik)sgs ��uj�xk � (�jk)sgs ��ui�xk (8)

The 
orresponding equation for the sub�lter energy is ob-tained by half the tra
eDksgsDt = Psgs + Jsgs � �sgs (9)where Psgs = (Pmm)sgs=2 and �sgs = (�mm)sgs=2. Be
auseof the ni
e properties of the trun
ation �lter in Fourier spa
e,one 
an see that the mean statisti
al and �ltered equations
an both be written in a similar form. As a 
onsequen
e,the 
losure approximations used for the statisti
al partiallyaveraged equations are assumed to prevail also in the 
aseof large eddy numeri
al simulations. The present formalismis indeed the essen
e of the PITM model, �rst developed byS
hiestel and Dejoan (2005) for the transport equation (9)of the subgrid-s
ale turbulent energy ksgs and subsequentlyby Chaouat and S
hiestel for the transport equation (7) ofthe subgrid-s
ale turbulent stress tensor (�ij )sgs.Stress transport equation sub�lter modelIn the sub�lter models, as usual in statisti
al approa
hes,the redistribution term (	ij)sgs whi
h appears in equation(7) is de
omposed into a slow part (	1ij)sgs and a rapid part(	2ij)sgs in the subgrid-s
ale range. This term is modeled inthe range [�
; �d℄ where the wave number �d is lo
ated at theend of the inertial range of the spe
trum after the transferzone. The 
uto� wave number is generally 
omputed fromthe grid size su
h as �
 = �=� where � = (�1�2�3)1=3.The slow term is modeled assuming that usual statisti
alReynolds stress models must be re
overed in the limit ofvanishing 
uto� wave number �
 and also that the returnto isotropy is in
reased at higher wave numbers, as also as-sumed in multiple-s
ale models (S
hiestel, 1987)(	1ij)sgs = �
sgs1 �sgsksgs �(�ij )sgs � 13 (�mm)sgsÆij� (10)(	2ij)sgs = �
2 �(Pij)sgs � 13 (Pmm)sgsÆij� (11)where 
sgs1 is now a 
ontinuous fun
tion of the dimension-less parameter �
 = �
Le involving the turbulen
e lengths
ale Le = k3=2=(�sgs + �<) built by means of the total tur-bulent energy k = ksgs+kles and the total dissipation rate �in
luding the dissipation in the subgrid zone �sgs, and the re-solved part of the dissipation rate �< = �(�u<i �u<i =�xj�xj)for the large-s
ale 
u
tuating velo
ities u<i that may be notnegligible in low Reynolds number 
ows. A

ording to the
lassi
al physi
s of turbulen
e, the 
oeÆ
ient 
sgs1 must in-
rease with the parameter �
 in order to in
rease the returnto isotropy in the range of larger wave numbers. To do that,we suggest a simple empiri
al fun
tion
sgs1 = 1 + �� �2
1 + �2
 
1 (12)where �� is a numeri
al 
onstant. This fun
tion satis�es thelimiting 
ondition lim�
!0 
sgs1 (�
) = 
1. As usual, thedi�usion pro
ess (Jij)sgs is modeled assuming a gradientlaw(Jij)sgs = ��xk �� �(�ij)sgs�xk + 
s ksgs�sgs (�kl)sgs �(�ij )sgs�xl �(13)where 
s is a numeri
al 
oeÆ
ient whi
h takes the value 0.22.Moreover, we assume (�ij)sgs = (2=3)�sgsÆij . In 
ontrastwith the two-equation model, it 
an be mentioned that theprodu
tion term (Pij)sgs is allowed to be
ome negative. Insu
h a 
ase, this implies that energy is transferred from the
754



�ltered motions up to the resolved motions, known as ba
k-s
atter pro
ess. Closure of equation (7) is ne
essary for thedissipation-rate whi
h is 
omputed by means of a transportequation. The dissipation-rate �sgs is therefore used for 
al-
ulating the length s
ale without referring dire
tly to themesh size. That allows to simulate non-equilibrium 
owswhen the �lter width is no longer a good estimate of the
hara
teristi
 turbulen
e length. As a result of the mod-eling (Chaouat and S
hiestel, 2005), the modeled transportequation for the dissipation-rate �sgs taking into a

ount the
onve
tive and di�usive pro
esses readsD�sgsDt = 
�1 �sgsksgs (Pmm)sgs2 � 
sgs�2 �2sgsksgs + (J�)sgs (14)where(J�)sgs = ��xj �� ��sgs�xj + 
� ksgs�sgs (�jm)sgs ��sgs�xm � (15)In equation (14), 
sgs�2 is now a fun
tion of the dimension-less 
uto� wave number �
. Intuitively, it is obvious thatthe usual � equation used in statisti
al modeling in whi
h thewhole spe
trum is modeled 
annot be used without modi�
a-tion in LES in whi
h just a part of the spe
trum is modeled.This modi�
ation is made through a variation of the 
oeÆ-
ient 
sgs�2 and so the model is then able to \read "the sizeof the mesh in order to model only the appropriate portionof the turbulen
e �eld. This is the main feature of PITMapproa
hes whi
h are basi
ally di�erent from an URANSapproa
h. The mathemati
al physi
s formalism developedin the spe
tral spa
e for the two-point tensor 
orrelation�ij = Dbu0i(X;�) bu0j(X;�)E, where bu0i denotes the Fouriertransform of the 
u
tuating velo
ity u0i, shows (Chaouat andS
hiestel, 2007) that the approa
h 
an be developed 
onsis-tently in non-homogeneous turbulen
e.Improved spe
tral modelThe analyti
al development of the dissipation rate equa-tion (S
hiestel and Dejoan, 2005) shows that the 
oeÆ
ient
sgs�2 takes the expression
sgs�2 = 
�1 + ksgsk (
�2 � 
�1) (16)In the present PITM formulation, the form of the fun
tionksgs=k in equation (16) has been improved and is now evalu-ated by means of an a

urate energy spe
trum E(�) inspiredfrom Von Karman like spe
trum valid on the entire range ofwavenumbers E(�) = 23��L3e k �2[1 + ��(�Le)3)℄11=9 (17)where �� is a 
onstant 
oeÆ
ient, instead of simply re-ferring to the Kolmogorov law valid in the inertial rangeE(�) = CK�2=3��5=3 as made previously (Chaouat andS
hiestel, 2005). The subgrid-s
ale turbulent kineti
 en-ergy is then 
omputed by integrating the spe
trum E(�)in the wave number range [�
;+1[, ksgs = R1�
 E(�)d� =1= �1 + ��(�
 Le)3)�2=9, providing the new expression of
sgs�2 , as a fun
tion of the dimensionless 
uto� wavenumber �
 
sgs�2 (�
) = 
�1 + 
�2 � 
�1[1 + �� �3
 ℄2=9 (18)where 
�1 = 1:4 and 
�2 = 1:9. In order to satisfythe 
orre
t asymptoti
 behavior for the spe
trum E(�),

lim�!1 E(�) = CK�2=3��5=3, the 
oeÆ
ient �� is foundto take the theoreti
al value �� = (2=3CK )9=2 � 0:026. Sothat, the stress transport equation sub�lter model is �nallybased on the modeled equations (7) and (14). Figure 1des
ribes the evolution of the analyti
al dimensionless spe
-trum E(�)=(kLe) de�ned by the relation (17) as well as theKolmogorov slope in Ck�2=3��5=3, versus the dimensionlesswave number �Le. As expe
ted, it appears that the an-alyti
al spe
trum slope goes to the Kolmogorov slope forhigh wave numbers showing that the inertial zone is rapidlyrea
hed. In pra
ti
e, several trial and error tests have beenmade for sele
ting appropriate values for the two model 
o-eÆ
ients �� and ��. These tests have lead to the optimized
oeÆ
ient values �� = 1:5 and �� = (2=3Ck)9=2 = 0:161 forCk = 1.Limiting behaviorKeeping the tangent homogeneous spa
e in mind, one
an remark �nally that for the 
ase of LES performed onvery large �lter widths, the �lter width need to be disso
i-ated from the grid itself, be
ause the grid must always be�ne enough to 
apture the mean 
ow non-homogeneities.When the 
uto� lo
ation is large then, limiting behaviorsare obtained. The length s
ale k3=2sgs=�sgs is equal tok3=2sgs�sgs = k3=2�sgs �ksgsk �3=2 (19)Taking into a

ount the limiting value ksgs=k � 3=2Ck��2=3
when ksgs � k, equation (19) shows that the subgrid 
har-a
teristi
 length s
ale goes to the �lter widthk3=2sgs=�sgs = (3CK=2)3=2�=� (20)Moreover, the de�nition of sub�lter vis
osity implies�3=2sgs = 
3=2� (k3sgs=�3=2sgs) = 
3=2� �k3sgs=�2sgs� �1=2sgs or �sgs =
3=2� �k3sgs=�2sgs� (�sgs=�sgs)1=2. Using then the previous re-sult on the length-s
ale together with the hypothesis ofequilibrium �sgs = 2�sgs 
 �Si;j �Si;j� where �Sij = (��ui=�xj +��uj=�xi)=2, one �nds that the limiting behavior for the sub-grid vis
osity �sgs is simply the Smagorinsky model�sgs = 1�2 �3CK2 �3 
3=2� �2 �2 
 �Sij �Sij��1=2 (21)NUMERICAL METHODThe �nite volume te
hnique is adopted for solving thefull transport equations in a 
onservative formulation. Thegoverning equation are integrated expli
itly in time usinga fourth-order Runge-Kutta s
heme whi
h is well appropri-ate for simulating unsteady 
ows. The numeri
al s
heme isbased on a 
entered formulation with se
ond-order a

ura
yin spa
e dis
retization that allows to minimize the dissipa-tive and dispersive numeri
al errors. Note that an upwinds
heme with se
ond order spa
e dis
retization is howeverretained for solving the turbulent equations (7) and (14). Be-
ause of the �ltered velo
ity gradients ��ui=�xj that evolvesrapidly in time, the turbulent equations are diÆ
ult to solve.In that 
ase, it is more eÆ
ient, from a numeri
al point ofview, to solve �rst the redundant equation (9) and equa-tion (14) that are strongly 
oupled and afterwards to solveequation (7) using the pre
eding k�sgs and ��sgs values. Inparti
ular the Rotta term in the stress equations will beproportional to �(�ij )sgs � 23k�sgsÆij�. Still with the aim toimprove the numeri
al s
heme stability, it is also useful toaverage in time the ratio T = ksgs=�sgs that appears in
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equation (14). This numeri
al pro
edure is of pra
ti
al in-terest when performing LES using the PITM model. Notethat this pro
edure 
an also be justi�ed from a physi
al pointof view sin
e the ratio T = ksgs=�sgs 
an be view as a 
har-a
teristi
 time-s
ale of the turbulen
e. The sour
e terms inequation (7) are linearized to avoid numeri
al instabilities.Equation (7), rewritten in the 
ompa
t form�(�ij)sgs�t = A�Q (�ij )sgs (22)where A and Q denotes two matrix fun
tions of the quanti-ties (�ij)sgs, k�sgs and ��sgs is solved using the Ja
obi iterativeimpli
it method. Indeed, by using the matrix de
ompositionQ = D+R where D denotes a diagonal matrix and R a non-diagonal matrix, (�ij )p+1sgs is then solution of the iterativeequation(�ij )p+1sgs [I +DÆt℄ = (�ij )nsgs + [A �R (�ij)psgs℄Æt (23)where I is the identity matrix. The 
onvergen
e is then as-sumed when (�ij)n+1sgs = limp!1(�ij )psgs. Obviously, thenumeri
al pro
edure mu
h also satisfy the tra
e equalitykn+1sgs = (�nn)n+1sgs =2 pra
ti
ally obtained within two or threeinternal iterations.SIMULATION OF HOMOGENEOUS TURBULENCEDe
ay of isotropi
 non-perturbed spe
trumThe present PITM model is �rst tested in its two-equation 
ontra
ted form de�ned by equations (9) and (14)in the 
ase of de
ay of homogeneous isotropi
 turbulen
e re-ferring to the experiment of Comte-Bellot (Comte-Bellot andCorrsin, 1971) to 
he
k the behavior of the model (not 
on-
erned with the anisotropy aspe
ts). Three-dimensional tur-bulent energy spe
tra have been measured at di�erent timeadvan
ement and the initial Reynolds number Rt = k2=(��)is about 792. The PITM simulation is performed on amedium grid N = 803 for a box-size L = 1:256 m. Thewave-numbers are de�ned by � = 2�=n where n variesfrom �N=2 + 1 to N=2 leading to a minimum wave-number�min = 2�=(N�) = 0:05 
m�1 and a maximum wave-number �max = �=� = 2 
m�1 of the grid. In the present
ase, a large 
uto� wave-number is retained, �
 = �max = 2
m�1, so that the initial ratio to the subgrid-s
ale energyto the total energy ksgs=k is about 0.36. The initial ve-lo
ity �eld has been produ
ed from a random generatorenfor
ing the given energy spe
trum. Figure 2 shows theevolution of the 
omputed three-dimensional spe
tra fromthe initial time (tU0=M =42) for the two time advan
ements(tU0=M =98, 171) 
ompared to the Comte-Bellot data. One
an observe that the numeri
al spe
trum 
omputed at thetime tU0=M =98 agrees well with the data in the Comte-Bellot experiment but the other one 
omputed at the timeadvan
ement tU0=M =171 slightly deviates from the data.In fa
t, a more deeply investigation reveals that the numer-i
al slope 
omputed at tU0=M =171 exa
tly 
orresponds tothe ��5=3 Kolmogorov slope, as it 
an be seen on this �gure.There is no de�nite physi
al explanation unless perhaps toremark that the Comte-Bellot experiment is worked out ata relatively low Reynolds number. For this 
ase, this im-plies that the inertial zone transfer is very short. Figure 3shows the time de
ay of the turbulen
e, respe
tively for thesubgrid-s
ale energy ksgs, the resolved-s
ale energy kles andthe total energy in logarithmi
 
oordinates. The de
ay lawgiven by the standard k� � model a

ording to the relation

k=k0 = t1=(1�
�2 ) (where k is obtained in the present LESby the sum of the subgrid and resolved-s
ales) leads to theslope of de
ay 
lose to n=1.1 that 
orresponds to the usualvalue �2 = 1:90.De
ay of isotropi
 perturbed spe
trumIn this 
ase, the initial Comte-bellot spe
trum (�) attU0=M = 42 is arti�
ially perturbed by modifying the en-ergy levels departing from usual equilibrium spe
trum. Theaim is to study the in
uen
e of initial spe
tral distribution onthe de
ay law as an illustration of out of spe
tral equilibriumsituations. Relative to the non-perturbed spe
trum (�), theinitial spe
tra are therefore modi�ed, respe
tively, by in-
reasing the large-s
ales (�) or by de
reasing the large s
ales(
). The PITM results as well as the initial perturbed spe
-trum are plotted in �gure 4. A �rst observation reveals thatthe di�erent 
urves asso
iated to the two perturbed spe
tra(�) and (
) are both identi
al at the beginning of de
ay butafterwards are departing from the de
ay 
urve 
orrespondingto the non-perturbed spe
trum (�). As a result of interest,one 
an observe that a peak in large s
ale energy (resp. adefe
t in large s
ale energy) implies a de
rease (resp. anin
rease) of the de
ay rate of turbulen
e. These results arefound to be in qualitative agreement with EDQNM spe
tralmodels predi
tions (Cambon et al., 1981). These evolutions
an be easily explained if one 
onsider that the di�erentia-tion between the 
urves 
an only o

ur after the de
ay timethat is required to rea
h the perturbed energy zone (sour
eor sink) of the three-dimensional spe
trum. Then, the 
urvesdeviate from ea
h other be
ause the small-s
ale energy de-
reases more rapidly than the large s
ale energy as indeedthe time s
ale of small eddies is shorter. As known, note thatthis turbulen
e spe
tral e�e
t due to departure from equi-librium 
annot be reprodu
ed using standard single-s
alestatisti
al turbulen
e models.SIMULATION OF NON-HOMOGENEOUS TURBULENCELow Reynolds PITM modelIn this se
tion, the present Reynolds stress PITM modelbased on the transport equations (7) and (14) is applied forperforming numeri
al simulations of the fully developed tur-bulent 
hannel 
ow. However, these equations must be mod-i�ed to a

ount for wall e�e
ts at low turbulent Reynoldsnumber. To do that, like in the Launder and Shima model(Launder and Shima, 1989), the fun
tion 
1 in equation (12)depends on the se
ond and third subgrid-s
ale invariantsA2 = aijaji, A3 = aijajkaki and the 
atness parameterA = 1� 98 (A2 � A3) where aij = ((�ij )sgs� 23ksgsÆij)=ksgs.Moreover, the term (	ij)wsgs that takes into a

ount the wallre
e
tion e�e
t of the pressure 
u
tuations is embedded inthe model for reprodu
ing 
orre
tly the logarithmi
 regionof the turbulent boundary layer.Fully turbulent 
hannel 
owThe numeri
al simulation is performed on a mediummesh resolution requiring 32 � 64 � 84 grids with di�er-ent spa
ings �i. The uniform dimensionless spa
ings inthe streamwise and spanwise dire
tions are �+1 = 50:9,�+2 = 25:1. In the normal dire
tion to the wall, the gridpoints are distributed in nonuniform spa
ing with re�nementnear the walls. The �rst point is lo
ated at the dimensionlessdistan
e �+3 = 0:5. The PITM simulation is 
ompared with
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the DNS data (Moser et al, 1999) for a Reynolds numberR� = 395. Figure 5 displays the evolution of the subgrid-s
ale 
oeÆ
ient 
sgs�2 obtained from relation (16) and indi-
ates that the PITM model (with this parti
ular 
hoi
e ofgrid) behaves like quasi-RSM model near the walls and LESnear the 
enter of the 
hannel sin
e the 
oeÆ
ient 
sgs�2 de-
reases from its RANS value to 
�1 . The mesh size � = �=�
and the subgrid length s
ale Lsgs = �(3Ck=2)�3=2k3=2sgs=�sgs
omputed from equation (20) are plotted in �gure 6 versusthe 
hannel height. As a result, one 
an see that these twos
ales present di�erent evolutions 
on�rming the interest to
ompute the length-s
ale from the dissipation-rate equation(14) although the length s
ales are of the same order ofmagnitude. Figure 7 reveals the sharing out of turbulentenergy among the subgrid and resolved turbulen
e s
ales.Note that the anisotropy of the subgrid-stresses is well re-produ
ed be
ause the PITM dis
ards the 
on
ept of eddyvis
osity. Figure 8 des
ribes the evolution of the total tur-bulent stresses �11, �22 and �33 in the 
hannel with DNS
omparisons at Reynolds number R� = 395. As shown, avery good agreement is obtained with the DNS data 
on-�rming that the total energy is well estimated.CONCLUSIONThe PITM approa
h viewed as a 
ontinuous hybridRANS/LES model has been developed in a more generalformulation based on an a

urate energy spe
trum E(�)and a turbulen
e length s
ale Le = k3=2=(�sgs + �<) thatis 
omputed at ea
h time advan
ement. This model hasbeen 
alibrated and su

essfully tested on de
ay of homo-geneous isotropi
 turbulen
e referring to the Comte-Bellotexperiment and applied in situation of non-equilibrium 
ow.The performan
e of the model and espe
ially, its 
apabilitiesin the anisotropy predi
tion have been demonstrated in thefully turbulent 
hannel 
ow test 
ase. So that, it looks as agood 
andidate for simulating turbulent 
ows that presents
omplex physi
s, providing the numeri
al s
heme is suÆ-
iently stable and a
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Figure 1: Analyti
al energy spe
trum.- - -: E(�)=kLe = CK(�Le)�5=3; |: E(�)=kLe =23�(Le�)2= �1 + �(�Le)3)�11=9
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Figure 2: Homogeneous de
ay of the energy spe
tra(�
 = 2 
m�1). � � � Æ � � � : Comte-Bellot experiment(t U0=M =42, 98 and 171); - - : Kolmogorov spe
trum with�5=3 slope; |: PITM simulation.
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Figure 3: Homogeneous de
ay of the turbulent kineti
 en-ergy. ...: ksgs=k0 ; - -: kles=k0 ; |: k=k0 = (ksgs + kles)=k0.
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Figure 4: Homogeneous de
ay of the turbulent energyk=k0 = (ksgs + kles)=k0; �
 = 2 
m�1; (�) : |; (�) ...;(
) - - -.
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Figure 5: Subgrid-s
ale 
oeÆ
ient 
sgs�2 obtained from re-lation (16).
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Figure 6: Subgrid length s
ale |: � = �=�
;- - -: Lsgs = �(3Ck=2)�3=2k3=2sgs=�sgs
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Figure 7: Subgrid and resolved normal stresses i=1,2,3 fromtop. SGS: |; LES: - - -.
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Figure 8: Total turbulent stresses 
(�ii)1=2� =u� . N : i = 1,J: i = 2, I: i = 3. |: DNS.
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