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ABSTRACT 
This paper describes: (1) a wall function for arbitrary 

surface roughness, with parameters determined as functions 
of roughness by imposing high-order consistency with the 
log law; (2) implementation of sediment morphodynamics 
in a 3-d RANS solver, with modifications for large slopes 
and arbitrary bed orientation. The wall function is validated 
for 2-equation and differential-stress closures in rough-wall 
pipe flow. Simulations of scour and deposition in a channel 
bend and of the evolution of sand mounds are described. 

 
 

INTRODUCTION 
Wall functions are used in CFD calculations of turbulent 

flow to accommodate the rapidly-varying flow near solid 
boundaries without an unacceptably-large number of grid 
cells. There are many situations where the surface 
roughness is intermediate between hydraulically-smooth 
and hydraulically-rough, and it is desirable to have a single 
wall function that can accommodate arbitrary roughness. 

The present work was motivated by the application of 
CFD to experiments on sediment morphodynamics.  
Because sediment transport is driven by the fluid stress on 
the boundary, a good prediction of the wall stress is vital. 

The following sections describe a wall function for 
arbitrary surface roughness, followed by implementation of 
sediment morphodynamics within a 3-d, finite-volume, 
RANS solver. Application of these to scour in a channel 
bend and to the evolution of sand mounds is then shown. 

 
 

THE WALL FUNCTION 
 
 
Main Elements 

In a cell-centred finite-volume calculation of 
incompressible flow without heat transfer (Figure 1) a wall 
function must provide the following: 
 • for the mean-velocity equations – the wall shear 

stress �
w; 

 • for the turbulent-kinetic-energy or Reynolds-stress 

equations – the cell-averaged production, )(k
avP , and 

dissipation, � av; 
 • for the dissipation equation – the value of 

dissipation �  at the near-wall node. 
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Figure 1: Near-wall cell. 

 
 
The present model is related to that of Craft et al. (2006) 

with extension to rough walls by Suga et al. (2006). It 
shares with these works the following features. 
 1. The model uses a velocity scale based on turbulent 

kinetic energy at the near-wall node: 
 2/14/1��~

PkCu =  (1) 

  rather than the actual friction velocity �/�� wu =  . 

The two are equal in the log-law region, but �~u  

provides a more appropriate scale near 
separation/reattachment points. In wall units, 
heights are then non-dimensionalised using �~u : 

 �/~	uyy =+  (2)  

 2. A mean-velocity profile is derived from an assumed 
total-viscosity profile 

 )}(~
,0max{���� �
 yyuttotal −+=+≡  (3) 

  where �  (= 0.41) is von Kármán’s constant. 
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 3. The zero-eddy-viscosity height in wall units, +�y , is 

a function of +
sk , where ks is the Nikuradse 

roughness. 
However, the present work differs from earlier authors 

in two important respects. 
 4. It adopts a different functional formulation (based 

on stronger asymptotic adherence to the log law) for 
the zero-eddy-viscosity height y� ; 

 5. There is a different assumed dissipation profile: 

 ��
�� �

≤

≥
−= �

�3�
,� ,

)(	
~�

yy

yy
yy

u

w

d

 (4) 

  where 
  is continuous at y �  and both yd and y �  are 
functions of roughness. 

 
 
Mean-Velocity Profile and Effective Wall Viscosity 

The mean-velocity profile derived from a constant-
stress assumption ( �  = � w) and the eddy viscosity (3) can be 
written as 
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where }0,max{ �0� ++ = yy . Since the desired output of the 

wall function is � w in terms of Up, not vice-versa, the 
velocity/stress relationship is implemented via an effective 
wall viscosity � eff,wall such that 
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The Zero-Eddy-Viscosity Height, y �  

y�  is determined by enforcing high-order consistency 

with the log law. In the log-law region, 2�~� uw = . (5) then 

gives (in the case where 0! >+y ): 
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Comparing this with the log law for arbitrary roughness: 

 )(ln*1 +++ += skByU  (8) 

gives 

 )0+ln+1 if(+ln+1, ≥−−=+ BBy  (9)  

For sufficiently large roughness the RHS of (9) is 
negative and a similar analysis leads to 

 )0-ln-1 if()1(-1 ).ln.1(./ ≤−−=
−−+ Bey

B  (10) 

The zero-eddy-viscosity height y0  is then fully-
prescribed once the roughness-dependent function B is 
specified. Simulation of fully-developed pipe flow leads to 

 )152.3ln(118 +−= +
skB  (11) 

the constants being chosen to give typical smooth- and 
rough-wall limits, B = 5.2 and )ln()2/1(8 +−= skB  

respectively. +3y  is plotted as a function of +
sk  in Figure 2. 

The smooth-wall value of +3y  is 7.37, whilst the viscous 

sublayer is destroyed (i.e. 04 =+y ) when 62=+
sk . 
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Figure 2: Zero-eddy-viscosity height as a function of 

relative roughness. 
 
 

Dissipation 
The turbulent-kinetic-energy equation requires cell-

averaged production and dissipation. With the assumed 
eddy-viscosity profile (3) the cell-averaged production is 
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where 
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whilst, with the dissipation profile (4), the cell-averaged 
dissipation is 
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The values of yd and y ^  in the dissipation profile (4) are 

found by matching the leading-order terms in the cell-
averaged expressions (12) and (14). (Otherwise, _~u  is found 

to deviate significantly from u `  in equilibrium boundary 
layers, negating a major assumption of the wall function). 
The result is that yd and y ^  vary with roughness through ya : 
 b1c −= ++ yyd

 (15) 
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For arbitrary roughness, equation (16) must be solved 
iteratively. However, it converges very rapidly starting from 
the smooth-wall values 
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 l)smooth wal(,4.27,9.4 � == ++ yyd
 (17) 

In the dissipation equation, (4) is used to set the value of �  at the near-wall node as a boundary condition. 
 
 
Stress-Transport Equations 

The wall function can also be used for differential stress 
models, with cell-averaged production and dissipation used 
in the transport equations for the stresses. The production 
terms are first evaluated in local wall-tangential coordinates 
and then rotated to the fixed Cartesian system. In simple 
shear only the streamwise-normal-stress and shear-stress 
production terms are non-zero, and these are proportional to 
the production of turbulent kinetic energy: 
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The ratio ntn uuu /2  can be specified directly, or taken 

from equilibrium values of the structure functions; (a value 
of –0.83 was used here). 
 
 
Application to Rough-Walled Pipe Flow 

Figure 3 shows predictions of friction factor in fully-
developed pipe flow for various values of relative roughness 
with both 2-equation and differential stress models. 
 
(a) Standard k- �  model 
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(b) Differential stress model (Launder et al., 1975) 
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Figure 3: Friction factor in rough-walled pipe flow 

SEDIMENT TRANSPORT AND MORPHODYNAMICS 
 
 
Morphodynamics Equation 

The movement of sediment by fluids is effected by 
either suspended load or bed load, with the latter 
dominating for larger sediments. Bed-load transport is 
largely determined by the bed shear stress, a crucial output 
of the wall function. 

Sediment morphology is a dynamic process, whereby 
net accretion or depletion arises from an imbalance between 
the rates at which sediment enters and leaves a region. 
Conservation of sediment yields an integral equation for the 
average bed height zb on each bed cell face (Figure 4): 

 �� � ∧•−=
∂

∂
−

∂A
b

b
h t

z
Ap nsq d)1(  (19) 

Ah is the projected horizontal area and p is the porosity. qb is 
the sediment flux (rate of transport of sediment per unit 
length of surface) and n is a unit vector normal to the bed. 
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Figure 4.  Sediment cell face 
 
 
Sediment-Transport Formulae 

For non-cohesive sediment, dimensional analysis leads 
to a dimensionless relationship between dimensionless bed 
flux, shear stress and particle diameter of the form 
 *)*,�(* dfq =  (20) 

where: 

 
3)1(

*

gds

q
q b

−
=  (21) 

 
gds

w

)1(�
�� *

−
=  (22) 

 
3/1

2� )1(* 	

��
� −= gs

dd  (23) 

s = � s/ �  is the relative density of the sediment and d is the 
particle diameter. Popular models of this form include: 

 1.2
3.0

)1�
�

(
053.0

*

*

*
* −=

critd
q  (Van Rijn, 1984) 

 2/3)��(8 ***
critq −=     (Meyer-Peter and Müller, 1948) 

  (24) 
with motion only if the bed stress exceeds a critical value 

crit*� , which is a function of d*. 
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Modifications for Large Slopes 

Most bed-load sediment-transport formulae are used in 
conjunction with depth-averaged flow solvers and are 
designed for rivers or seabeds of very low slope. Recent 
work (Apsley and Stansby, 2007) suggests changes to 
predict sediment transport and morphology with large 
slopes. The important elements are: 
 1. Replacement of � * in the sediment-transport 

formulae by an effective stress formed by combining 
fluid stress with the downslope component of 
weight (Figure 5) 

 b
�

sin)��( VgAA sweff −+= ��  (25) 

  Dividing by (� s–� )gdA this gives, in non-
dimensional form: 

 b
�

sin0
** Deff += ��  (26) 

  where b is a unit vector down the line of maximum 
slope, �  is the angle to the horizontal and the 
sediment-dependent parameter D0 is determined by 
assuming incipient motion at the angle of repose. 
Since the downslope part is proportional to –∇zb this 
gives a diffusion-like component which aids the 
stability of the morphodynamics equation. 
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Figure 5.  In-slope forces on sediment particles 
 
 
 2. Reduction of the critical effective stress in 

proportion to the slope-normal component of 
gravity: 

 �cos	 **
0,, critcriteff


 =  (27) 

 3. A simple avalanche model to redistribute material if 
the slope at any stage exceeds the angle of repose φ 
(Figure 6): 
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−=  (28) 

  4. A full 3-d evaluation of the integral sediment flux as 
in (19). (Most sediment-transport prediction is done 
using depth-averaged codes and ignores local 
surface orientation). 

 5. Two smoothing algorithms: the first of which treats 
the gradient-dependent part of the sediment flux in a 
manner akin to Rhie-Chow smoothing for mass-flux 
interpolation, and the second which suppresses 
variations in the signed difference between cell-face 

centroids and the control points used to define the 
bed (Figure 7) – this opposes changes in curvature. 
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Figure 6.  Redistribution of material in avalanche model. 
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Figure 7.  Using the difference between control points and 
face centroids to identify surface “wiggles”. 

 
 

APPLICATIONS 
 
 
Scour and Accretion in a 90° Channel Bend  

Kawai and Julien (1996) reported experimental 
measurements of bed scour in a 90° channel bend (channel 
width 0.2 m; centreline radius 0.6 m; longitudinal slope 
1/300; normal depth 0.041 m, sand-grain size 0.6 mm). A 
steady flow of water (Q = 4 L s-1) and sediment discharge 
(Qs = 1.44 cm3 s–1) were maintained for 200 minutes, after 
which the channel bed was observed to have reached a 
quasi-steady state. During the experiment secondary 
currents in the bend (outward flow at the free surface, 
inward flow at the bed) led to substantial scour on the 
outside of the bend and deposition on the inside. 
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A time-dependent, surface-conforming, moving-grid 
simulation was conducted with a mesh of 90×20×12 cells. 
Flow calculations were undertaken with the standard k- �  
model, whilst the Van Rijn (1984) model (modified as 
above for slopes) was used for sediment transport. 

 
 

(a) Bed morphology 

 
 

(b) Free-surface flow pattern 

 
 

Figure 8: Morphology and flow pattern in a channel bend. 
 
 

Figure 8 shows the computed bed profile and free-
surface flow pattern. The maximum scour depth is nearly 3 
times the original water depth and a point-bar deposit is 
formed on the inside of the bend. 

Figure 9 shows computed and measured bed and free-
surface heights along the channel banks, whilst Figure 10  
shows the evolving bed and free-surface profiles at stations 
30°, 40° and 60° around the bend. 
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Figure 9: Bed morphology and free-surface flow in a 
channel bend. 
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Figure 10: Bed and free-surface profiles in channel bend. 

 
 
Evolution of Sand Mounds  

Experiments were undertaken at HR Wallingford to 
study the evolution of sand mounds in both tidal and 
constant-current flow and on both mobile and non-mobile 
beds. Two initial sand-mound shapes have been simulated: a 
circular cone and an axisymmetric Gaussian hump. 
Simulations of the constant-current cases are shown here. 
Downstream  separation and recirculation is a major feature, 
with interaction between the complex 3-d flow and the 
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morphodynamics. The grade of sediment (d50 = 454 � m; 
� s = 2650 kg m–3) is such that sediment transport is almost 

entirely bed load, with d* = 11.5 and 032.0� *
0, =crit . 

Figure 11 shows the development of an initially conical 
sand mound, computed with the Meyer-Peter and Müller 
sediment-transport model. In a constant current and on a 
non-erodible bed this moves downstream, forming the 
characteristic shape of barchan sand dunes. 

 
 

 
Figure 11: Evolution of a conical sand mound 

 
 
Figure 12 shows the evolution of an initially Gaussian 

sand mound, demonstrating the difference between erodible 
and non-erodible beds. In the latter case the downstream 
recirculation results in the generation of deep scour holes, 
whilst at the upstream foot there is net accretion. A 
hydraulic jump is formed over the summit of the mound. 

 
 

(a) Non-mobile bed 

 
 

(b) Mobile bed 

 
 

Figure 12: Development of a Gaussian sand mound; flow 
from left to right. 

CONCLUSIONS AND FURTHER WORK 
A novel wall function is described, which is suitable for 

arbitrarily rough surfaces. The velocity/shear-stress 
relationship is based on an assumed eddy-viscosity profile, 
with the zero-eddy-viscosity height and parameters in the 
dissipation profile being functions of roughness. These 
functional relationships are determined by enforcing strong 
asymptotic consistency with the log law. 

Development of the wall function was motivated by 
sediment-transport applications. This led to further CFD 
developments for sediment transport and morphology with 
large slopes. Applications including steady flow in a 
channel bend and transient evolution of sand mounds are 
described here. 

Future work will examine the inclusion of strong 
pressure gradients (which cause a linear, and not-necessarily 
flow-aligned, variation of stress with height). Cases where 
the pressure gradient causes a mismatch between the 
directions of near-wall velocity and bed stress can have a 
deleterious effect on sediment-transport modelling. 
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