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ABSTRACT

The aim of the present work is to develop a seamless hy-

brid RANS–LES model, using the elliptic blending method

to account for the kinematic wall blocking effect. In or-

der to reproduce the complex production and redistribution

mechanisms when the cutoff wavenumber is located in the

productive region of the turbulent spectrum, the model is

based on transport equations for the subgrid stress tensor.

The PITM (Partially Integrated Transport Model) method-

ology offers a consistent theoretical framework for such a

model, enabling to control the cutoff wavenumber κc, and

then the transition from RANS to LES, by making the Cε2

coefficient in the dissipation equation of a RANS model a

function of κc. The extension of the underlying RANS model

used in the present work, the elliptic blending Reynolds-

stress model (EB-RSM), to the hybrid RANS–LES context,

brings out some modelling issues which are discussed in the

paper. The different modelling possibilities are tested in

a channel flow at Reτ = 395. The final model gives en-

couraging turbulent statistics. In particular, the anisotropy

of turbulence in the near-wall region is satisfactorily repro-

duced, although it is far from perfectly matching the DNS

results. The contribution of the resolved and modelled part

to the Reynolds stresses behaves as expected: the modelled

part is dominant in the near-wall zone (RANS mode) and de-

creases toward the centre of the channel, where the resolved

part in turn becomes dominant (LES mode). Moreover,

when the mesh is refined, more energy is resolved, but the

total Reynolds stresses remain approximately constant. The

mean velocity profile is satisfactorily reproduced and weakly

dependant of the mesh, contrary to what is observed in LES

with a dynamic Smagorinsky model.

INTRODUCTION

Problems ranging from noise prediction to

fluid/structure interaction or thermal fatigue require

the computation of time-dependent characteristics of

complex flows. RANS (Reynolds-Averaged Navier-Stokes)

computations are often used in industrial configurations

because they are cheap, their cost being weakly dependent

on the Reynolds number, and the mean flow and the

turbulence statistics can be predicted with accuracy in

attached flows. But RANS calculations are not able to

provide unsteady information because all the turbulent

scales are modelled. On the contrary, LES (Large Eddy

Simulation) can provide the necessary information by

resolving the large-scale structures, and modelling the

smaller scales. However, at high Reynolds numbers, LES

is considered too CPU-demanding for complex industrial

applications. One reason is that the cutoff wavenumber,

separating resolved and modelled scales, must be located in

the inertial part of the turbulence spectrum, leading to the

use of fine meshes. In particular, a limitation of LES is the

resolution required for the crucial near-wall regions, which

is to be solved in a Q-DNS mode (Quasi-Direct Numerical

Simulation), in order to avoid the use of wall function.

Therefore, a wide variety of relatively low-cost strategies

(compared to LES) have recently emerged for performing

unsteady computations: VLES (Very Large Eddy Simula-

tion) [22], LNS (Limited Numerical Scales) [2], DES (De-

tached Eddy Simulation) [21], URANS (Unsteady Reynolds-

Averaged Navier-Stokes) [13], OES (Organized Eddy Simu-

lation) [12], SAS (Scale-Adaptive Simulation) [16], PANS

(Partially-Averaged Navier-Stokes) [11], PITM (Partially

Integrated Transport Model) [19], among others. Compu-

tations based on a RANS model in some regions of the flow,

in particular in the near-wall regions, and on LES in some

other regions, where explicit computation of the large-scale

structures is required, are referred to as hybrid RANS-LES

computations. When the transition RANS→LES occurs in a

continuous manner, the model is said to be seamless, mean-

ing that there is no need to define explicit frontiers between

RANS and LES regions. In homogeneous flows, this type of

models can be seen as a LES with a cutoff wavenumber κc

continuously going to zero, or, equivalently, as a LES with a

filter width continuously going to infinity (spatial average).

Using such a model, between a RANS region and the LES

region, there is necessarily, by continuity, a region (called the

grey zone in DES), where the cutoff wavenumber is located

in the energetic part of the spectrum. The challenge is thus

to be able to reproduce the complex production and redis-

tribution mechanisms which occur at these scales, which are

very difficult, if not impossible at all, to be accounted for

using an algebraic relation between the subgrid stress and

the resolved velocity gradients. Moreover, when the cutoff

is located in the energy containing region, the knowledge of

the subgrid-scale kinetic energy is necessary to reconstruct

the total Reynolds stresses. Therefore, in the present paper,

a model based on transport equations for the subgrid stress

tensor is developed. This better representation of the phys-

ical mechanisms is at the price of an increase of the CPU

cost, but one of the purposes of using such a model is to

enable the use of coarser meshes than in a classical LES,

which requires a cutoff wavenumber in the inertial region: a

slight coarsening of the mesh can by far compensate for the

cost of solving additional transport equations. Another chal-

lenge is to provide a theoretical framework to the separation

resolved/modelled scales which bridges RANS and LES. Re-
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cently, such a theoretical framework has been proposed [19],

the so-called PITM, and used with transport equations for

the subgrid-stress tensor and the dissipation rate [4]. As a

result of modelling in spectral space, with a variable cutoff

wave-number κc, compatibility is guaranteed with the two

extreme limits that are RANS (κc → 0) and DNS (κc → ∞).

The originality of the present work is the use of transport

equations for the subgrid-scale stresses based on the applica-

tion of the elliptic blending strategy to reproduce the non-

viscous, non-local blocking effect of the wall. The present

model is indeed an adaptation to the hybrid RANS-LES

approach of the Elliptic Blending Reynolds Stress Model

(EB-RSM) [15, 14], which is a near-wall extension of the SSG

model [23], using the elliptic relaxation strategy of Durbin

[8]. This model was successfully applied to different config-

urations in a RANS methodology [14, 24, 3, 25, 20, 5].

The aim of the present paper is thus to adapt the el-

liptic blending model to the hybrid context, using PITM

approach. Modelling issues are presented and discussed.

The new model is derived and calibrated in a channel flow

at Reτ = 395, in comparison against DNS data [17].

GOVERNING EQUATIONS

The instantaneous flow is driven by the incompressible

Navier-Stokes equations. The instantaneous velocity U∗

i is

decomposed into a resolved part Ũi, including mean value

and large-scale fluctuations, and a residual fluctuating part

u
′′

i such that

U∗

i = Ũi + u′′

i . (1)

The resolved velocity is obtained by the convolution product

of a filter G with the instantaneous velocity as

Ũi(x, t) = 〈U∗

i 〉 =

∫

D

G(x − r)U∗

i (r, t) dr, (2)

where D is the fluid domain The long-time average of U∗

i

is denoted by Ui, so that the large-scale fluctuation is

u′

i = Ũi − Ui, and the total fluctuation is ui = U∗

i − Ui =

u′

i+u′′

i . In the filtered Navier-Stokes equations, the subgrid-

scale (SGS) tensor τij appears, which is the tensor of the

generalized central moments τij = τ(U∗

i , U∗

j ) defined by

τ(f, g) = 〈fg〉 − 〈f〉 〈g〉. The exact transport equation for

τij is given by Germano [9]

D̃τij

D̃t
= −

∂τ(U∗

i , U∗

j , U∗

k )

∂xk
︸ ︷︷ ︸

DT
ij

+ ν
∂2τij

∂xk∂xk
︸ ︷︷ ︸

Dν
ij

− 2ντ

(

∂U∗

i

∂xk
,
∂U∗

j

∂xk

)

︸ ︷︷ ︸

εij

−1

ρ
τ

(

U∗

i ,
∂P ∗

∂xj

)

− 1

ρ
τ

(

U∗

j ,
∂P ∗

∂xi

)

︸ ︷︷ ︸

φij

−τik
∂Ũj

∂xk
− τjk

∂Ũi

∂xk
︸ ︷︷ ︸

Pij

, (3)

where D̃/D̃t = ∂t + Ũk∂k, and τ(f, g, h) = 〈fgh〉 −
〈f〉 τ(g, h) − 〈g〉 τ(h, f) − 〈h〉 τ(f, g) − 〈f〉 〈g〉 〈h〉. The sub-

grid stress production Pij and the viscous diffusion Dν
ij are

exact terms and need not to be modelled. The turbulent

diffusion by the subgrid scales DT
ij is modelled by a gener-

alized gradient hypothesis [6]. The most crucial term to be

modelled in Eq. (3) is the velocity–pressure gradient correla-

tion (hereafter the pressure term) φij . An adaptation of the

EB-RSM model [14], usually applied in the RANS context,

is used. The model blends the ”homogeneous” (away from

the wall) and the near-wall models of the pressure term φij

and the dissipation tensor εij using

φij = (1 − α2)φw
ij + α2φh

ij , (4)

εij = (1 − α2)
τij

km
ε + α2 2

3
εδij , (5)

where km = 1

2
τii is the modelled fluctuating kinetic energy

and α is a blending coefficient which goes from zero at the

wall, to unity far from the wall. Following the elliptic relax-

ation strategy of Durbin [7, 8], an elliptic, linear differential

equation for α is proposed to reproduce the non-local block-

ing effect of the wall

α − Lsgs∇2α = 1. (6)

As shown by [14], the correct form of φw
ij can be obtained by

an analysis of the asymptotic behaviours at the wall, which

gives

φw
ij = −5

ε

km

[

τiknjnk + τjknink − 1

2
τklnknl (ninj + δij)

]

,

(7)

where n = ∇α/‖∇α‖ is a generalized wall-normal vector.

The Speziale, Sarkar and Gatski (SSG) model [23] is used

for φh
ij . The modelled transport equation for the energy

dissipation rate ε = εii/2 is written in the same form as in

the case of the RANS context

D̃ε

D̃t
= Cε1

P

T
− C∗

ε2

ε

T
+

∂

∂xl

(

νδlm + CsTτlm

)

∂ε

∂xm
, (8)

with P = Pkk/2, but following the PITM methodology [4,

19], the coefficient C∗

ε2
is made dependant on the filter by

using

C∗

ε2
= Cε1

+ fk(Cε2
− Cε1

) (9)

where fk = km/k and k = kr + km is the total turbulent

energy, sum of the resolved part kr = 1

2
(ŨiŨi − UiUi) and

modelled part km = 1

2
τii, the over-bar denoting the long-

time average. The parameter fk depends on the cutoff wave-

number and controls the transition from a RANS behaviour,

where all the turbulent scales are modelled (fk = 1), to

a DNS behaviour, where all turbulent scales are resolved

(fk = 0). A relation between this parameter and the cutoff

wavenumber is required and will be discussed in the next

section. The time scale appearing in Eq. (8) is the subgrid

time scale km/ε bounded by the Kolmogorov scale to avoid

singularities at the walls [14]. The advantages of the elliptic

blending strategy are the following:

• Unlike classical near-wall models, the EB-RSM does

not make use of any damping functions or wall-echo

terms to reproduce the wall effects.

• The model is derived from the Poisson equation for

pressure fluctuations and asymptotic behaviours of the

pressure term in the vicinity of the wall, which are both

formally identical in the RANS context (statistical av-

eraging) and the LES context (filtering).

• There is no explicit dependence on the distance to the

wall, and therefore the model can be used in complex

geometries.

• The elliptic blending model is much more robust than

other models based on elliptic relaxation and also

less CPU-demanding since a single additional equation

(Eq. 6) is to be solved.
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MODELLING ISSUES

As mentioned before, some modelling issues remain and

must be discussed. Some of them are related to the PITM

methodology and others are due to the development of an

elliptic blending model in the hybrid context:

• The value of the parameter fk must be chosen such a

way that it is consistent with the two limits that are

RANS (fk = 1) and DNS (fk = 0).

• The elliptic equation Eq. (6) enables to account for

the non-local blocking effect of the wall on the subgrid

stress. This effect reflects the incompressibility condi-

tion for the non-resolved scales. In a hybrid context,

the blocking of the large scales, which are explicitly

resolved, follows from the explicit resolution of the con-

tinuity equation (∂kŨk = 0). The elliptic blending

aims at imposing the blocking effect only on the mod-

elled scales, which implies that the correlation length

scale Lsgs, entering Eq. (6), must be decreased com-

pared to the RANS case, where all the scales of motion

are modelled.

• It is usual to assume that the small scales return to

isotropy faster than the large scales, which could be

reproduced, as suggested by [4], by making the slow

part of the pressure term a function of the width of

the filter.

NUMERICAL METHOD

To investigate the previous issues, the test case of a chan-

nel flow at Reτ = uτ H/(2ν) = 395 is considered, where H

is the channel width and uτ the friction velocity. Compu-

tations are performed with Code Saturne, a parallel, finite

volume solver on unstructured grids, developed at EDF [1].

Space discretization is based on a collocation of all the vari-

ables at the centre of gravity of the cells. Velocity/pressure

coupling is ensured by the SIMPLEC algorithm, with a

Rhie & Chow interpolation in the pressure-correction step.

The Poisson equation is solved with a conjugate gradient

method. Time advancement is based on a Crank-Nicolson

scheme. Spatial derivatives are approximated by a second-

order central-difference scheme (CDS) for the resolved ve-

locity field and a first-order upwind-difference scheme (UDS)

for the subgrid turbulence field. Two meshes are used, whose

characteristics are given in Tab. 1. The first point near the

wall is placed at y+

1
= 1.5. The mesh is uniform in the homo-

geneous directions, in which periodic conditions are imposed.

Due to the rapid variations in space and time of the filtered

field, it was found necessary to average the strain tensor

in the homogeneous directions before evaluating the source

terms of the subgrid-stress transport equations to avoid re-

laminarization, a practice similar to what is done for the

Smagorinsky coefficient in the dynamic procedure in LES.

Mesh Nx Ny Nz ∆x+ ∆y+

c ∆z+

1 32 54 32 100 40 50

2 64 70 64 50 28 25

Table 1: Meshes characteristics. Nx, Ny and Nz denote

the number of points in the streamwise, wall normal and

spanwise directions respectively. The subscript c refers to

the centre of the channel.

MODELLING OF THE PARAMETER FK

As proposed by [19] and [4], using a Kolmogorov energy

spectrum, it can be shown that the parameter fk can be

linked to the cutoff wave-number by

fk =
3CK

2

(

κc
k3/2

ε

)

−2/3

where κc =
2π

Cg∆
, (10)

with ∆ = (∆x∆y∆z)1/3, CK ≃ 1.5 the Kolmogorov

constant, and Cg a constant depending on the numeri-

cal schemes and necessarily greater than 2 to satisfy the

Shannon constraint. Eq. (10) is compatible with the DNS

limit (limκc→∞ fk = 0) but not with the RANS limit

(limκc→0 fk = 1), simply because the Kolmogorov −5/3

power law is not valid at large scales. [4, 19] proposed the

empirical modification

fk =
1

1 + β0η
2/3
c

where ηc =
π

∆

k3/2

ε
, (11)

with β0 = 2

3CK

(

2

Cg

)2/3

≤ 0.44. The integral length scale

k3/2/ε is taken from a previous RANS calculation with the

EB-RSM model. Using formulation (11) with mesh 1, it is

noticed that the condition β0η
2/3
c ≫ 1 is not satisfied in the

centre of the channel, to recover the theoretical formulation

(10), based on the Kolmogorov law. Moreover, as shown

on Fig. 1, the resolved part of the Reynolds stress increases

very rapidly as a function of the distance to the wall and is

strongly overestimated. In the elliptic blending framework,

it is proposed to blend the value of fk near the wall (fk = 1)

and its theoretical value, given by Eq. (10), valid far from

the wall, as

fk = (1 − αp) + αp 1

β0η
2/3
c

(12)

Formulation (12) enables a better control of the transition

RANS–LES, as shown on Fig. 1, because fk is not only a

function of the local cell size, but also of the distance to the

wall, implicitly contained in α. Using the exact asymptotic

behaviour at the wall of the different quantities (k = O(y2),

ε = O(1), α = O(y), it can be shown that p ≥ 16/9 leads

to a correct asymptotic behaviour of fk at the wall. For

simplicity, p is chosen as an integer, p = 2.

A range of values between 2 and 20 have been tested for

the Cg parameter, which enters the evaluation of β0. Indeed,

the highest frequency which can be obtained on a given mesh

depends on the numerical scheme, and [10] recommends the

value Cg = 6 for a second order CDS. For large values of Cg ,

fk = 1 is obtained all across the channel, thus leading to a

RANS solution. Cg < 4.5 leads to a too weak subgrid-scale

dissipation and a strong overestimation of the total Reynolds

stresses. In the range [4.5, 10], the turbulence statistics are

weakly dependent on the value of Cg . The optimal value

was found to be Cg ≃ 6.5 (β0 = 0.20), which is very close to

the value suggested by [10].

LENGTH SCALE FOR THE WALL-BLOCKING EFFECT

In a RANS framework, the elliptic relaxation equation

Eq. (6) is solved, where the length scale is given by

L = CL max

(

k3/2

ε
, Lb

)

(13)

where Lb is related to the Kolmogorov scale Lη by

Lb = CηLη. The constants are CL = 0.161 and Cη = 80.

743



0 200 400 600 800

y
+

0

1

2

3

4

(τ
11

+ )1/
2

DNS
SGS
RES
Total

0 200 400 600 800

y
+

0

1

2

3

4

(τ
11

+ )1/
2

DNS
SGS
RES
Total

Figure 1: Influence of the form of fk. Mesh 1, component

τ11, β0 = 0.20. Profile of resolved (RES), modelled (SGS)

and total stress. Left: fk given by Eq. (11). Right: fk given

by Eq. (12).
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Figure 2: Influence of the value of β0. Mesh 1, compo-

nent τ11, fk given by Eq. (12). Profile of resolved (RES),

modelled (SGS) and total stress. Left: β0 = 0.20. Right:

β0 = 0.60.

As mentioned above, this length scale characterizes the dis-

tance at which the non-local kinematic blocking of the wall

is felt by the non-resolved motion. In the hybrid context, the

length scale of the non-resolved fluctuations is dependent on

the width of the filter, and the modelling of the length scale

must be consequently modified.

In order to illustrate the influence of this length scale, it

is noted that the solution of Eq. (6) can be roughly approx-

imated by

α(y) = 1 − exp

(

− y

Lsgs

)

, (14)

with a constant length scale, where Lsgs must be lower than

the admissible value for a RANS computation: 0.03H. Fig. 3

shows the influence of the blocking effect on the anisotropy

by comparing the results obtained with Lsgs = 0.02H and

0.03H. It is seen that the decrease of Lsgs modifies the

anisotropy, by reducing the blocking effect, i.e., the inhi-

bition of the redistribution from τ11 to τ22. As expected,

the blocking effect only affects the subgrid scales, leaving

the resolved scales unchanged.

The reduction of the length scale can be achieved by

replacing the integral length scale k3/2/ε in Eq. (13) by the

length scale characterizing the largest subgrid eddies k
3/2
m /ε,

and the lower bound must be reduced by the same factor,

i.e., f
3/2

k
, which yields

Lsgs = CL max

(

k
3/2
m

ε
, f

3/2

k
Lb

)

(15)

At the RANS limit (fk = 1), Eq. (13) is recovered. Formula

(15) is also compatible with the DNS limit (fk = 0) because

Lsgs = 0, leading to α = 1 (see Eq. (6)), which corresponds

to a vanishing of the blocking effect, as the subgrid scales

vanish.

Using this formulation, Fig. 4, Fig. 5, Fig. 6 and Fig. 7

show the profile of resolved, modelled and total stresses,

for the two meshes. Fig. 8 shows the profile of resolved,

modelled and total kinetic energy. It can be seen that near

the wall, the SGS part is dominant and decreases toward

the centre of the channel, where the resolved part in turn

becomes dominant. When the mesh is refined, the cutoff

wave number is increased (Eq. (12)), and the balance re-

solved/modelled energy is modified as expected. The total

energy is not perfectly constant, but varies much less than

the two contributions. On the refined mesh, a quasi-DNS is

performed in the centre of the channel because the modelled

part is nearly zero.

The mean velocity is shown on Fig. 10, for the two

meshes. Comparison is done with the DNS, a RANS com-

putation with the EB-RSM model, and a LES with the

dynamic Smagorinsky model. It appears that on the coarse

grid, the present hybrid model performs much better than

the Smagorinsky model, due to the fact that the cutoff is not

in the inertial range. Mesh 2 is an acceptable LES mesh, and

the Smagorinsky model gives good prediction. These results

show one of the interests of the present approach, which gives

acceptable results with a mesh coarser than a LES mesh.

For the two meshes, Fig. 9 shows the near-wall struc-

tures, as the hairpin vortices and the streaks, by positive

isocontours of the Q-criterion, colored by the velocity mag-

nitude. This figure confirms that by refining the mesh, the

solution tends to a typical LES solution.
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Figure 3: Influence of Lsgs. Mesh 1, component τ22. fk and

α given by Eq. (12) and Eq. (14) and β0 = 0.20. Profiles

of resolved (RES), modelled (SGS) and total stress. Left:

Lsgs = 0.03H (RANS value). Right: Lsgs = 0.02H.
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Figure 4: Profile of resolved (RES), modelled (SGS) and

total stress. Component τ11. Left: mesh 1. Right: mesh 2.
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Figure 5: See caption of Fig. 4. Component τ22.

MODIFICATION OF THE SLOW PART OF THE PRES-

SURE TERM

In the elliptic blending model, the pressure term φij is

decomposed into a near-wall contribution φw
ij and a ”homo-

geneous” contribution φh
ij . The latter, given here by the SSG

model [23], can be decomposed into a rapid part φh,r
ij , de-

pending directly on the mean velocity, and a slow part φh,s
ij
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Figure 6: See caption of Fig. 4. Component τ33.
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Figure 7: See caption of Fig. 4. Component τ12.
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Figure 8: See caption of Fig. 4. Turbulent kinetic energy.

Figure 9: Isocontours of Q-criterion colored by resolved ve-

locity. Left: mesh 1. Right: mesh 2, bottom wall.
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Figure 10: Mean velocity profile. Comparison with RANS

(EB-RSM), DNS and LES calculations (Dynamic Smagorin-

sky model).

which effect is to force the turbulence to return to isotropy.

In the hybrid context, following [4] and [18], to take into ac-

count the fact that the small scales return to isotropy faster

than the large scales, an empirical parameter fSGS is intro-

duced as

φh
ij = fSGS φh,s

ij + φh,r
ij (16)

The parameter fSGS must be an increasing function of the

dimensionless cutoff wave-number ηc. To be consistent with

the RANS limit, it is necessary to have limηc→0 fSGS = 1.

Similarly to Eq. (12), we propose

fSGS = (1 − αb) + αb γη2
c

1 + η2
c

(17)

where γ = 1.5, following [4]. In order to have a real effect on

the anisotropy, it was found that the value of b must be less

than one, and b = 0.5 is chosen here. At the wall, the RANS

limit is recovered since α = 0. At the DNS limit (ηc → ∞),

far away from the wall (α = 1), fSGS → γ, meaning that the

small scales return to isotropy faster than the large scales by

a factor γ. As shown in Fig. 11, the value of the peak of τ22
is improved, without really reducing the overestimation of

the peak of τ11, compared to the case where the parameter

fSGS is not taken into account (Figs. 4 and 5). Surpris-

ingly, the main effect of the modification is to modify the

balance between resolved and modelled energy, in particular

at the centre of the channel, as shown by Fig. 12. Actually,

this behaviour can be explained by the fact that the param-

eter fSGS , by forcing turbulence toward isotropy, tends to

decrease the amplitude of the shear stress −τ12, and, as a

consequence, the production of subgrid energy goes to zero.

Since, on the other hand, the effect on the anisotropy of the

normal stresses is marginal, the use of this modification of

the return to isotropy is not recommended.
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Figure 11: Influence of the parameter fSGS . Mesh 1, fk

and Lsgs given by Eq. (12) and Eq. (15), β0 = 0.20. Profile

of resolved (RES), modelled (SGS) and total stress. Left:

component τ11. Right: component τ22.
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Figure 12: Influence of the parameter fSGS . Mesh 2, fk

and Lsgs given by Eq. (12) and Eq. (15), β0 = 0.20. Profile

of resolved (RES), modelled (SGS) and total fluctuating ki-

netic energy. Left: without parameter fSGS . Right: with

parameter fSGS .

CONCLUSIONS

A new hybrid RANS–LES model, based on transport

equations for the subgrid stresses, and the elliptic blending

method to account for the non-local kinematic blocking due

to the wall, has been developed. The derivation is made in

the framework of the Partially Integrated Transport Model

(PITM) proposed by [19] and [4]. The purpose of such a

model is to obtain the unsteady characteristics of the flow

at a cost lower than LES, by going to a RANS computation
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in the near-wall region, and also by making the use of coarse

meshes (compared to LES meshes) possible. Therefore, the

cutoff can be located in the productive zone of the spectrum,

and, therefore, the complex production and redistribution

mechanisms must be reproduced. For this purpose, the el-

liptic blending hybrid model is based on transport equations

for the subgrid scale tensor and the dissipation rate. The

wall blocking effect is reproduced by using an additional el-

liptic relaxation equation for the blending function α, which

drives the transition of the subgrid-scale pressure term from

a near-wall behaviour to a quasi-homogeneous behaviour. A

new form of the parameter fk, which provides the model

with the target ratio modelled/total kinetic energy, is pro-

posed to better control the RANS–LES transition in the

near-wall region, and is carefully calibrated in the channel

flow at Reτ = 395. A new formulation of the length scale

for the elliptic relaxation equation is also proposed, in order

to account for the fact that the kinematic blocking must be

modelled only for the subgrid-scales. The results in channel

flow are very encouraging in terms of mean flow and turbu-

lence statistics, and show that the present approach indeed

gives better results than a LES with the dynamic Smagorin-

sky model when the mesh is coarsen.
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