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ABSTRACT 

It is still unknown if in general wall-bounded turbulence 
shows self-similarity in the sense that a set of scaling 
variables exists to collapse the profiles of, for example, all 
moments of the streamwise velocity component. To find 
self-similar solutions for the mean-velocity profile and the 
Reynolds shear stress, usually a scaling approach is 
employed where the characteristic length and velocity scales 
are defined a priori. Herein we undertake the challenge of 
non-dimensionalizing the mean-momentum equation of 
turbulent boundary layers without such a priori 
specification. 

 
 
INTRODUCTION 

Self-similarity is a long and intensively researched 
aspect of wall-bounded flows. One of the main objectives of 
these investigations is to collapse data obtained in different 
facilities (e.g., wind and water tunnels), or under different 
physical circumstances (e.g., different pressure gradients or 
different wall roughness), within a single curve. The 
practical relevance of self-similar solutions is clear. For 
example, the well-known classical logarithmic law having 
constant parameters is employed in nearly all commercial 
Navier–Stokes solvers as embedded wall function. 
However, if this law would fail, these numerical schemes 
would fail too (Gad-el-Hak, 1997). 

Most approaches to find self-similar solutions of wall-
bounded flow search for coordinate transformations of the 
governing equations (e.g., Prandtl’s boundary layer 
equation, mean-momentum equation of pipe and channel 
flows, etc.). Clauser (1956) introduced the fundamental idea 
of equilibrium or self-preservation. The solutions he sought 
exhibit self-similarity, meaning that the governing equations 
do not show any explicit dependence on the streamwise 
coordinate. Therefore, the goal is to normalize those 
equations in a way that the mean-velocity profile, Reynolds 
shear-stress profile, etc., collapse for different flow 
realizations. 

Early solutions of this type were provided by Rotta 
(1950), Clauser (1956) and Michel et al. (1969), among 
others. During the last decade, the problem of finding self-
similar solutions received renewed interest. New approaches 
were developed by Barenblatt et al. (2000), Castillo and 
George (2001), and Buschmann and Gad-el-Hak (2003), 

among others. However, despite the large number of 
solutions developed for turbulent wall-bounded flows, none 
of the scaling approaches advanced thus far seems to be 
completely satisfactory. A most recent overview on the 
scaling approaches developed during the last decade is 
provided by Buschmann and Gad-el-Hak (2007). 
 
 
PRESENT APPROACHES 

The majority of approaches attempting to find self-
similar solutions start with an assumption for the scaling of 
the mean-velocity profile and the Reynolds shear-stress. 
The list below provides some examples. 
 
 
Classical approach (Schlichting and Gersten, 1997) 
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Alternative approach (Wolfshtein, 2004) 
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Castillo–George scaling (Castillo and George, 2001) 
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Zagarola–Smits scaling (Zagarola and Smits, 1997) 
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Here x denotes the streamwise and y the wall-normal 
coordinate, δ is the boundary layer thickness, and δ*  the 
displacement thickness. The velocity in mean-flow direction 

is u, and the Reynolds shear-stress is 
  

u'v ' . The variable 

ue denotes the freestream velocity. 
It is still unknown if in general wall-bounded turbulence 

shows self-similarity in the sense that a set of scaling 
variables exists to collapse all moments of the streamwise 
velocity. Certain experiments rather indicate that this is not 
the case (e.g., Morrison et al., 2004). Therefore, the present 
discussion will be restricted to the profiles of the mean-
velocity and the Reynolds shear-stress, as the majority of all 
approaches do too. 

The present scaling approaches [Equations (1–4)] have 
a similar structure—all of them start with the non-
dimensionalization of the wall-normal coordinate, the mean-
velocity profile and the Reynolds shear-stress. The scaling 
variables assumed are different, however. While the 

classical approach starts with ( )τu x , the GC-scaling 

(George–Castillo scaling) leaves the determination of the 
characteristic velocity open until several constraints from 
the analyzed boundary-layer equations are derived (Castillo 
and George, 2001). Similarly the scaling of the Reynolds 

shear-stress is classically assumed to be( ) 2

τ  u x , but 

found to be ( )2 δeu x d d x according to GC-scaling by 

employing the constraints following from the analyzed 
governing equations. 

For the ZS-scaling (Zagarola–Smits scaling), 

( ) ( ) ( )*δ δeu x x x  is used for scaling the mean-velocity 

profile. This scaling was originally based on empirical 
ground by Zagarola and Smits (1997) but later shown to be 
an extension of the classical two-layer approach (Panton, 
2005; Indinger et al., 2006). 

Obviously the outcome of a certain approach depends 
not only on the physical assumptions made but also on the 
mathematical (functional) structure allowed a priori. The 
assumptions made in the approaches shown in Equations 
(1–4) already pre-justify the results possible to obtain. 
Herein, we instead propose a more general approach of 
scaling with lesser assumptions concerning the functional 
shape of the scaling and the scaling variables. 

 
 
 
 
 
 

UNSPECIFIED APPROACHE 
We consider a turbulent boundary layer subjected to a 

pressure gradient. In the new approach we follow in 
principle the procedure described above but without 
specifying the characteristic velocity and length scales 
employed 
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The functions ( )1f x  and ( )2f y , the scaling velocity ( )*u x  

and the scaling of the Reynolds shear-stress ( )R x  are not 

specified a priori. This permits maximum flexibility with 
respect to the scaling variables, includes all approaches 
listed in the previous section, and allows—after 
incorporating into the mean-momentum balance—a general 
discussion of that equation. 

Next we consider the two-dimensional, steady, 
incompressible boundary layer equation 
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The continuity equation 
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is employed to substitute the wall-normal velocity 
component in (6). The ansatz (5) is then introduced into (6), 
and after a considerable amount of algebra the 
dimensionless mean-momentum equation is obtained in the 
following form 
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Here the prime denotes derivative with respect to η, the 
superscripts x and y symbolize, respectively, the derivative 
with respect to the x- and y-coordinate. 

One of the primary goals of non-dimensionalization of 
(6) is to get rid of one coordinate. In principle, this 
transforms the partial differential Equation (6) into an 
ordinary differential equation. This can only be achieved in 
(8) if ( )2f y  is set identical to y. In that case, the first 

derivative of ( )2f y  becomes identical to unity, and Term D 

that contains the second derivative of ( )2f y  becomes 

identically zero. 
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APPROACHE ACCORDING TO WOLFSHTEIN  
We employ the approach originally derived by 

Wolfshtein (2004) to find self-similar solutions for wall-
bounded flows with injection to illustrate the classical way 
of finding self-similar solutions. Insert Equations (2a–c) 
into (8) to yield 
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For laminar flow, the shear-stress term ral’  becomes 

zero. Self-similarity is therefore obtained if the two 
remaining similarity numbers Aal and Bal are constant. For 
turbulent flow, the shear-stress term is non-zero and the 

additional constraint 
  
Re = u

e
δ ν = const.  has to be 

satisfied. 
By differentiating the Reynolds number and substituting 

the resulting velocity gradient into Aal, one obtains 
 

                       Re .x
al alA B constδ= − = =                       (10) 

 
which finally reduces (9) to 
 

                   ( )2' 1 ' '' Re 'al al cl alA f f r− = +                      (11) 

 
It is immediately clear that with this approach any self-
similar solution must have two parameters. To satisfy 
similarity both Re and Aal have to be constant. The 
parameter Aal is related to the Clauser–Rotta parameter β, 
sometimes called outer pressure-gradient parameter 
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The straightforward consequence from the above 

analysis is that a turbulent boundary layer having zero-
pressure-gradient is not strictly speaking a self-similar or 
equilibrium flow. The only self-preserving boundary layer 
on a smooth surface is therefore the sink flow. This flow has 
constant Clauser–Rotta parameter and constant local 
Reynolds number, meaning that the ratio of pressure and 
friction forces and the ratio of inertia and friction forces are 
both constant along the development length of the boundary 
layer. 

 
 

GC-APPROACHE 
To show that Equation (8) encompasses the approach by 

Castillo and George (2001), we specify (5a–c) according to 
(3a–c) and obtain Castillo and George’s version of the 
mean-momentum equation written in outer variables 
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In the above, the similarity numbers appear in square 
brackets. However, differently from the classical view, 
however, those numbers do not have to be constant. To 
obtain full similarity of the mean momentum Castillo and 
George (2001) demand only that these terms have to show 
the same x dependence. This so-called GC-equilibrium-type 
similarity is fundamentally different from the definition of 
equilibrium flow according to Clauser (1956). 

For turbulent boundary layers having zero-pressure 
gradient, the last term on the left-hand side of (14) becomes 
identically zero. In this case, only two constraints follow 
from (14), otherwise more constraints have to be enforced. 
For example, the outer region of TBL with pressure gradient 
follows 
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According to the definition by Castillo and George (2001), 
equilibrium flow occurs when the parameter Λ becomes 
constant. 
 
 
ZS-APPROACHE 

In a third attempt, we employ the scaling according to 
Zagarola and Smits (1997). With 
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the normalization of the mean-velocity profile is given. The 
normalization for the Reynolds shear-stress is not known a 
priori . We therefore employ the coefficient of the shear-
stress term in (8), the last term in the equation. Knowing 
that this should be a Reynolds number [see also last term of 
Equation (9)], we equate 
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Note that differently from the usual scaling applying 

  
uτ

2 , the Reynolds shear-stress is scaled with a combination 

of the boundary layer thickness, displacement thickness and 
the velocity at the outer edge of the boundary layer. That of 
course supports the idea that freely moving large scales 
influence the Reynolds shear-stress over the largest part of 
the boundary layer (see, e. g., Morrison et al., 2004). That 
the scaling proposed with (18) is similarly good as the usual  
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Figure 1: Distribution of Reynolds shear stress of channel 
flow (DNS-data from Hoyas Jiménez, 2005) 
Above usual scaling based on uτ and below scaling 
according to eq. (18) 

 
 
 
 
 
 

scaling using 
  
uτ

2  shows Figure 1 for channel flow DNS data 

from Hoyas and Jimenez (2005). 
By specifying Term B of eq. (8) according to (4a-c) it is 

found that 
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This constraint is basically the same as the one found by 
Wolfshtein (2004) with eq. (10). This finding supports again 
the close relationship between the classical scaling and the 
ZS-scaling as discussed by Indinger et al. (2006). The 
conclusion is that self-similarity employing ZS-scaling can 
be obtained only if equivalent constraints are demanded, as 
for the classical outer scaling. 
Substituting all terms of (8) according to the ZS-scaling 
finally leads to the mean-momentum equation in the form 
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Figure 2: Gradient of the defect law for different scaling 
approaches for pipe flow  
Above superpipe data from McKeon et al. (2004) and below 
turbulent boundary layer with zero pressure gradient 
(Österlund, 1999) 
�  Classical approach *u uτ=  

�  Zagarola–Smits scaling * ZSu u=  

�  Castillo-George scaling * eu u=  

 
 
 

  To obtain self-similarity Term KZS must be constant. From 
this a second constraint for the ZS-scaling follows. The 
Reynolds number ReZS is written as 
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For a flow having constant properties, the displacement 
thickness is inversely proportional to ue. Taking the 
derivative of (21b) with respect to x leads to the following 
relation 
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Introducing (22) into Term KZS yields 
 
                                  1 3 *K δ δ=                                    (23) 

 
which basically demands that boundary layer thickness and 
displacement thickness have to develop proportionally 
along the streamwise direction. This implies a constant 
shape factor, δ*/δ, which is a characteristic feature of 
classical self-similarity of TBL subjected to pressure 
gradient (Skåre and Krogstad, 1994). 
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To summarize, employing the unspecified normalized 
mean-momentum equation (8), it is found that certain 
constraints have to be fulfilled to achieve self-similarity 
using ZS-scaling. These constraints are equivalent to the 
constraints demanded for classical self-similarity. However, 
why does the ZS-scaling provide a better collapse of pipe 
flow data as compared to the classical approach? 

Following the classical picture (Tennekes and Lumley, 
1972), it is stated that well above the surface layer 
 

                       
*

h dU d F

u d y dη
=     with    *u uτ=                  (24) 

 
with the understanding that  d F dη  is of order unity. 
Calculating the gradient of the defect law from the 
superpipe data (McKeon et al., 2004) and from the ZPG 
TBL-data from Österlund (1999) shows that for the classical 

scaling (
  
u

*
= uτ ) this is only true in the outermost region of 

the flow, as shown in Figure 2. 
Doing the same employing Castillo–George scaling 

(
  
u

*
= u

e
) shifts the curves below the unity-line and the 

gradient in the outer region is of order 0.1. The Zagarola– 

Smits (
  
u

*
= u

ZS
) scaling comes closest to this line in a wide 

portion of the outer region, which may explain its practical 
success. 

All three scalings are related because for infinite 
Reynolds numbers, the scaling velocities become 
proportional. However, the collapse obtained with the 
classical or the ZS-scaling is better in the outer region  of 
the flow ( η ≥ 0.1 ), which supports the argument that ue 
might be not be the proper velocity scale for the defect law. 

 
CONCLUSION 

In this paper we make an unspecified ansatz to non-
dimensionalize the mean-momentum equation of turbulent 
boundary layers. An immediate outcome of this exercise is 
that the coordinate y can only occur linearly in the 
dimensionless wall-coordinate. Otherwise the mean-
momentum equation does not reduce to an ordinary 
differential equation. Whether new classes of self-similar 
solutions can be found following this track remains open. 

Because the characteristic length and velocity scales are 
not assumed a priori in the present formulation, the 
resulting dimensionless mean-momentum equation can be 
employed for the purpose of comparing different 
approaches. Employing the Zagarola–Smits scaling, it is 
shown that equivalent constraints as for the classical scaling 
have to be fulfilled to obtain self-similarity. Additionally, 
the adequate ZS-scaling for the Reynolds shear stress is 
derived from the dimensionless mean-momentum equation. 
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