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ABSTRACT

Direct numerical simulation of a zero-pressure gradi-

ent drag-reducing turbulent boundary layer of viscoelastic

solutions was performed at momentum-thickness Reynolds

number Reθ0 = 500 and Weissenberg number We = 25

using constitutive equation models such as the Oldroyd-

B model and Giesekus model (the mobility factor α =

0.001, 0.002, 0.005, 0.01) in which the rheological properties

are different. It is found that the maximum drag reduc-

tion ratio %DR for the Oldroyd-B model is larger than

that for the Giesekus model even at the same Weissenberg

number (We = 25), although the maximum %DR for the

Giesekus model approaches one for the Oldroyd-B model as

α decreases from 0.01 to 0.001. For the Giesekus model

with α = 0.001, we can see that quasi-streamwise vortices

are weakened and become larger in the streamwise direc-

tion, compared to the Giesekus model with α = 0.01. The

present results indicate that the higher elongational viscos-

ity yields the larger drag reduction ratio, so that turbulence

statistics and structures are modified more clearly in the

drag-reducing turbulent boundary layer.

INTRODUCTION

Velocity measurements of a drag-reducing turbulent

channel and pipe flows of viscoelastic fluids have yielded

valuable knowledge about the suppression of turbulence,

the modification of near-wall coherent structures, and the

stress defect (e.g. Gyr and Bewersdorff, 1995; Warholic et

al., 1999). On the other hand, there have been few studies

on the drag-reducing effect for a turbulent boundary layer.

Recently, White et al. (2004) and Itoh et al. (2005) have

clarified the effects of polymer and surfactant additives on

the turbulent boundary layer, respectively. However, the

detailed mechanism of the drag reduction for the turbulent

boundary layer flow of viscoelastic fluids has not been well

understood.

In the last decade, there have been many direct numerical

simulation (DNS) studies of drag-reducing turbulent chan-

nel flow (e.g. Sureshkumar et al., 1997; Min et al., 2003; Yu

and Kawaguchi, 2004), while there are few DNS of turbulent

boundary layer flow of viscoelastic fluids. Quite recently,

Dimitropoulos et al. (2005, 2006) and Shin and Shaqfeh

(2005) performed a DNS of a polymer-induced drag-reducing

zero-pressure gradient turbulent boundary layer flow using

the FENE-P model. Tamano et al. (2007) performed a DNS

of a drag-reducing turbulent boundary layer of viscoelastic

fluids using the Oldroyd-B and Giesekus models. However,

it is quite insufficient compared to the DNS of drag-reducing

turbulent channel flow.

In the present study, DNS of a zero-pressure gradient tur-

bulent boundary layer of a drag-reducing viscoelastic fluid

are performed using constitutive equation models such as

the Oldroyd-B and Giesekus models in which the rheologi-

cal properties are different.

NUMERICAL METHOD AND CONDITION

The non-dimensional governing equations for the incom-

pressible viscoelastic flow are continuity and momentum

equations:

∂ui

∂xi
= 0, (1)

∂ui

∂t
+

∂(uiuj)

∂xj
= − ∂p

∂xi
+
1− β

Reθ0

∂Eij

∂xj
+

β

Reθ0

∂2ui

∂xj∂xj
, (2)

where ui is the velocity component, p is pressure, xi is

spatial coordinate, t is time, and Eij is the viscoelastic

stress component. In this paper, x1 (x), x2 (y) and x3
(z) directions are streamwise, wall-normal and spanwise, re-

spectively. β = ηs/η0 is the ratio of zero shear rate solvent

viscosity ηs to solution viscosity η0. For the Giesekus model,

the non-dimensional constitutive equation for Eij is as fol-

715



lows:

Eij +We(
∂Eij

∂t
+ uk

∂Eij

∂xk
− ∂ui

∂xk
Ejk − Eki

∂uj

∂xk
+ αEjkEki)

=
∂ui

∂xj
+

∂uj

∂xi
, (3)

where α is the mobility factor. The mobility factor α is from

0 to 1, and the Giesekus model with α = 0 corresponds to

the Oldroyd-B model (Bird et al., 1987).

The inflow condition for the boundary layer is given by

the method proposed by Lund et al. (1998), so that the com-

putational domain is divided into the main and driver parts.

The computational parameters are the momentum-thickness

Reynolds number and the Weissenberg number which are

defined as follows:

Reθ0 =
ρUeθ0

η0
, (4)

We =
λUe

θ0
, (5)

where Ue is the free-stream velocity, θ0 is the momentum-

thickness at the inlet plane of the driver part, η0 is the zero-

shear viscosity of the solution, ρ is density, and λ is the

relaxation time.

The second-order accurate finite difference scheme on a

staggered grid is used. The velocity components are dis-

cretized on the grid cell edges, whereas the pressure and

all the components of viscoelastic stress tensors Eij are de-

fined at the center of each cell. The coupling algorithm of

the discrete continuity and momentum equations (1) and

(2) is based on the second-order splitting method. The re-

sulting discrete Poisson equation for the pressure is solved

using the SOR method after FFT in the periodic (z) direc-

tion. The second-order upwind difference scheme is used

for the polymer-stress convection term, and an artificial

diffusion is added in (3) to prevent the numerical insta-

bility (Sureshkumar et al., 1997). The semi-implicit time

marching algorithm is used where the diffusion term in the

wall-normal direction is treated implicitly with the Crank—

Nicolson scheme, and the third-order Runge—Kutta scheme

is used for all other terms.

The boundary conditions for the computational domain

are the same as those of Lund et al. (1998). The momentum-

thickness Reynolds number Reθ0 is 500 and the Weissenberg

number We is 25. The size of the computational domain is

equal to (Lx × Ly × Lz) = (200θ0 × 30θ0 × 20πθ0/3) in the
streamwise, wall-normal, and spanwise directions, respec-

tively. The grid size is (Nx × Ny ×Nz) = (256 × 64 × 64).
The grid spacing in x and z directions is uniform, and

the wall-normal grids are given by a hyperbolic tangent

stretching function. The grid resolution is evaluated by

∆x+i = ∆xiuτ/ν0 (i = 1, 2, 3), where ∆xi is the grid spac-

ing in the xi direction, uτ is the friction velocity at the inlet

of main part, and ν0 = η0/ρ is the zero-shear kinematic vis-

cosity of the solution. The viscosity ratio β is fixed at 0.9

for the turbulent boundary layer of dilute viscoelastic fluids.

The mobility factor α for the Giesekus model is 0.001, 0.002,

0.005, and 0.01. Here, the mobility factor α is related to the

extensibility of the polymer chains, i.e., the smaller mobil-

ity factor corresponds to the larger elongational viscosity.

Generally, the Giesekus model represents the shear-thinning

property and the moderate elongational viscosity, while the

Oldroyd-B model represents the constant shear viscosity and

the higher elongational viscosity (Bird et al., 1987). The

present turbulence statistics are obtained by averaging over

Table 1: Numerical and physical conditions

Newtonian Oldroyd-B Giesekus

Reθ0 500 500 500

We − 25 25

Nx 256 256 256

Ny 64 64 64

Nz 64 64 64

Lx 200θ0 200θ0 200θ0
Ly 30θ0 30θ0 30θ0
Lz 20πθ0/3 20πθ0/3 20πθ0/3

∆x+ 20 20 20

∆y+min −∆y+max 0.38− 36 0.38− 36 0.37− 36
∆z+ 8.5 8.4 8.3

β 1.0 0.9 0.9

α − 0
0.001, 0.002,

0.005, 0.01

∆tUe/θ0 0.02 0.008 0.008

Figure 1: Shear viscosity for steady shear flow.

Figure 2: Extensional viscosity for steady elongational flow.

space (spanwise direction) and time of over 1000θ0/Ue after

the turbulent flow becomes stationary, where the time in-

crement ∆tUe/θ0 is 0.008 for the Oldroyd-B and Giesekus

models and 0.02 for Newtonian fluid. In this paper, and
0 represent the time—space (spanwise direction) average and
the deviation, respectively. The superscript + represents the

variables normalized by wall variables. The physical and nu-

merical parameters for all cases are given in table 1. Readers

would be referred to the related study (Tamano et al., 2007)

in terms of details of the numerical method and conditions.

RHEOLOGICAL PROPERTIES

For the steady shear flow, the non-dimensional shear vis-
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Figure 3: Shape factor versus Reynolds number.

cosity η/η0 for the Oldroyd-B and Giesekus models is defined

as follows (see Bird et al., 1987):

η

η0
= 1, (6)

η

η0
= (1− β)

(1− n2)2
1 + (1− 2α)n2

+ β, (7)

where

n2 =
1− Λ

1 + (1− 2α)Λ , (8)

Λ2 =

p
1 + 16α(1− α)κ2 − 1
8α(1− α)κ2

. (9)

For the Giesekus model, the shear viscosity η/η0 depends

on the nondimensional shear rate κ = λγ̇. Figure 1 shows

the profile of the shear viscosity η/η0 for the steady shear

flow at β = 0.9. The value of η/η0 for the Giesekus model

decreases with the increase of the shear rate λγ̇ in the region

100 < λγ̇ < 104, and approaches a constant value (= 0.9)

for λγ̇ > 104. For the Oldroyd-B model, the shear viscosity

η/η0 is independent of the shear rate (η/η0 = 1).

For the steady elongational flow, the non-dimensional

elongational viscosity ηE/(3η0) for the Oldroyd-B and

Giesekus models are defined as follows (see Bird et al., 1987):

ηE

3η0
= β + (1− β)

1

(1 + ξ)(1− 2ξ) , (10)

ηE

3η0
=
(1− β)

6αξ

³
3ξ +

p
1− 4(1− 2α)ξ + 4ξ2

−
p
1 + 2(1− 2α)ξ + ξ2

´
+ β, (11)

where ξ = λε̇ is the non-dimensional elongational rate. Fig-

ure 2 shows the profile of the extensional viscosity ηE/(3η0)

for the steady elongational flow at β = 0.9. For the Oldryod-

B model, ηE/(3η0) is almost unity for λε̇ < 0.5, and is

infinity at λε̇ = 0.5. For the Giesekus model, ηE/(3η0) for

λε̇ > 0.5 becomes larger with the smaller mobility factor α.

RESULTS AND DISCUSSIONS

Boundary Layer Parameters

Figure 3 shows the dependence of the shape factor

H = δ∗/δ on the momentum-thickness Reynolds number
Reθ. δ = δ99.5 and δ∗ are the boundary layer thickness
and the boundary layer displacement thickness, respectively.

Figure 4: Streamwise variation of drag reduction ratio.

Table 2: Drag reduction ratio

Oldroyd-B Giesekus

α 0.001 0.002 0.005 0.01

%DRx/θ0=19.53 −6.79 0.53 1.07 2.62 4.45

%DRx/θ0=100.8 34.2 33.4 27.1 19.4 16.1

%DRx/θ0=164.8 41.0 35.6 24.4 17.4 13.2

In the figure, the dot—dashed line represents the DNS data

of Spalart (1988) and the solid line represents Coles’ curve

(Coles, 1962) for the Newtonian fluid. The data of H for

Newtonian fluid agree well with data of Spalart. Near the

inlet region (550 ≤ Reθ ≤ 600), the value of H for the

Oldroyd-B model is smaller than that for Newtonian fluid,

while for Reθ > 600, H for the Oldroyd-B model drastically

increases with the increase of Reθ and reaches the maximum

at Reθ ' 670, where H for the Oldroyd-B model is much

larger than that for Newtonian fluid and ranges between the

value for the laminar flow (H = 2.59) and the value for the

turbulent flow of Newtonian fluid. On the other hand, H

for the Giesekus model agrees well with that for Newtonian

fluid in the region 550 ≤ Reθ ≤ 600, which is independent

of α, and it becomes closer to that for the Oldroyd-B model

with decreasing α for Reθ > 600.

Drag Reduction Ratio

Figure 4 shows the streamwise variation of drag reduction

ratio %DR, which is defined as follows:

%DR =
Cf , Newtonian − Cf , Viscoelastic

Cf , Newtonian
× 100, (12)

where Cf = 2(uτ/Ue)2 is the friction coefficient at the same

streamwise positions. %DR for the Oldroyd-B model is

negative and positive in the region 0 < x/θ0 < 50 and

for x/θ0 > 50, respectively. The increase of friction drag

(%DR < 0) near the inlet region may be due to the sudden

change of velocity fields caused by the unfavorable effect of

the inlet boundary condition in which the velocity field data

of Newtonian fluid in the driver part is used (see Dimitropou-

los et al., 2005; Tamano et al., 2007). The maximum drag

reduction ratio (%DR = 42) is observed at x/θ0 = 150.8 for

the Oldroyd-B model. On the other hand, the drag reduc-

tion ratio for the Giesekus model with any mobility factors

tested can be seen even near the inlet region, and gradu-

ally increases in the streamwise direction. It is found that

the maximum %DR for the Oldroyd-B model is larger than

that for the Giesekus model even at the same Weissenberg

number (We = 25), although the maximum %DR for the
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Figure 5: Mean velocity profiles.

Giesekus model approaches one for the Oldroyd-B model as

α decreases. This indicates that high elongational viscosity

is important in order to obtain a large drag reduction ratio.

In this study, we obtained turbulence statistics at twenty

different streamwise locations. The results at the locations

of x/θ0 = 19.53 (upstream), x/θ0 = 100.8 (center), and

x/θ0 = 164.8 (downstream) are presented below. The drag

reduction ratios at these locations are summarized in table

2 for the Oldryod-B model and the Giesekus model (α =

0.001, 0.002, 0.005, 0.01).

Mean Velocity Profile

Figure 5 shows the profiles of the mean velocity U+. In

the figure, the Virk’s ultimate profile (U+ = 11.7 ln y+ −
17) is presented (Virk, 1975). It is seen at x/θ0 = 100.8

and x/θ0 = 164.8 that U+ for the Giesekus model shifts

upward compared to Newtonian fluid and the magnitude

of the shift becomes larger with the decrease of α, while

U+ for the Oldroyd-B model shifts upward compared to the

Giesekus model with α = 0.001. This means that the mean

velocity shifts upward more as the amount of drag reduction

ratio becomes larger, which is consistent with the previous

experimental and numerical studies (e.g. Itoh et al., 2005;

Dimitropoulos et al., 2005). For the Oldroyd-B model, the

slope of the velocity profile in the log-law region at x/θ0 =

164.8 is steeper than that at x/θ0 = 100.8. At x/θ0 = 19.53,

the profile of U+ in the log-law region slightly shifts up and

down for the Giesekus and Oldroyd-B models, respectively.

This corresponds to the fact that the drag reduction ratio at

x/θ0 = 19.53 is positive and negative for the Giesekus and

Oldroyd-B models, respectively.

Turbulence Statistics

Distributions of the streamwise turbulence intensity

Figure 6: Profiles of streamwise turbulence intensity.

u0+rms are shown in Fig. 6. The maximum u0+rms for the
Oldroyd-B model is smaller, slightly larger, and much larger

at x/θ0 = 19.53, x/θ0 = 100.8 and x/θ0 = 164.8, respec-

tively, compared to Newtonian fluid. At x/θ0 = 100.8 and

x/θ0 = 164.8, the value of y+ at the maximum of u0+rms for
the Oldroyd-B model is larger than that for Newtonian fluid,

as reported in previous experimental and numerical studies

on drag-reducing turbulent channel flow (e.g. Warholic et

al., 1999; Sureshkumar et al., 1997; Min et al., 2003; Yu

and Kawaguchi, 2004). This indicates that the buffer layer

for the Oldroyd-B model is thicker than that for Newtonian

fluid. On the other hand, u0+rms for the Giesekus model with
lower drag reduction ratio is slightly larger than that for

Newtonian fluid at x/θ0 = 164.8. Note that the maximum

value of streamwise turbulence intensity for the turbulent

boundary layer is dependent on the streamwise location, and

it is not directly related to the amount of drag reduction (see

Tamano et al., 2007).

Figure 7 shows distributions of the wall-normal turbu-

lence intensity v0+rms. At x/θ0 = 19.53, v0+rms for the

Oldroyd-B model is smaller in the region 5 ≤ y+ ≤ 100 than
that for Newtonian fluid. At x/θ0 = 100.8 and x/θ0 = 164.8,

the difference in v0+rms between the Oldroyd-B model and

Newtonian fluid is more apparent, which indicates that the

velocity fluctuation is considerably attenuated in the wall-

normal direction. On the other hand, for the Giesekus

model, v0+rms at x/θ0 = 100.8 and x/θ0 = 164.8 approaches

one for the Oldroyd-B model with decreasing α, and ap-

proaches one for Newtonian fluid with increasing α.

Figure 8 shows distributions of RMS of the streamwise

vorticity fluctuation ω0x
+
rms. At any streamwise locations,

ω0x
+
rms for the Oldroyd-B model is much smaller than that

for Newtonian fluid at y+ < 100, while it agrees well with

that for Newtonian fluid at y+ > 100. At x/θ0 = 100.8 and

x/θ0 = 164.8, the maximum of ω0x
+
rms for the Oldroyd-B

model appears at y+ ' 100, and the wall-normal locations

of the maximum move considerably away from the wall com-

pared to the location for Newtonian fluid (y+ ' 20). Note

that the location of minimum ω0x
+
rms for the Oldroyd-B
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Figure 7: Profiles of wall-normal turbulence intensity.

Figure 8: Profiles of streamwise vorticity fluctuation.

model (y+ ' 5) is almost the same as that for Newtonian

fluid. Here, it has been reported that the locations of the

minimum and maximum of the RMS of streamwise vorticity

fluctuation correspond to the average locations of lower lim-

its and center of the quasi-streamwise vortices near the wall,

respectively (Kim et al., 1987). Therefore, it can be deduced

that the quasi-streamwise vortices become larger away from

the wall, compared to Newtonian fluid. The same trend has

also been reported in the drag-reducing turbulent channel

flows (Dimitropoulos et al., 1998; Min et al., 2003), but the

amount of the shift in the wall-normal direction observed

in the present study is much larger. On the other hand,

the profile of ω0x
+
rms for the Giesekus model ranges between

ones for the Oldroyd-B model and Newtonian fluid at any

streamwise locations, and becomes closer to one for Oldroyd-

B model with the decrease of α.

Figure 9 shows distributions of the trace of mean vis-

coelastic stress Ekk
+
which represents the magnitude of the

polymer elongation (Min et al., 2003). At any streamwise

locations, Ekk
+
for the Oldroyd-B model is larger than that

for the Giesekus model with any mobility factors in the re-

gion 1 ≤ y+ ≤ 50. From this result, it can be deduced

that turbulence statistics are strongly affected by the high

Figure 9: Trace of mean viscoelastic stress.

elongational viscosity, and the effect appears significantly in

the region of center to downstream. Note that in the re-

gion very close to the wall (y+ < 1), at x/θ0 = 100.8 and

x/θ0 = 164.8, Ekk
+
for the Giesekus model increases with

the decrease of α and is larger than that for the Oldroyd-B

model.

Turbulence Structures

Figure 10 shows the isosurface of the second invariant of

velocity gradient tensor Qθ20/U
2
e = 0.005 for the Giesekus

model with α = 0.01 and 0.001. The region in which the

second invariant Q = −(∂ui/∂xj)(∂uj/∂xi)/2 is positive
represents the region in which the strength of rotation over-

comes the strain rate, and corresponds to the region where

the vortices exist (Dubief and Delcayre, 2000). In the figure,

the flow is from left to right, and the black area represents

the wall. For the Giesekus model with α = 0.01, there are

numerous quasi-streamwise vortices near the wall in the re-

gion from the inlet to outlet, which is similar to that for

Newtonian fluid (see Tamano, 2007). On the other hand,

for the Giesekus model with α = 0.001, only a few quasi-

streamwise vortices can be seen for x/θ0 > 50, which is

similar to that for the Oldroyd-B model (see Tamano, 2007).

As shown in Fig. 9, the trace of mean viscoelastic stress

Ekk
+
for the Giesekus model becomes larger with the de-

crease of α and approaches that of the Oldroyd-B model in

the region 1 ≤ y+ ≤ 50. Therefore, we can assume that

near-wall coherent structures are strongly affected by the

high elongational viscosity, and the effect appears signifi-

cantly for x/θ0 > 50, in which the quasi-streamwise vortices

are weakened and become larger in the streamwise direction.

CONCLUSIONS

Direct numerical simulation of a zero-pressure gradi-

ent drag-reducing turbulent boundary layer of viscoelastic

solutions was performed at momentum-thickness Reynolds
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(a)

(b)

Figure 10: Isosurface of second invariant of velocity gradient

tensor (Qθ20/U
2
e = 0.005) for Giesekus model. Flow is from

left to right: (a) α = 0.01, and (b) α = 0.001.

number Reθ0 = 500 and Weissenberg number We = 25

using constitutive equation models such as the Oldroyd-

B model and Giesekus model (the mobility factor α =

0.001, 0.002, 0.005, 0.01). The main results of the present

study may be summarized as follows.

(1) The maximum drag reduction ratio %DR for the

Oldroyd-B model is larger than that for the Giesekus model

even at the same Weissenberg number (We = 25), although

the maximum %DR for the Giesekus model approaches one

for the Oldroyd-B model as α decreases from 0.01 to 0.001.

(2) At x/θ0 = 100.8 and x/θ0 = 164.8, the mean ve-

locity U+ for the Giesekus model shifts upward compared

to Newtonian fluid and the magnitude of the shift becomes

larger with the decrease of α, while U+ for the Oldroyd-B

model shifts upward compared to the Giesekus model with

α = 0.001.

(3) The profile of RMS of the streamwise vorticity fluctu-

ation ω0x
+
rms for the Giesekus model ranges between ones for

the Oldroyd-B model and Newtonian fluid at any streamwise

locations, and becomes closer to one for Oldroyd-B model

with the decrease of α.

(4) At any streamwise locations, the trace of mean vis-

coelastic stress Ekk
+
which represents the magnitude of the

polymer elongation for the Oldroyd-B model is larger than

that for the Giesekus model with any mobility factors in the

region 1 ≤ y+ ≤ 50.

(5) Quasi-streamwise vortices for the Giesekus model

with α = 0.001 are weakened and become larger in the

streamwise direction, compared to those for the Giesekus

model with α = 0.01.
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