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ABSTRACT

The paper evaluates a new method for prescribing synthesized
turbulent inlet boundary conditions. When making LES, DES or
hybrid LES-RANS, a precursor channel DNS is often used. The dis-
advantage of this method is that it is difficult to re-scale the DNS
fluctuations to higher Reynolds numbers. In the present work, synthe-
sized isotropic turbulent fluctuations are generated at the inlet plane
with a prescribed turbulent length scale and energy spectrum. A
large number of independent realizations are generated. A correlation
in time between these realization is introduced via an asymmetric,
non-truncated time filter. In this way the turbulent time scale of the
synthesized isotropic turbulent fluctuations is prescribed.

The method has previously been validated for DNS at Reτ =

500 (Davidson 2007). In that study it was found that the present ap-
proach is at least as good as using inlet boundary conditions from a
pre-cursor DNS. This method has also been employed using hybrid
LES-RANS for channel flow at Reτ = 2000 (Davidson 2007).

In the present study it is employed in hybrid LES-RANS of the
flow in an asymmetric diffuser, the flow around a three-dimensional
hill and the flow over the downstream part of a bump.

INTRODUCTION

Isotropic synthesized fluctuations based on the method of
Kraichnan (1970) have often been used to generate turbulent fluc-
tuations. In this method an energy spectrum is prescribed
that yields the amplitude of the fluctuations as a function of
wave number. Non-isotropic fluctuations have been investi-
gated (Le and Moin 1994; Batten et al. 2004; Smirnov et al. 2001;
Billson et al. 2004; Billson 2004) where the fluctuations were scaled
so that the time-averaged synthesized fluctuations match a prescribed
Reynolds stress tensor. A disadvantage of this kind of scaling is
that the prescribed spectrum, and hence the two-point correlation, are
modified if – as is always the case in real flows – the Reynolds stress
tensor is non-homogeneous.

To achieve correlation in time, Fourier series were applied in
time in the same way as in space in most of the works cited above.
In Lee et al. (1992) a method was also investigated where a three-
dimensional box with generated fluctuations was convected across
the inlet plane; in this way fluctuation correlations in the streamwise
directions were transformed into correlations in time. In the work
of Billson et al. (2004) correlation in time is defined by an asym-
metric infinite time filter. The method offers a convenient way to
prescribe turbulent length and time scales independently. This method
is adopted in the present work.

A method based partly on synthesized fluctuations was recently
presented and is called the vortex method (Jarrin et al. 2006). It is
based on a superposition of coherent eddies where each eddy is de-
scribed by a shape function that is localized in space. The eddies are
generated randomly in the inflow plane and then convected through
it. The method is able to reproduce first and second-order statistics as
well as two-point correlations.

SYNTHESIZED TURBULENCE

A turbulent velocity field can be simulated using random Fourier
modes. The velocity field is given by N random Fourier modes as

u′i(xj) = 2
N

X

n=1

ûn cos(κn
j xj + ψn)σn

i (1)

where ûn, ψn and σn
i are the amplitude, phase and direction of

Fourier mode n. The highest wave number is defined based on
mesh resolution κmax = 2π/(2∆). The smallest wave number
is defined from κ1 = κe/p, where κe corresponds to the energy-
carrying eddies. Factor p should be larger than one to make the
largest scales larger than those corresponding to κe. In the present
work p = 2. The wavenumber space, κmax − κ1, is divided into N
modes (typically 150 − 600), equally large, of size ∆κ. A modified
von Kármán spectrum is chosen. The amplitude of the fluctuations
is set so that RMS is equal to the friction velocity at the inlet, i.e.
urms = vrms = wrms = uτ,in.

A fluctuating velocity field is generated each time step as de-
scribed above. They are independent of each other, however, and their
time correlation will thus be zero. This is unphysical. To create corre-
lation in time, new fluctuating velocity fields, U ′

i , are computed based
on an asymmetric time filter.

(U ′
i)

m = a(U ′
i)

m−1 + b(u′i)
m (2)

where m denotes the time step number and a = exp(−∆t/T ).
This asymmetric time filter resembles the spatial digital filter pre-
sented by Klein et al. (2003). The second coefficient is taken as
b = (1 − a2)0.5 which ensures that 〈U ′2

i 〉 = 〈u′2i 〉 (〈·〉 denotes av-
eraging). The time correlation of U ′

i will be equal to exp(−∆t/T ),
and thus Eq. 2 is a convenient way to prescribe the turbulent time scale
of the fluctuations. The inlet boundary conditions are prescribed as

ūi(0, y, z, t) = Ui,in(y) + u′i,in(y, z, t) (3)

where u′i,in = (U ′
i)

m. The mean inlet profiles, Ui,in(y), are either
set from experiments or, for example, from the law of the wall.

The turbulent length scale and time scale are Lt = 0.1 and Tt =

0.05, respectively, scaled with the boundary layer thickness and the
friction velocity at the inlet.

The synthetic fluctuations created with the method presented
above yield homogeneous turbulence in the inlet plane, i.e. urms,
vrms, and wrms are constant (and equal) across the entire in-
let plane. The fluctuations could of course be scaled so that their
RMS follow some prescribed y variation, but as pointed out in
Davidson (2007), this would destroy the two-point correlations that
have implicitly been prescribed via the von Kármán spectrum. How-
ever, the fluctuations need to be reduced near the wall so that they
go smoothly to zero as the wall is approached (this is done for
y/δin . 0.004).

At the outer edge of the boundary layer, the synthetic fluctuations
must also be modified in some way (an exception is the diffuser flow,
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Figure 1: 3D hill. Computational domain. Hill crest at x = z = 0.
Extension of hill: −2 ≤ x/H ≤ 2; −2 ≤ z/H ≤ 2.

for which the boundary layer is fully developed). To achieve this, the
fluctuations are multiplied by a blending function

fbl = min {0.5 [1 − tanh(n− δin)/b] , 0.1} (4)

where n is the distance to the closest wall and b is the distance over
which fbl goes from 1 to 0. Freestream turbulence is prescribed by
not letting fbl become smaller than 0.1.

THE NUMERICAL METHOD

An incompressible, finite volume code is
used (Davidson and Peng 2003). For space discretization, cen-
tral differencing is used for all terms. The Crank-Nicolson scheme
(with α = 0.6) is used for time discretization of all equations.
The numerical procedure is based on an implicit, fractional step
technique with a multigrid pressure Poisson solver (Emvin 1997) and
a non-staggered grid arrangement.

THE HYBRID LES-RANS MODEL

Hybrid LES-RANS is used. A one-equation for the modelled tur-
bulent kinetic energy, kT , is solved in the entire domain. URANS is
employed near the wall and LES is used in the remaining part of the
domain. The only difference between the two regions is the definition
of the length scale when computing the turbulent viscosity and the
dissipation term in the kT equation. The length scale in the URANS
is proportional to the wall distance whereas in the LES region it is
taken as the cell volume up to the power of 1/3. For more detail, see
Davidson and Billson (2006); no forcing is used at the interface.

RESULTS

3D hill flow
A 162 × 82 × 130 (x, y, z) mesh is used (1.7 million cells).

The Reynolds number is 130 000 based on the hill height. The inlet
and the crest of the axi-symmetric hill are located at x = −4.1H

and x = 0, respectively. The inlet boundary layer thickness is
δin/H = 0.5. The grid resolution at the inlet expressed in wall
units is ∆x+ = 280 and ∆z+ = 120, which correspond to
∆x/δin = 0.12 and ∆z/δin = 0.051, respectively. The first
near-wall cell center is located at y+ = 1.5. The matching line
is defined along an instantaneous streamline; for more detail, see
Davidson and Dahlström (2005b)

Figure 2 presents the surface pressure over the hill obtained with
and without inlet fluctuations. As can be seen, better agreement is
obtained in the former case. The resolved shear stresses at the wind-
side of the hill are shown in Fig. 3, and as can be seen only small
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Figure 2: 3D hill. Pressure coefficient. z = 0. : inlet fluctuations;
: no inlet fluctuations; markers: experiments (Byun et al. 2004).
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Figure 3: 3D hill. Resolved shear stresses. z = 0. :
inlet fluctuations; : no inlet fluctuations; markers: experi-
ments (Byun et al. 2004).
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Figure 4: 3D hill. Friction coefficient. z = 0. : inlet fluctua-
tions; : no inlet fluctuations.

resolved stresses are generated when steady inlet boundary condi-
tions are employed. When fluctuating inlet conditions are used, the
resolved shear stress profile at x = −3H agrees well with experi-
ments. Because only small resolved stresses are created when steady
inlet boundary conditions are used, the skin friction is consequently
smaller than when inlet fluctuations are used, see Fig. 4. Also, a small
recirculation bubble is formed at the foot (x/H ' −2) of the hill for
steady inlet conditions, which is not the case for fluctuating inlet con-
ditions, see Fig. 4.

Because the computed flow accelerating over the hill crest is fairly
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Figure 5: 3D hill. White region indicates backflow region. z =

0. a) Fluctuating inlet boundary conditions; b) steady inlet boundary
conditions.
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Figure 6: 3D hill. Integral length scale, Lww,z , normalized by the
hill height, H. L is evaluated at approximately 0.05H from the wall.

: inlet fluctuations; : steady inlet.

a)
−2.5 −2 −1.5 −1 −0.5 0

0

0.5

1

PSfrag replacements

y/H

b)
−2.5 −2 −1.5 −1 −0.5 0

0

0.5

1

PSfrag replacements

z/H

y/H

Figure 7: 3D hill. Velocity vectors at x = H. Every 2nd (3rd) vector
plotted in the y (z) coordinate direction. a) Fluctuating inlet boundary
conditions; b) steady inlet boundary conditions.

different for the two cases, the recirculation regions on the lee-side
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Figure 8: Streamwise velocity component 〈ū〉/Uin at x = 3.69H.
Fluctuating inlet boundary conditions; steady inlet boundary

conditions; ◦: experiments (Byun et al. 2004)
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Figure 9: Onera bump. Computational domain (not to scale).

of the hill are also different, see Fig. 5. The flow separates much
later with steady inflow conditions than with fluctuating inlet bound-
ary conditions. The recirculating region in the latter case is in good
agreement with experiments (Byun et al. 2004).

The integral length scale is computed as

Lww,z =
1

wrms(0)

Z W/2

0

w′(0)w′(z)dz

wrms(z)
(5)

For steady inlet conditions, we have very little resolved turbulence on
the wind-side of the hill, and hence the two-point correlations decay
very slowly for increasing separation distance, z. This yields large
integral length scales, Lww,z , see Fig. 6. For fluctuating boundary
conditions, the integral length scale is approximately 0.25H – i.e.
half the inlet boundary layer thickness – up to the separation point.
As expected, the integral length scale is large for both cases in the
recirculation region.

Traces of the recirculating bubble formed at the wind-side can
also be seen at x = H in Fig. 7b at (y/H, z/H) = (0.05,−1.8).
Even at x = 3.69H it is seen in the form of a velocity deficit in the
streamwise velocity profile at y ' 0.25H, see Fig. 8. No recirculat-
ing bubble is seen for fluctuating inlet conditions (Fig. 7a).

Onera bump
Measurements were carried out by ONERA in the DESider

project (Pailhas et al. 2008). Reh = 0.556 · 106 based on the
bump height, h. The rectangular duct has the following dimen-
sions (see Fig. 9): W/H = 1.67, h/H = 0.46, L1/H = 0.41,
L2/H = 0.81, H = 0.3m. The inlet boundary layer thickness is
δin/H = 0.043. In the present study, simulations of the Onera bump
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Figure 10: Onera bump. : fluctuating inlet boundary
conditions; : steady inlet boundary conditions; ◦: experi-
ments (Pailhas et al. 2008). Lower wall. a) Pressure coefficient; b)
friction coefficient.
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Figure 11: Onera bump. Streamwise mean velocity profiles. :
fluctuating inlet boundary conditions; : steady inlet boundary
conditions; ◦: experiments (Pailhas et al. 2008).

have been carried out using only a slice in the central region and using
period boundary conditions in the spanwise direction. The extent of
the domain in the spanwise direction is −0.61/2 ≤ z/H ≤ 0.61/2

and in the streamwise direction it extends to L/H = 8.86. 32 cells
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Figure 12: Onera bump. Resolved shear stresses. : fluctuating
inlet boundary conditions; : steady inlet boundary conditions;
markers: experiments (Pailhas et al. 2008).
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Figure 13: Onera bump flow. Integral length scale, Lww,z , normal-
ized by the channel height, H. Lww,z is evaluated at approximately
0.002H(x) ' 0.6δin where H denotes the local channel height.

: inlet fluctuations; : steady inlet.

are used in the z-direction (∆z/H = 0.019, ∆z/δin = 0.44).
The grid in the x − y plane has 224 × 120 cells. At the inlet
∆x/H = 0.0178 (∆x/δin = 0.41) and for x/H ≤ 1 we have
∆x/H = 0.022. In wall units this yields ∆z+ = 1250 and
∆z+ = 1160. The matching plane between LES and URANS is
prescribed along fixed grid planes; the URANS region near the upper
and the lower walls extends 12 wall-adjacent cells.

The Reynolds number for this flow is an order of magnitude larger
than for the 3D hill, and the boundary layer is furthermore much thin-
ner. Thus the grid is very coarse expressed in both inner and outer
scaling. This makes it a very demanding test case.

Figure 10 shows the pressure coefficient and the skin friction
along the lower wall. As can be seen, the agreement with the ex-
perimental pressure coefficient is good when using fluctuating inlet
conditions, at least up to x/H = 2; for steady inlet conditions
the agreement with experiments is less good. Further downstream
the pressure coefficients indicate that the experimental flow recovers
faster than the predicted flow. That the agreement between predic-
tions with fluctuating inlet conditions and experiments is good for
x/H < 2 and that the predicted recovery rate of the boundary
layer is too slow compared with experiments can also be seen by
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Figure 15: Diffuser flow. Mean velocities, 〈ū〉. : fluctuating
inlet boundary conditions; : steady inlet boundary conditions; +:
experiments (Buice and Eaton 1997).
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Figure 16: Diffuser flow. Resolved shear stresses, 〈u′v′〉. :
fluctuating inlet boundary conditions; : steady inlet boundary
conditions; markers: experiments (Buice and Eaton 1997).

looking at the velocity profiles in Fig. 11. Although the resolved
shear stresses agree fairly well with experiments for x/H ≤ 0.5,
see Fig. 12, the peak value in the experimental stresses increases for
0.5 < x/H < 1.5, whereas the peak value of the predicted stresses
stays fairly constant. This explains why the predicted recovery rate
is much faster than the predicted one. The question remains why
the magnitude in the experimental shear stresses increases by some
20% between x/H = 0.5 and x/H = 0.83. At x/H = 1.5 the
peak is 50% larger than at x/H = 0.5; it then starts to decay. The
reason for the discrepancy in shear stresses may have to do with three-
dimensional effects (recall that the side walls are not included in the
simulations). Secondary streamwise vortices are created near the side
walls and it may be that at x/H = 0.5 their influence reaches all
the way to the centerplane; note, however, that the predicted velocity
profiles agree well with experiments all the way up to x/H = 1.17.
For larger x, the too small shear stresses start to affect the predicted
velocity profiles.

In Fig. 12a it can be seen that, with steady inlet conditions, no
resolved fluctuations are created for x/H ≤ −0.67 and they are still
much too small at x/H = −0.33. This explains the extremely thin
shear layer that is seen in the velocity profile at x/H = −0.33 in
Fig. 11a. the magnitude of the skin friction, |Cf |, is smaller than
when fluctuating inlet boundary conditions are applied, see Fig. 10b.
Furthermore, because the resolved shear stresses are smaller in the
former case, a larger predicted recirculation bubble is obtained, see
Fig. 10b.

The integration length scales are presented in Fig. 13. With fluc-
tuating inlet conditions, Lww,z/H ' 0.02 near the inlet which
corresponds to 0.5δin. As was found for the 3D hill flow, when no
inlet fluctuations are used the integration length scale becomes large
near the inlet because of slowly decaying two-point correlations. In
the separation region, Lww,z increases strongly for both cases.
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Figure 17: Diffuser flow. Inlet section of the domain. Mean velocities,
〈ū〉. : fluctuating inlet boundary conditions; : steady inlet
boundary conditions; markers: experiments (Buice and Eaton 1997).
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Figure 18: Diffuser flow. Integral length scale, Lww,z , normalized
by H/2. : inlet fluctuations; : steady inlet.

Diffuser flow
The configuration is an asymmetric plane diffuser, with Reynolds

number Re = Ub,inH/ν = 18 000, see Fig. 14. The
opening angle is 10o. The location of the matching line is
defined along an instantaneous streamline; for more detail, see
Davidson and Dahlström (2005a). Figure 15 shows the velocity pro-
files in the diverging part of the diffuser. As can be seen, the results
with fluctuating inlet velocities are in much better agreement with ex-
periments compared with when steady inlet conditions are used.

Figure 16 presents the resolved shear stresses. As can be seen, the
resolved shear stresses for steady inlet boundary conditions are zero
for x/H ≤ 3. At the end of the diverging part, the resolved shear
stresses for steady inlet conditions become very large in the upper
part of the diffuser. The reason is that the velocity gradients in this
regions are very large, see Fig. 15.

Although the turbulent shear stresses are very different for the
two cases at the entrance of the diffuser, the mean profiles are very
similar, see Fig. 17. In Davidson (2007) it was found that, at 10

channel heights downstream the inlet, very poor velocity profiles
were predicted when white noise in time or space was used as in-
let fluctuations. However, the grid in that study was much coarser
((∆x+,∆z+) = (785, 393)) than in the present study.

The integral length scales are presented in Fig. 18. When using
fluctuating inlet conditions, the integral length scale normalized with
the boundary layer thickness (i.e. H/2) is approximately 0.4 near the
inlet. As for the 3D hill and the bump flows, steady inlet conditions
yield a large length scale near the inlet (up to the throat). In the di-
verging region the integral length scale increases for both cases, as
expected.

CONCLUSIONS

The present study evaluates a novel approach for generating fluc-
tuating turbulent inlet boundary conditions. Synthetic isotropic fluc-
tuations are superimposed on a mean velocity profile. The synthe-
sized fluctuations are created by assuming a modified von Kármán
spectrum. The RMS of the fluctuations and their integral length scale
are supplied as input when creating the von Kármán spectrum. Pre-
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vious work has shown that the amplitude can be taken as the friction
velocity, uτ , of the prescribed inlet mean velocity profile, and the in-
tegral length scale is taken to be 10% of the prescribed inlet boundary
layer thickness. A number of realizations (in this work 5000) of ve-
locity fluctuations are generated in the inlet plane and stored on disk.
Each realization corresponds to the inlet fluctuations at one time step.
The turbulent length scale of the fluctuations in the inlet plane cor-
responds to the prescribed integral length scale. However, the 5000

realizations are independent, i.e. the time correlation of the prescribed
inlet turbulent fluctuations is zero. This is unphysical. In order to in-
troduce correlation in time, an asymmetric time filter is used. This
filter includes a turbulent time scale, which is taken as 0.1δin/uτ .

Three flows are simulated in the present work, namely, the 3D
hill flow, the flow over a bump and the flow in a plane asymmetric
diffuser. The results obtained using fluctuating inlet conditions are
compared to those obtained using steady inlet boundary conditions.
In all flows it is found that fluctuating inlet conditions are superior to
steady inlet flow conditions. Resolved turbulent stresses are created
in the inlet region in the former case, whereas no resolved stresses
are created in the latter case. With fluctuating inlet conditions we
obtained a predicted turbulent integral length scale in the inlet region
that is approximately equal to half the boundary layer thickness for
all three flows; this is physically realistic, although slightly too large.
With steady inlet conditions, the predicted integral length scales are
much too large because the two-point correlations decay much too
slowly.
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