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ABSTRACT

Based on earlier work in Peller et al. (2005) and Man-

hart et al. (2006) we further investigate the behaviour of an

extended scaling for turbulent flows including a streamwise

pressure gradient. The scaling is based on a combination of

the friction velocity Uτ and the pressure velocity Up leading

to a combined velocity scale Uτp. The influence of pres-

sure gradient with respect to wall friction is quantified by a

non-dimensional parameter α = Uτ/Uτp ∈ [0, 1]. We inves-

tigate Reynolds, convective and pressure terms within the

streamwise momentum balance as well as the viscous and

turbulent stresses, based on DNS of two types of separated

flows. We find good agreement in the profiles when they

are ploted in extended wall normal coordinates for positions

characterized by a similar α value. In most cases we can

confirm the assumption of a constant streamwise pressure

gradient in wall normal direction, except when curvature

effects are present, which modifies the pressure gradient dis-

tribution. For a given α we observe universal behaviour for

the velocity profiles that shows very good agreement over

a complete recirculation region. Accordingly, the terms in

the momentum balances agree well and this gives hope to de-

scribe universal behaviour of e.g. Reynolds terms depending

on the parameter α.

INTRODUCTION

Several studies (Stratford (1959); Simpson (1989)) have

addressed the near-wall behaviour of turbulent flows when

pressure gradient effects are present. In order to find univer-

sal velocitiy profiles even in such cases a scaling is the key

issue. In zero pressure gradient flows the proper scaling is

based on the wall friction and leads to the well known law

of the wall. Very often, for situations with increasing pres-

sure gradient this scaling ist still applied. But, for situations

where the flow separates it is not applicable any more since

the wall friction yields zero. On the other hand e.g. Skote

et al. (2000) apply a scaling based on the pressure gradient

for the separation point. The question arises what scaling

should be used in the region where both effects are present.

Peller et al. (2005) and Manhart et al. (2006) have addressed

this issue and proposed a scaling based on both, pressure

gradient and wall friction which allows a smooth transition

between regions dominated by friction and regions domi-

nated by pressure gradient. A universal behaviour of velocity

profiles has been investigated under the proposed scaling for

the viscous region. In the present work, we concentrate on

the universality of terms in the momentum balance normal-

ized by the extended scaling. The results show that there

is a universal behaviour within limits of e.g. Reynolds and

convective terms which gives hope for modeling approaches.

TEST CASES

We investigate two different types of separated flows, a

turbulent boundary layer along a flat plate (BL) (Manhart

and Friedrich (2002)) and the flow over a periodic arrange-

ment of two-dimensional hills (PH) (Peller and Manhart

(2006)). All flows have been computed by means of Direct

Numerical Simulation (DNS). The numerical scheme used

for the simulations is based on a Finite Volume solver on a

non-equidistant Cartesian grid (Peller et al. (2006)).

Separating turbulent boundary layer along a flat plate (BL)

The turbulent boundary layer simulation is designed ac-

cording to an experiment performed by Kalter and Fernholz

(1994). In this experiment, a turbulent boundary layer

developing along a circular cylinder is subjected to a stream-

wise adverse pressure gradient until separation occurs. In

comparison to the experiment the Reynolds number has

been lowered to Reθ = 870 (based on inlet free-stream veloc-

ity and inlet momentum thickness) because of computational

expenses. The simulation has been performed in a rectangu-

lar domain selected in a way to cover the separation bubble

(see Figure 1).
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Figure 1: Streamlines for BL case.

Based on wall shear stress of the oncoming boundary

layer, the grid spacings were ∆x+ = 11.7, ∆y+ = 1.6

and ∆z+ = 7.2 in streamwise, wall normal and spanwise

direction, respectively. It was shown in a grid study and

by comparison with the experiment of Kalter and Fernholz

(1994) that the resolution and the size of the computational

domain were sufficient to get a highly accurate data base

of this flow. We used a fully turbulent inflow condition,

generated by fluctuations taken from a downstream posi-

tion which are superposed to a time averaged boundary

layer profile corresponding to the desired boundary layer

thickness and Reynolds number. In spanwise direction, we

used periodic conditions, at the outflow a zero-gradient for

the velocities. The bottom wall is described by a no-slip

condition and at the top, the desired pressure profile is pre-

scribed in combination with a zero gradient for the velocities.

Figure 2: Instantaneous streamwise velocity component at

the wall and in a streamwise/wall-normal plane.

The separation of the boundary layer (Reθ = 870) is

driven by an adverse pressure gradient which is adjusted to

yield a marginal separation with a maximal backflow coef-

ficient of 70%. The separation bubble starts at x/δo = 44

and is thin compared to the inlet boundary layer thickness.

The dynamics in the separation zone are strongly affected

by large scale structures reaching from the shear layer above

the separation bubble to the wall. Figure 2 gives an idea

of the complexity of the instantaneous flow. The separa-

tion line is not fixed, but strongly fluctuates in space and

time. The labels in Figure 1 mark the regions of incipient

detachment (ID, 1% backflow), intermittent transitory de-

tachment (ITD, 20% backflow) and transitory detachment

(TD, 50% backflow) according to the definitions of Simpson

(1989). TD is at the same position as τw = 0.0. The point of

incipient detachment is identifiable with the first occurrence

of these strong large scale structures. According to Simp-

son, this is also the point at which the mean velocity profile

starts to deviate from the logarithmic law of the wall. From

this point on, one would expect that standard wall models

based on the law of the wall start to fail. From x/δ0 = 34

(ITD) on both, linear and logarithmic laws start to fail.

Channel flow with constrictions (PH)

Our second test case is the turbulent flow in a channel

with periodically arranged hills at the bottom wall. The

numerical setup was introduced by Mellen et al. (2000). A

detailed investigation of this flow at Re = 10595 has been

undertaken by Fröehlich et al. (2005) on the basis of a LES.

Based on hill height h, the channel extends 9.0h in stream-

wise, 4.5h in spanwise and 3.035h in wall-normal direction.

The hills are arranged at the distance 9.0h. The Reynolds

number based on the bulk velocity and the hill height is

Re = 5600. In streamwise and spanwise direction periodic

boundary conditions are used. On the hill surface a no-slip

condition is applied as well as on the top of the channel wall.

x/h

y/h

Figure 3: Streamlines for PH case.

The configuration can be seen in Figure 3 which shows

streamlines of the average velocity. The flow separates at the

hill crest at x/h = 0.17 and forms a large separation bubble

reaching to x/h = 5.0. The separation in this case is not only

due to an adverse pressure gradient but also the result of the

strong streamwise curvature of the lower wall. Thus it es-

tablishes a completely different test bed than the flat plate

boundary layer for our investigations. The computational

grid has 233 · 106 grid cells. The resulting near-wall grid

spacings based on maximum wall shear stress are ∆x+ = 8,

∆y+ = 6.3 and ∆z+ = 1.2 in streamwise, spanwise and

wall normal direction, respectively. A considerable negative

wall shear stress exists at x/h ≈ 3.0 within the recircula-

tion bubble which shows that a strong backflow develops in

the recirculation zone. A second tiny recirculation zone is

present at x/h ≈ 7.2 just before the hill. On the windward

side of the hill, a sharp peak of wall shear stress evolves that

is the result of the strong acceleration of the flow due to

the convergence of the channel in this region. This accelera-

tion is driven by a pressure drop, i.e. a negative streamwise

pressure gradient.

y/h

x/h

Figure 4: Flow over a periodic arrangement of hills: instan-

taneous streamwise velocity component. The

black line indicates u = 0.

Shortly after the main separation, the roll-up process

in the shear layer bounding the separation zone leads to

large scale fluctuations of high turbulence intensity (Figure

4). Nevertheless, there is a relatively calm region in the

separation bubble. The fluctuations of the separation line

are comparably smaller than in the flat plate case, since it is

also determined by the point of maximum curvature at the

hill crest. The reattachment line however fluctuates strongly

and instants in time occur, during which the whole bottom

wall shows reverse flow.
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EXTENDED INNER SCALING

We analyse the near-wall behaviour of time-averaged flow

fields in the proximity of a wall under the influence of a

streamwise pressure gradient. The behaviour of velocity pro-

files in the viscous region has been documented in Manhart

et al. (2006) and Peller et al. (2005). Certain assumptions

have to be made to describe the profiles analytically. We

will give a brief review in the following. Starting from the

streamwise momentum balance in its differential form we

integrate and derive the extended law of the wall. Hereby

we concentrate on the effect of the terms in the momentum

balances in integrated and differential form. The classical

law-of-the wall e.g. separates the near-wall region into a

viscous zone, in which only viscous forces play a role and a

turbulent zone in which viscous forces are negligible. We are

interested in the behaviour of viscous forces, convective and

Reynolds terms in zones where the pressure gradient is not

zero.

Momentum balances

We consider time averaged velocity profiles in two-

dimensional flows for which the mean streamwise momentum

balance comprises contributions of convection (C1), pressure

gradient (P1), diffusion (D1) and Reynolds stresses (R1) :
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Multiplying equation (1) by ρ and integrating in wall-normal

direction leads to the balance of Pressure force (P2), viscous

stress (D2), total stress (τt) and wall friction (τw):
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We follow Kaltenbach (2003) and subsume the convective

(C2) term, Reynolds stresses (R2) and the viscous stresses

(D2) in streamwise direction into a total stress τt:
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„Z y

0
ρ

∂UU

∂x
dy + ρUV

«

| {z }

C2

+

Z y

0
µ

∂2U

∂x2
dy

| {z }

RES

−

 

Z y

0
ρ

∂u′u′

∂x
dy + ρu′v′

!

| {z }

R2

(3)

The main issue related to these balances is the relative im-

portance of each term and the range where they can be

neglected. In addition to this the question arises if universal-

ity can be found for separate terms or their respective sums

under a certain scaling. We will use the scaling introduced

in Peller et al. (2005) and Manhart et al. (2006) as described

in the following section.

Extended inner scaling

We introduce a proper scaling, i.e. proper velocity, length

and time scales to non-dimensionalise the momentum equa-

tion. Since we seek these reference values for the near-wall

region, we refer to them as inner scales:
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The standard reference velocity for inner scaling is the fric-

tion velocity uτ . Following Skote et al. (2000), we define an

additional velocity scale up, which is based on the stream-

wise pressure gradient. The combined scale uτp takes both

into account. We refer to this velocity scale as extended

inner velocity scale or extended inner scaling, alternatively.

Based on the extended inner velocity scale uτp, the non-

dimensional velocity u∗ and length y∗ are defined by:

U∗ =
U

uτp
y∗ =

yuτp

ν
(5)

With these reference values, the velocity profile in the vis-

cous region including pressure gradient effects writes in non-

dimensional form as a function of only two non-dimensional

parameters U∗ = f(y∗, α) of which α ∈ [0, 1] quantifies

the relative importance of each of the two involved velocity

scales. The ratio between classical (u+; y+) and extended

inner coordinates (u∗; y∗) can also be expressed in terms of

α.

α =
u2

τ

u2
τ + u2

p

=
u2

τ

u2
τp

,
u∗

u+
=

√
α,

y∗

y+
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1
√

α
(6)

Normalisation and extended law of the wall

The momentum balance in equation (1) is normalised by

u3
τp/ν and the integrated momentum balance in equation

(2) is normalised by ρu2
τp. Integrating once more we end

up with an expression for the streamwise velocity profile.

Under standard boundary layer assumptions this equation

leads to the linear law of the wall within the viscous region.

When the pressure gradient cannot be neglected we obtain

the extended law of the wall:

U∗(y∗) = sign(τw)αy∗ + sign

„

∂P

∂x

«

1

2
(1 − α)3/2y∗2 (7)

The signs of the pressure gradient and wall friction are nec-

essary to define the direction of the flow and the direction

of the pressure term, in complement to the amplitude of

α. The range of validity of equation (7) is of high impor-

tance for the construction of explicit wall models. It has

to be defined in terms of the dimensionless wall distance y∗

and will certainly be a function of α. The range of validity

will strongly depend on how fast the Reynolds terms and

the convective terms gain weight in the momentum balance,

when moving away from the wall. If, however the increase

of the Reynolds terms with respect to wall distance follows

a universal form (determined by wall conditions), then we

would observe a universal behavior of the velocity profiles

even when equation (7) is no longer valid.

The classical law of the wall U+ = y+ can be written in

terms of the extended inner coordinates: U∗ = αy∗ It has to

be noted that in case of vanishing streamwise pressure gra-

dient (α = 1.0), the classical law of the wall for the viscous

region U∗ = y∗ (or alternatively: U+ = y+) is recovered.

It is generally accepted, that this equation is valid below

y+ = 5. When the wall shear stress is zero the quadratic

velocity profile, U∗ = 1
2
y∗2, is obtained in the viscous re-

gion. For realistic flow configurations, both contributions

are blended in equation (7).
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ANALYSIS OF THE FLOW DYNAMICS

We now turn to the near-wall behaviour of the terms in

the momentum balance and the behaviour of the velocity

profiles up to the turbulent regime. In what follows, we in-

vestigate (i) the momentum balance, (ii) the stresses and (iii)

the velocity profiles , all normalized by the extended scaling.

For this, we select positions in the flow cases in which specific

values of α are obtained. In a classical attached turbulent

boundary layer α would be one. Here, we restrict ourselves

to two α values, namely α ≈ 0.6 and α ≈ 0.0. In the more

general case of α ≈ 0.6 both, wall friction and pressure gra-

dient effects are present. For α = 0 it is either a point of

separation or of reattachment. For α 6= 0 one has to take

care of the signs of the wall shear stress and the streamwise

pressure gradient. When both have the same sign, their ac-

tion on the velocity profile is in the same direction. When

they have opposite signs, they act in opposite direction and

it can be possible that the flow changes direction. Therefore,

we distinguish between these two situations.

General situation (α ≈ 0.6)

For the situation α ≈ 0.6, we selected three profiles for

the case when shear stress and pressure gradient act in the

same direction and three for the other, in total four pro-

files from (BL) and two from (PH). In Figure 5 terms of the

momentum balance (equation 1) are plotted: viscous term

(D1), pressure term (P1) and the sum of Reynolds and con-

vective terms (R1 + C1). The profiles are plotted on top of

each other in extended inner coordinates.
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Figure 5: Momentum balance in extended inner coor-

dinates for α ≈ 0.6. (τw) · (∂P/∂x) > 0.

——— BL at x/δ0 = 36.5; – · – · – · BL at

x/δ0 = 77; · · · · · · PH at x/h = 5.6;

� viscous term D1; © Reynolds and con-

vective term (R1+C1); + pressure term P1;

One can observe that the assumption of a constant pres-

sure gradient is valid in good approximation up to a wall

distance of y∗ = 50. By normalisation the pressure gradient

yields the value −(1 − α)(3/2) = −0.25 at the wall. The

absolute value of the viscous term is equal to the pressure

term at the wall since the Reynolds terms go to zero. The

most important observation is that despite deviations close

to the wall the Reynolds and diffusive terms of all cases have

similar slopes and reach the same maximum amplitude. The

Reynolds terms reach the maximum at about y∗ = 4. After

the maximum they lie on top of each other.
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Figure 6: Balance of stresses in extended inner coor-

dinates for α ≈ 0.6. (τw) · (∂P/∂x) > 0.

——— BL at x/δ0 = 36.5; – · – · – · BL at

x/δ0 = 77; · · · · · · PH at x/h = 5.6;

� pressure term and wall stress (P2 + τw);

© total stress τt; + viscous term D2;

By integration we have obtained equations (2), (3). In

Figure 7 we plot from this equation the sum of the pressure

term and the wall shear stress (P2 + τw), the viscous term

(D2) and the remaining total shear stress (τt). The pressure

term P2 is zero at the wall and the sum (P2 + τw) yields

τw which is equal to α = 0.6 if normalized by the exended

scaling. For better visualization the sign of (P2 + τw) is

inverted. This way the sum of the viscous term plus total

shear stress must equal the term (P2 + τw). Again we can

see that differences in the viscous term are reflected in the

Reynolds term. But the pressure term is identical in all

cases. Also, the limit of the viscous term is identical.
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Figure 7: Velocity profiles in extended inner coordinates

for α ≈ 0.6. (τw) · (∂P/∂x) > 0.

From the velocity profile (Figure 7) we can see the result

from integrating the diffusive term (D2) in Figure 6. The

profiles agree well with the extended law of the wall (equa-

tion 7) until y∗ = 2 and start to deviate from there which

is a result of the Reynolds terms below y∗ = 2. Later on

the slope of the profiles remains similar to each other which

is due to the convergence of Reynolds and diffusive terms

observed in the momentum balances (Figure 5 and 6).

Now we turn to the situation where wall friction and

pressure gradient have opposite signs. The terms of the mo-

mentum balance are plotted in Figure 8. The agreement

among different cases is even better than in the latter case

where pressure gradient and wall friction have the same sign.

This time Reynolds terms and convective terms lie on top of
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each other. Only for the periodic hill (PH) case deviations

in the pressure gradient can be observed. The assumption of

a constant pressure gradient starts to fail at Y ∗ = 10. This

is due to curvature effects, because the selected position is

located at the beginning of the hill slope.
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Figure 8: Momentum balance in extended inner coor-

dinates for α ≈ 0.6. (τw) · (∂P/∂x) < 0.

——— BL at x/δ0 = 50; – · – · – · BL at

x/δ0 = 65; · · · · · · PH at x/h = 4.3;

� viscous term D1; © Reynolds and con-

vective term (R1+C1); + pressure term P1;

The remarkable agreement is also observed in the inte-

grated momentum balance, i.e. the stresses. This time the

wall friction is negative and the sum of pressure term plus

wall friction (P2 + τw) must yield −0.6. Also the viscous

term must yield this value. The deviation of the pressure

gradient for the periodic hill case is not as obvious as in the

momentum balance.
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Figure 9: Balance of stresses in extended inner coor-

dinates for α ≈ 0.6. (τw) · (∂P/∂x) < 0.

——— BL at x/δ0 = 50; – · – · – · BL at

x/δ0 = 65; · · · · · · PH at x/h = 4.3;

� pressure term and wall stress (P2 + τw);

© total stress τt; + viscous term D2;

The good agreement for the velocity profile was to be

expected from the observations in the momentum balance.

But it is surprising that the profiles show a universal be-

haviour over the complete recirculation region. Even after

the recirculation the profiles stay close to each other up to

y∗ = 30. After that the profile taken from (PH) deviates

stronger than the other profiles. This can be contributed

to the pressure gradient which is no longer constant in this

region. Again, equation (7) describes the profiles well up to

y∗ = 2. After that the effects of Reynolds and convective

terms becomes dominant.

-1

 0

 1

 2

 3

 4

 0.1  1  2  3  4 5  10  20  30 40 50

U
*

y*

classical
extended

BL at x/δ0=50.0
BL at x/δ0=65.4

PH at x/h=4.3

Figure 10: Velocity profiles in extended inner coordi-

nates for α ≈ 0.6. (τw) · (∂P/∂x) < 0

Situations dominated by pressure gradient (α ≈ 0)

When the wall shear stress is zero (α ≈ 0), we do not have

to distinguish between the two cases depending on the sign

of pressure gradient. The wall friction is zero and the value

of the pressure gradient in the non-dimensional momentum

balance yields one. The limiting behaviour can be observed

in Figure 11. As in the previous cases, differences among the

cases can be mainly observed close to the wall. Apart from

the wall all profiles behave similarly. As in the preceeding

case the profile for the periodic hill (PH) shows a pressure

gradient which does not remain constant over y∗ ≈ 15.

-1

-0.5

 0

 0.5

 1

0.1 1 2 3 4 5 10 50

D
1* ,(

R
1* +

C
1* ),

P
1*

y*

Figure 11: Momentum balance in extended inner co-

ordinates for α ≈ 0.0. τw ≈ 0.

——— BL at x/δ0 = 42; – · – · – · BL at

x/δ0 = 73; · · · · · · PH at x/h = 7;

� viscous term D1; © Reynolds and con-

vective term (R1+C1); + pressure term P1;

In the integrated momentum balance, i.e. the stresses,

deviations can be seen for the periodic hill case similar to

the momentum balance. The deviations in the slope of the

Reynolds and viscous terms have already been observed in

the momentum balance. The crossing of the viscous term

and the Reynolds term in the differential momentum balance

(11) is identical for the boundary layer profile but shifted in

the periodic hill case. This is reflected in the crossing of

viscous and total stresses.
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Figure 12: Balance of stresses in extended inner co-

ordinates for α ≈ 0.0. τw ≈ 0.

——— BL at x/δ0 = 42; – · – · – · BL at

x/δ0 = 73; · · · · · · PH at x/h = 7;

� pressure term and wall stress (P2 + τw);

© total stress τt; + viscous term D2;

Starting from the observations with the momentum bal-

ance, deviations in the velocity profiles can be expected for

the periodic hill case. Nevertheless the boundary layer pro-

files agree well. As in the other cases, the extended law of

the wall seems to be a satisfying description for the profiles

below y∗ ≈ 2.
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Figure 13: Velocity profiles in extended inner coordinates

at α ≈ 0.0. τw ≈ 0

CONCLUSIONS

In this study, we have investigated the behaviour of terms

in the differential and integrated streamwise momentum bal-

ance based on DNS of two types of separated flows. In order

to be able to compare profiles from different flow situations

we have used a newly proposed extended scaling (Peller et al.

(2005) and Manhart et al. (2006)) which takes into account

the influence of both the wall shear stress and the stream-

wise pressure gradient. Also taken from these works is the

derivation of the extended law of the wall including the scal-

ing parameter α. We have compared the velocity profiles

to the extended law of the wall. The new extended scaling

has the advantage of a smooth transition between situations

dominated by wall shear stress in which the classical inner

scaling is appropriate and situations dominated by stream-

wise pressure gradient in which the classical inner scaling

fails completely. The extended scaling can be used to charac-

terise specific flow situation. We investigate its performance

in two very different flow fields, which both have been pro-

vided by highly resolved DNS. We have investigated two α

values, α ≈ 0.6 and α ≈ 0.0. We have found that there

is a strong agreement of the terms in the momentum bal-

ances. The assumption of a constant pressure gradient up

to y∗ = 50 is fulfilled in good agreement. Departure from

the constant pressure gradient in the case of curvature effects

is reflected in the profiles. Remarkable is the agreement of

the amplitude of Reynolds terms and viscous terms at the

maximum and thereafter. This shows that the deviations

observed at the positions investigated are already due to the

difference of Reynolds terms very close to the wall. The

similarity of Reynolds terms, convective terms and the to-

tal stress τt give rise to the hope that they can be modelled.

The remaining task is to quantify the present deviations and

find explanations for them. Especially striking is the univer-

sal behaviour of the profiles for α = 0.6 when the pressure

gradient acts in the opposite direction compared to the wall

friction. The terms in the momentum balance are identi-

cal and the velocity profile is universal till the end of the

recirculation region. The performance in other flow cases

with separation remains to be seen. We aim at investigat-

ing the proposed scaling also in turbulent channel flow with

an adverse force field localised at the wall which artificially

induces flow separation.
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