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ABSTRACT

The weak-equilibrium condition, which is the basis in the

development of algebraic Reynolds stress models, is assessed

in the case of fully developed turbulent channel flow under

the influence of system rotation. The budget of the vari-

ous terms in the exact transport equation for the anisotropy

tensor is evaluated using a DNS database. An asymp-

totic analysis of the near-wall behavior is performed and

an alternative form of the diffusion/transport constraint is

proposed. The analysis shows that the proposed alternative

diffusion/transport constraint has the potential to improve

the predictive ability of the ARSM.

INTRODUCTION

There continues to be considerable interest in the devel-

opment of algebraic Reynolds stress models (ARSM) in order

to meet the increasing demands in industrial applications.

The general algebraic relation is obtained by a simplifica-

tion of the differential transport equations of Reynolds stress

anisotropies. This results in implicit algebraic relations for

the Reynolds stress components. An explicit form of the

ARSM (EARSM) is obtained from a tensor polynomial rep-

resentation of the anisotropy components whose terms are

functions of mean strain rates and vorticity tensors as well

as additional scalar parameters. The EARSM thus inherits

the simplicity and some level of robustness of the eddy vis-

cosity models but also retains the potential for representing

the turbulence anisotropy.

The classic weak-equilibrium condition (Rodi, 1972,

1976) is used to derive the implicit ARSM from the dif-

ferential transport equation of Reynolds stress anisotropy.

For the mean convection term, this condition gives the

first assumption that the advection of the Reynolds stress

anisotropy tensor in turbulent flows is zero,

Dbij

Dt
= 0 (1)

where bij = τij/2k−δij/3 and τij = uiuj . For the turbulent

transport and viscous diffusion, this same condition yields

the second assumption that the turbulent transport and vis-

cous diffusion of τij is proportional to that of the turbulent

kinetic energy k, that is

Dij −
τij

k
D = 0 (2)

where Dij is the turbulent transport and viscous diffusion

of the Reynolds stress given by

Dij =Dt
ij +Dp

ij +Dν
ij

=− ∂

∂xk
uiujuk

− ∂

∂xk

�
puiδjk + pujδik

�
+ ν∇2τij (3)

where Dt
ij is the turbulent transport, Dp

ij is the pressure

transport and Dν
ij is the viscous diffusion (D = Dii/2).

The present study focuses on the validity of the diffu-

sion/transport constraint expressed in Eq. (2).

The assumption (Eq. (2)) is based on a constraint ap-

plicable to the turbulent transport and viscous diffusion

(Gatski and Rumsey, 2002), and is necessary in deriving

the implicit algebraic Reynolds stress equations. There has

not been much attention paid to this assumption since it

becomes important only in near-wall regions of inhomoge-

neous turbulent flows and is less amenable to analysis than

the condition on the Reynolds stress anisotropy itself. How-

ever, with the aid of DNS data, it is possible to analyze the

near-wall behavior of the individual terms in the transport

equation of anisotropy tensor.

In the present study, the diffusion/transport constraint

problem is explored by means of budget and near-wall

asymptotic analysis. An alternative form for the diffu-

sion/transport constraint is then proposed. The a pri-

ori test of both original and proposed diffusion/transport

constraints is performed, and it is demonstrated that the

proposed form is able to improve the predictive ability of

ARSM.

BUDGET OF ANISOTROPY TENSOR EQUATION

The exact transport equation of bij for fully developed
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rotating channel flow is given by

0 =
�
Pij + Cij −

τij

k
P
�

+ φij

−
�
εij −

τij

k
ε
�

+
�
Dij −

τij

k
D
�

(4)

where

Pij =− τik
∂uj

∂xk
− τjk

∂ui

∂xk
(5a)

Cij =− 4k
�
eimkΩmbkj + ejmkΩmbki

�
(5b)

φij =
p

ρ

�
∂ui

∂xj
+

∂uj

∂xi

�
(5c)

εij =2ν
∂ui

∂xk

∂uj

∂xk
(5d)

The terms on the RHS of Eq. (4) are analogous to measures

of the anisotropies associated with the production, redistri-

bution, dissipation and diffusion/transport.

The turbulent kinetic energy equation can be obtained

from a contraction of indices in Eq. (4) as

0 = P − ε +D (6)

where the terms on the RHS represent the turbulent produc-

tion P = −τik∂ui/∂xk, the isotropic turbulent dissipation

rate ε = εii/2 and the combined effects of turbulent trans-

port and viscous diffusion D.

The budget between the various terms in Eq. (4) is evalu-

ated by using a DNS database (Kristoffersen and Andersson,

1993). Figure 1 shows the budget of the bij equations

for Ro = 0.0. For the b11-component, Figure 1(a) shows

that the production anisotropy term is the dominant source,

while the redistribution term is the dominant sink. As the

wall is approached, the production anisotropy and redistri-

bution terms decay rapidly, while the diffusion/transport

and dissipation anisotropy terms are the dominant source

and sink - this is a viscous effect due to the close proximity

to the wall.

For the b22-component, the behavior of the individual

terms in the budget equation is significantly different from

those in the b11-equation. Since this component is strongly

influenced by the wall reflection effect, the near-wall be-

havior is affected by the pressure fluctuations. Figure 1(b)

shows that the dominant source in this case is the redistri-

bution term, while the term associated with the production

anisotropy acts as a sink. As the wall is approached, the pro-

duction and dissipation anisotropy terms become less impor-

tant, while the redistribution term and diffusion/transport

anisotropy term - which are affected by the pressure fluctu-

ations, are in balance and reach finite values on the wall.

Figure 1(c) shows that for the b33-component, the term

associated with the production anisotropy is the dominant

sink in contrast to the b11 equation, while the redistribution

term is the dominant source in the center of the channel. As

the wall is approached, the production anisotropy and the

redistribution terms decay rapidly. In the near-wall region,

the viscous terms, i.e., the diffusion/transport anisotropy

and dissipation anisotropy, are dominant.

In the equation for the b12-component, Figure 1(d) shows

that the redistribution term is the dominant source term

throughout the channel. The production anisotropy term

is the dominant sink in the center of the channel, but it

decays rapidly in the near-wall region and vanishes at the

wall. The diffusion/transport anisotropy becomes significant

near the wall and keeps balance with the redistribution term.
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Figure 1: The budget of Eq. (4) for bij at Ro = 0

Probably due to the local isotropy, the dissipation anisotropy

is less important for this component throughout the channel.

For the rotating cases, the significant influence of ro-

tation can be observed by examining Figure 2, where the

turbulent intensity is enhanced along the pressure side, while

reduced along the suction side; however, some common

features with the non-rotating case exist. The produc-

tion anisotropy is small in the near-wall region for all four

68



y/h

-1.0 -.5 0.0 .5 1.0
-.10

-.05

0.00

.05

.10

.15
Residual

P
11

 + C
11

 - (τ
11

/k)P

φ
11

-(ε
11

 - (τ
11

 /k)ε)

D
11

 - (τ
11

/k)D

Ro = 0.15

(a)

y/h

-1.0 -.5 0.0 .5 1.0
-.06

-.04

-.02

0.00

.02

.04

.06

.08
Residual

P
22

+ C
22

- (τ
22

/k)P

φ
22

-(ε
22 

- (τ
22

/k)ε)

D
22

- (τ
22

/k)D

Ro = 0.15

(b)

y/h

-1.0 -.5 0.0 .5 1.0
-.15

-.10

-.05

0.00

.05

.10

.15
Residual

P
33

 + C
33

- (τ
33

/k)P

φ
33

−(ε
33 

- (τ
33

/k)ε)

D
33

 - (τ
33

/k)D

Ro = 0.15

(c)

y/h

-1.0 -.5 0.0 .5 1.0
-.4

-.2

0.0

.2

.4
Residual

P
12

 + C
12

 - (τ
12

/k)P

φ
12

-(ε
12

 - (τ
12
/k)ε)

D
12

 - (τ
12

/k)D

Ro = 0.15

(d)

Figure 2: The budget of Eq. (4) for bij at Ro = 0.15

components, and the diffusion/transport and dissipation

anisotropy are dominant for the b11- and b33-components in

the wall vicinity. On the other hand, the diffusion/transport

anisotropy and redistribution are dominant there for the b22-

and b12-components.

For all the cases examined, it appears that the redis-

tribution term balances the sum of the diffusion/transport

anisotropy and dissipation anisotropy. This means that the

diffusion/transport anisotropy plays a crucial role in the bij

transport equation in the near-wall region, and also suggests

that the diffusion/transport constraint, Eq. (2), is unlikely

to hold in the near-wall region. In the center of chan-

nel, the absolute levels of the residuals are not negligibly

small. Although this suggests that neglect of the diffu-

sion/transport anisotropy term is also unlikely to hold for

the center of the channel, the present study will focus on

the diffusion/transport constraint in the near-wall region.

MODIFICATION TO DIFFUSION/TRANSPORT CON-

STRAINT

The analysis in the preceding section has shown that the

diffusion/transport anisotropy is not negligible in the budget

of the bij equation, suggesting the inadequacy of the cur-

rent diffusion/transport constraint. The discussion now will

focus on a possible modification to the diffusion/transport

constraint. First, the near-wall behavior of the individual

terms in the budget equation of the anisotropy tensor is ex-

amined.

Near-wall behavior of bij equation

Figure 3 shows the budget of b11 equation in the vicinity

of the wall. For the Ro = 0 case, the production is the dom-

inant source in the range y+ ≥ 10, while the redistribution

is the dominant sink. As the wall is approached, the produc-

tion anisotropy and redistribution terms decay rapidly, while

the dissipation and diffusion/transport anisotropy terms re-

main finite and balance each other to the wall. For the

Ro = 0.15 and Ro = 0.50 cases, it is readily observed

that the effects of rotation have a significant influence on

the budget, but the wall proximity behavior remains un-

changed, e.g., the rapid decay of the production anisotropy

term, and a finite value for the diffusion/transport and dis-

sipation anisotropy terms.

For the b12 equation, the asymptotic near-wall behavior

of the terms in the Eq. (4) is now investigated in more detail.

The velocity and pressure variables in the vicinity of the wall

can be expanded in wall units as (Patel et al., 1985; Mansour

et al., 1988; So et al., 1997)

u+ = b1y+ + · · · (7a)

v+ = c2y+2 + · · · (7b)

w+ = b3y+ + · · · (7c)

p+ = ap + bpy+ + · · · (7d)

The wall-limiting behavior of the individual terms in b12-

equation are expressed in the same manner so that

P12 + C12 − uv

k
P = −2Ω+

3 b21y+2 + · · · (8a)

φ12 = apb1 + · · · (8b)

ε12 − uv

k
ε = 2b1c2y+ + · · · (8c)

D12 − uv

k
D = −apb1 + · · · (8d)

Figure 4 shows the budget of the b12 equation. For the

non-rotating and rotating cases, the dominant source is the

production an isotropy term, while the dominant sink is the

redistribution term throughout most of the channel. As

the wall is approached, the dissipation anisotropy decays

as O(y+), and the production anisotropy decays faster as

O(y+2). The redistribution term remains relatively large,

and keeps balance with the diffusion/transport anisotropy
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Figure 3: Terms in the budget of b11 in wall coordinates (lhs:

suction side, rhs: pressure side)
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Figure 4: Terms in the budget of b12 in wall coordinates (lhs:

suction side, rhs: pressure side)

term for y+ ≤ 10. The above expansions (Eq. (8)) also

indicate that in the vicinity of the wall, the redistribution

and diffusion/transport anisotropy terms decay as O(y0).

At the wall, the redistribution balances with the diffu-

sion/transport.

In the RANS modeling framework, the velocity pressure-

gradient Πij is usually split into the pressure transport Dp
ij

and the redistribution φij . The expansions of these three
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Figure 5: Terms in the budget of b22 in wall coordinates (lhs:

suction side, rhs: pressure side)
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Figure 6: Terms in the budget of b33 in wall coordinates (lhs:

suction side, rhs: pressure side)

terms for b12-component are

Π12 = −2b1c2y+ + · · · (9a)

φ12 = apb1 + 2
�
b1c2 + apc1

�
y+ + · · · (9b)

Dp
12 = −apb1 − 2

�
2b1c2 + apc1

�
y+ + · · · (9c)

It is shown that Π12 is of O(y+), while φ12 and Dp
12 are of

O(y0), thus Π12 is negligible in the near-wall region com-

pared to φ12 and Dp
12. It is clear that φ12 must balance

with Dp
12 in the near-wall region. Because Dp

12 is the ma-

jor contributor to the diffusion/transport Dij − (τij/k)D,

cf. Eqs. (8d) and (9c), it is fair to conclude that the diffu-

sion/transport anisotropy must balance with the redistribu-
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tion in the near-wall region and cannot be neglected.

Figure 5 shows the budget of the b22 equation. The re-

distribution becomes negative at about y+ ≈ 10, while the

diffusion/transport anisotropy becomes large and remains

in balances with the redistribution for y+ ≤ 10 in a manner

similar to the b12 case. Both Figure 5 and the near-wall ex-

pansions show that production anisotropy decays as O(y+3),

and the dissipation anisotropy as O(y+2). If the velocity

pressure-gradient partitioning is examined in the same man-

ner as for b12- component, Π22 decays as O(y+2), and be-

comes negligible for y+ ≤ 10. Thus, the diffusion/transport

anisotropy also balances the redistribution in the near-wall

region. Figure 6 shows the budget of the b33 equation. The

overall tendency is similar to the other components, except

for the production anisotropy term that is now significant

close to the wall on the pressure side. Analogue to the case

in b11- component, the dissipation anisotropy and the diffu-

sion/transport anisotropy have finite values on the wall and

remain in balance with each other.

Near-wall correction of diffusion/transport constraint

The above analysis of the wall asymptotic behavior of the

terms in the bij equations may be summarized as follows:

in the b11- and b33-equations, viscous diffusion dominates so

that the whole diffusion/transport process balances with the

viscous dissipation in close proximity to the wall; in the b12-

and b22-equations, pressure transport and redistribution are

the major contributors in close proximity to the wall. The

near-wall modeling strategy of the diffusion/transport term

must cope with these two different mechanisms, and this is

readily accomplished by adopting the form

Dij −
τij

k
D = −

h
φij −

�
εij −

τij

k
ε
�i

fd (10)

with fd being a function that restricts the effect of the redis-

tribution term and dissipation within the near-wall region.

The form of fd is specified so that it becomes unity on the

wall, and gradually decays away from the wall for y+ ≥ 10.

Initially, the following form is proposed

fd = 1−
�
1− exp

�
y+

6

��2
. (11)

It is adopted here for its simplicity, but the development of

a more general form should be a task for future study.

EVALUATION OF PROPOSED CONSTRAINT

In order to evaluate the original and proposed diffu-

sion/transport constraints, an a priori test is performed

using the DNS data of Kristoffersen and Andersson (1993).

Applying the original diffusion/transport constraint to

Eq. (4), one obtains

0 =
1

2k

�
Pij + Cij −

τij

k
P
�

+
φij

2k
− 1

2k

�
εij −

τij

k
ε
�

(12)

By adopting the proposed diffusion/transport constraint,

Eq. (12) can now be written as

0 =
1

2k

�
Pij + Cij −

τij

k
P
�

+

�
φij

2k
− 1

2k

�
εij −

τij

k
ε
��

(1− fd) (13)

This equation shows that the proposed diffusion/transport

constraint has the effect of removing both the redistribution

and dissipation anisotropy terms near the wall. It should
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Figure 7: Validation of present diffusion/transport con-

straint for b11-component (lhs: suction side, rhs: pressure

side)
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Figure 8: Validation of present diffusion/transport con-

straint for b22-component (lhs: suction side, rhs: pressure

side)

be noted that the validity of this form is unaffected by the

system rotation since the balance between the redistribution

and pressure transport, and between the viscous diffusion

and dissipation persist regardless of the rotation number (cf.

Figures 3 – 6). In another analysis of the non-rotating and

rotating channel flow cases, Manceau (2005) also showed

that the asymptotic behavior in the near-wall region was

unaffected.

Figure 7 shows the results for b11-component, where

the proposed diffusion/transport constraint gives nearly zero

residual for the b11-component in the vicinity of the wall.

For the other components, Figures 8 – 10 show that the
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Figure 9: Validation of present diffusion/transport con-

straint for b33-component (lhs: suction side, rhs: pressure

side)
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Figure 10: Validation of present diffusion/transport con-

straint for b12-component (lhs: suction side, rhs: pressure

side)

present diffusion/transport constraint can also significantly

reduce the residuals compared to the original formulation in

Eq. (12). Thus, there is an obvious improvement compared

with the original form for both the non-rotating and rotating

cases.

There is, however, a slight imbalance observed in Fig-

ure 9 on the pressure side for the b33-component. This is

attributable to the increase of the production anisotropy

term there (cf. Figure 6), which adversely affects the pre-

vious mentioned balance between the diffusion/transport

anisotropy term and its counterparts. A more advanced

modeling strategy is necessary to cope with this issue.

Nevertheless, the above analysis shows that proposed al-

ternative diffusion/transport constraint has the potential to

improve the predictive capabilities of the ARSM once accu-

rate models for the redistribution and dissipation rate terms

in Eq. (4) are provided.

CONCLUSION

The budget analysis of the various terms in the exact

transport equation for bij show that the diffusion/transport

anisotropy term is crucial in the near-wall region. An asymp-

totic analysis of the near-wall behavior shows that the diffu-

sion/transport anisotropy term keeps balance with the sum

of the redistribution and dissipation anisotropy term in the

vicinity of the wall, while the production anisotropy is small.

An alternative form of the diffusion/transport constraint

is proposed and evaluated using DNS data. Evaluation

results show that proposed alternative diffusion/transport

constraint has the potential to improve the predictive capa-

bility of the resultant ARSM.
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