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ABSTRACT

This paper investigates several new attempts to model

the influence of the density ratio of the two streams on the

mixing layer growth rate. The model recently proposed by

Kreuzinger et al. is not sensitive to the relative orientations

of the velocity and density gradient. A revised version has

been proposed but is far from being satisfactory. It was con-

cluded that baroclinic effect should be modelled, but not

at the dissipation level. Other strategies were thus inves-

tigated. For that, the length scale equation, deduced from

two-point correlations, was extended to compressible flows.

Extra terms linked to density gradient were evidenced and

modelled. Models available in the literature were also ana-

lyzed. If the high speed flow is lighter, which is the case of

propulsion jets, density effects are small and can be captured

by some models. But no model is able to correctly capture

the density effect on the mixing layer growth rate whatever

the density and velocity ratios.

INTRODUCTION

Mixing layers occur in a wide variety of flows. More of-

ten, the best mixing capabilities are looked for as e.g. in

combustion chambers, to increase the efficiency and reduce

the pollution, or in nozzle jets, to reduce the infrared signa-

ture. However, in some cases as in wall cooling by tangential

blowing, the lowest possible mixing is wanted.

Mixing layers rapidly reach a self similar state in

which the velocity, temperature, density, species mass frac-

tion. . . profiles can be recast in a simple form

u− u2

u1 − u2
= W

(
y

δ(x)

)
T − T2

T1 − T2
= Θ

(
y

δ(x)

)
. . . (1)

where subscripts 1 and 2 respectively refer to high- and

low-speed streams, y is the distance along the mixing layer

thickness and δ a characteristic mixing layer thickness.

Various mixing layer thicknesses δ can be considered,

based upon Schlieren (optical thickness), the stagnation

pressure profile or the velocity profile. The most classical

ones are δ1%, δ10% and the Stanford thickness δS respec-

tively defined as the distance between the points where

the non-dimensional velocity W = u−u2
u1−u2

is equal to 1%

(resp. 10% and
√

0.1 ≈ 0.32) and 99% (resp. 90% and
√

0.9 ≈
0.95) and the vorticity thickness based upon the maximum

velocity gradient as

δω = (u1 − u2)/

(
∂u

∂y

)
max

(2)

As the velocity profile is hardly affected by density changes

or by compressibility, these thicknesses nearly remain pro-

portional. Therefore, the analysis presented below will be

restricted to the vorticity thickness δω .

The standard analysis (Brown and Roshko, 1974; Bog-

danoff, 1983; Dimotakis, 1991) thus shows that the mixing

layer growth rate depends upon three parameters:

- the velocity ratio of the two streams r = u2
u1

,

- the density ratio of the two streams s = ρ2
ρ1

,

- the convective Mach number Mc which characterizes

the compressible character of the turbulent motion.

The standard analysis yields the following expression for

the mixing layer spreading rate

δ′ =
dδ

dx
= Cδ f(Mc)

(1− r)(1 +
√

s)

2(1 +
√

sr)
(3)

which is well supported by experiments.

Most turbulence models correctly reproduce the varia-

tion of the mixing layer growth rate with the velocity ratio r.

They can be educated to reproduce the effect of the convec-

tive Mach number Mc (see, e.g. Aupoix, 2004).

The effect of density ratio s is more difficult to capture.

Guézengar (1996) pointed out that the k−ε model gives the

wrong sensitivity. A systematic study performed by Aupoix

(2004) showed that simple models in which the length scale

is prescribed (mixing length model, model with one equation

for the turbulent kinetic energy) are able to reproduce the

density ratio effect but that models in which the turbulence

length scale is computed (Spalart and Allmaras, k − ε, k −
ϕ. . . ) fail.

These conclusions hold for density gradients due as well

to temperature variations as to differences in chemical com-

position. They also hold whatever the model constants (in

an acceptable range), whatever the turbulent Prandtl or

Lewis number and whatever the constitutive relation.

TEST PROCEDURE

Attempts to predict density ratio effects will be analyzed

in the present paper. All model tests were performed with

a code solving self-similarity equations developed by Bézard

(2000). The self-similarity hypothesis leads to a simple one-

dimensional problem for which grid converged results are

easily achieved. Moreover, it allows to perform systematic

tests, covering a wide range of velocity and density ratios.

All computations presented below were performed with

Bézard (2000) k − ε model, together with Catris’ compress-

ibility correction, to be discussed later. A drawback of

Bézard’s model is to be tuned to give a value of the mixing

layer expansion rate coefficient Cδω ≈ 0.135 while exper-

imental data suggest higher values in the range 0.16-0.18
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(Brown and Roshko, 1974; Aupoix and Bézard, 2006). How-

ever, it has been checked that the conclusions hold when

other models, giving higher expansion rates, are used. Con-

sequently, on the figures, computations will be compared

to the theoretical solution, given by equation (3), with

Cδω = 0.135.

DENSITY CORRECTIONS BASED UPON BOUNDARY

LAYER SCALING

Huang et al. (1994) pointed out the inconsistency of

turbulence models in the logarithmic region of compress-

ible boundary layers in presence of strong density gradients.

From boundary layer scalings, Catris and Aupoix (2000) pro-

posed a general strategy to correct the length scale equation

in order to retrieve this consistency. The basic idea is that

extension of turbulence models to compressible flows should

consider the turbulent kinetic energy per mass unit ρk and

the turbulent length scale L as variables having the same

properties in compressible flows as in incompressible flows.

This led to a simple strategy to extend any transport equa-

tion model to compressible flows.

When this correction is applied to mixing layer flows, the

wrong sensitivity to density gradients of e.g. k − ε models

disappears but the effect of the correction is far too small

(see Aupoix (2004) or curve C = 0 in figure 1). New density

corrections are thus required, either alone or coupled with

Catris’ correction, to preserve the logarithmic region and

give correct predictions of the mixing layer growth rate.

BAROCLINIC CORRECTIONS

Introduction

Turbulent motion is first of all a vortical motion. There-

fore, a natural way to take into account the effect of density

gradient upon a turbulent, vortical, motion is to advocate

the baroclinic effect, i.e. the production of vorticity due to

the combined action of density and pressure gradients as

Dω

Dt
= . . . +

1

ρ2
grad ρ ∧ grad p + . . . (4)

In turbulence models, vorticity naturally appears if the tur-

bulent kinetic dissipation rate is approximated as

ε = νω′ · ω′ (5)

Krishnamurty and Shyy (1997) decomposed the baro-

clinic term in the transport equation for the dissipation term

into three contributions as

εpqi
ν

ρ2

(
∂ρ

∂xq
ω′′p

∂p′

∂xi
+

∂p

∂xi
ω′′p

∂ρ′

∂xq
+ ω′′p

∂ρ′

∂xq

∂p′

∂xi

)
(6)

For base flow computations, they deduced from an order of

magnitude analysis that the leading term is the one associ-

ated with the mean pressure gradient.

Aupoix’ model

This conclusion, and the associated model, does not hold

in mixing layers which are isobaric. This led Aupoix (2004)

to prefer the term involving the mean density gradient. He

related the fluctuating pressure gradient to the velocity field

through the momentum equation as

∂p′

∂xi
≈ ρu′′l

∂ũi

∂xl
(7)
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Figure 1: Mixing layer growth rate versus density ratio for

u2 = 0 – Kreuzinger et al. model

For two-dimensional flows, under the thin layer hypothesis,

the correction in the dissipation equation reads

Ck3/2 ∂ρ

∂y

∂u

∂y
(8)

This correction improves the prediction of the mixing layer

growth rate versus velocity and density ratios. Nevertheless,

it is far from being satisfactory. Moreover, no general ten-

sorial form could be found and the above expression alters

the prediction of boundary layer flows.

Kreuzinger et al. model

Kreuzinger et al. (2006) analyzed DNS of temporally

growing mixing layers and evidenced that the leading term

is not as expected a term involving a mean quantity gradi-

ent, but the correlation of fluctuating density and pressure

gradients. They related these gradients to the variance of

the quantity and the Taylor microscale, and obtained a cor-

rection term in the dissipation equation of the form

C‖grad ρ‖
√

kε (9)

They recommended a constant C = 2 x 0.18 x
√

2 ≈ 0.5.

Figure 1 shows the growth rate versus density ratio when

the low speed stream is at rest (r = 0), i.e. when the mixing

layer growth rate is maximum. On this figure, a semi-

logarithmic scale is used for the density ratio, in order to

give the same influence to the density ratios s = ρ2
ρ1

and 1
s
.

Symbols correspond to the theoretical values, given by equa-

tion (3) and lines to computations.

Various values of the Kreuzinger et al. model constant

C were tested. As expected from equation (9), the model is

unable to distinguish whether the low speed stream or the

high speed stream flow is the heaviest as it is only sensitive to

the modulus of the mean velocity gradient. Positive values

of the constant lead to an increase of the dissipation and

hence a reduction of the turbulence and of the growth rate,

whatever the density ratio. Conversely, a negative value of

the constant leads to increased spreading rate. Plotted in

linear coordinates, the curves are symmetric with respect to
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Figure 2: Mixing layer growth rate versus density ratio for

u2 = 0 – Revised version of Kreuzinger et al. model
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Figure 3: Mixing layer growth rate versus velocity ratio for

several density ratios – Revised version of Kreuzinger et al.

model

s = 1. This model drawback is consistent with the fact that

the notion of high speed and low speed side is not relevant

for temporally growing mixing layers.

Attempt to improve Kreuzinger et al. model

This model was then sensitized to the relative orienta-

tion of the density and velocity gradient by linking the sign

of the model constant to the sign of grad ρ · grad ‖u‖. This

modification is not fully satisfactory as it is not Galilean

invariant. Nevertheless, figure 2 shows that model predic-

tions are thus improved but no model constant really fits

the theoretical curve. A value of the constant about 0.2,

lower than Kreuzinger et al. recommendation, gives a good

compromise.

Growth rate evolutions versus velocity ratio, predicted

with this revised model, are plotted in figure 3 for several

density ratios. The abscissa is

u1 − u2

u1 + u2
=

1− r

1 + r
(10)

as the mixing layer growth rate is proportional to this quan-

tity for constant density flows. Again, symbols correspond

to relation (3) and curves to computations. The value of the

model constant used here is C = 0.18. The overall agree-

ment is poor as the modified model is unable to reproduce

the concave or convex curvature of the growth rate curve

according to the density ratio. Similar results are obtained

for other values of the constant C.

A higher value of the constant, about 0.3, allows at least

a fair agreement for density ratios s less than unity but de-

grades the predictions for density ratios higher than unity.

Other attempt

Baroclinic effects are a good candidate to explain density

effects on turbulence but density effects should first alter

the large scale dynamics so that a direct modelling of terms

in the dissipation equation, which is linked to the viscous

scales, may not be the best approach.

A quantity which is linked to the large scales, or not

linked to the viscosity, but still linked to the vorticity, is the

helicity

H = u′ · ω′ ∝
k

L
(11)

Nevertheless, the use of this quantity, which is a pseudo-

scalar, as a turbulence scale, is problematic. It is surely not

a good candidate to evaluate a turbulence length scale in

all kinds of flows. Using the modelling strategies previously

proposed by Aupoix (2004) or Kreuzinger et al. (2006) to

represent the baroclinic influence on the vorticity fluctuation

did not lead to any convincing model.

LENGTH SCALE EQUATION

Length scale equation for compressible flows

In order to capture the right dynamics, it seems inter-

esting to deal with turbulent scales determining variables

directly linked to the energy containing range. A turbulence

time scale or length scale is thus a good candidate. As mod-

els with an imposed turbulent length scale give satisfactory

results and as the turbulent length scale also naturally ap-

peared in the modelling of density effects in compressible

boundary layers (Catris and Aupoix, 2000), the length scale

equation was favoured.

For incompressible flows, Wolfshtein (1970) proposed to

define the turbulent length scale from the integral of two-

point correlations, as

2kL =

∫
V

u′A · u′B
d3rAB

‖rAB‖2
(12)

where rAB is the vector linking points A and B. Should this

definition be extended to compressible flows considering the

integral of ρAu′′A · u′′B or of ρAu′′A · ρBu′′B? The second option

seems more natural as ρu′′ is a centered quantity. Moreover,

it leads to simpler calculations as both points play a similar

role.

The first option was nevertheless favoured as the pre-

vious study of modelling of density effects in compressible
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boundary layers (Catris and Aupoix, 2000) led to deal with

variables which are combinations of ρk and L, which is

automatically done with the first option. Moreover, not in-

troducing the density at point B, which is the point over

which the integration is performed, allows to better evidence

the contribution of the mean density gradient in the final

equation form.

The evolution equation for the correlation ρAu′′A · u′′B can

be deduced from the Navier–Stokes equation, after tedious

calculations, as

∂

∂t
ρAu′′iAu′′iB +

∂

∂yl

(
ũlA ρAu′′iAu′′iB

)
=

+
∂

∂rl

(
ũlA ρAu′′iAu′′iB

)
− ũlB

∂

∂rl

(
ρAu′′iAu′′iB

)
−ρAu′′

lA
u′′iB

(
∂ũiA

∂yl
+

∂ũlB

∂ri

)
−

∂

∂yl

(
ρAu′′iAu′′iBu′′

lA

)
+

∂

∂rl

(
ρAu′′iAu′′iBu′′

lA
− ρAu′′iAu′′iBu′′

lB

)
+

∂

∂yl

(
ρAu′′iAu′′

lA
u′′iB

)
−

∂

∂rl

(
ρAu′′iAu′′

lA
u′′iB

)
+

1

ρB

∂

∂rl

(
ρAu′′iAρBu′′iBu′′

lB

)
(13)

−
∂

∂yl

(
p′Au′′iB

)
+

∂

∂rl

(
p′Au′′iB

)
−

1

ρB

∂

∂ri

(
p′BρAu′′iA

)
+

∂

∂yl

(
τ ′
ilA

u′′iB

)
−

∂

∂rl

(
τ ′
ilA

u′′iB

)
+

1

ρB

∂

∂rl

(
τ ′
ilB

ρAu′′iA

)
−ρ′Au′′iB

(
∂ũiA

∂t
+ ũlA

∂ũiA

∂yl

)
−
(

ρAρ′Bu′′iA
ρB

)(
∂ũiB

∂t
+ ũlB

∂ũiB

∂rl

)
+ ρAu′′iAu′′iB

∂u′′
l B

∂rl

where, following Wolfshtein, rk denotes the separation vec-

tor between points A and B and yk the coordinates of

point A. Wolfshtein (1970) form is retrieved for incompress-

ible flows.

The first two lines represent advection, the third one the

influence of mean velocity gradients, the fourth to seventh

lines turbulent diffusion, the eighth one pressure transport,

the ninth and tenth ones viscous diffusion. The sixth and

seventh lines are null in incompressible flows since u′ = 0.

The last two lines also are extra terms introduced by the

compressible character of the flow.

A priori, the last term, which is linked to the divergence

of the fluctuating motion, is negligible compared to the pre-

vious one, turbulent motion dilatation being generally small.

Model for the density gradient effects

The leading terms for the compressibility effects therefore

seem to be the last two lines, except the last term. In the

transport equation for 2ρkL, they give the contribution∫
V

−ρ′Au′′iB

(
∂ũiA

∂t
+ ũlA

∂ũiA

∂yl

)
d3rAB

‖rAB‖2
(14)

−
∫

V

(
ρAρ′Bu′′iA

ρB

)(
∂ũiB

∂t
+ ũlB

∂ũiB

∂rl

)
d3rAB

‖rAB‖2

The modelling is performed following Wolfshtein’s strategy,

i.e. all quantities are expanded around point A as

ρ′Au′′iB = ρ′Au′′iA f1

(
rAB

L

)
(15)

so that the final term is proportional to

−ρ′Au′′iA
DũiA

Dt
L (16)

Various models for the mass flux term ρ′Au′′iA are available in

the literature for compressible flows. The only relevant one,

to have a model valid as well for low speed as high speed

flows, is to relate the mass flux to the density gradient. The

correction thus reads

C1νt
∂ρ

∂xi

Dũi

Dt
L (17)

This correction term has been obtained for the transport

equation for 2ρkL. It can be applied to the transport equa-

tion for any length scale determining variable. For example,

if the dissipation rate ε is used, the corresponding term reads

C1νt
∂ρ

∂xi

Dũi

Dt
L

ε

kL
= Ck

∂ρ

∂xi

Dũi

Dt
(18)

This model form satisfies our two requirements. On the

one hand, it is null in isochoric flows as ∂ρ
∂xi

= 0 and, on the

other hand, it is negligible in the logarithmic region of the

boundary layer where Dũi
Dt

≈ 0.

When this model form is transformed using the self-

similarity assumptions, because of the advection term, the

final term is proportional to the square of the density gra-

dient. This means that, again, this model cannot give a

reduction or an increase of the mixing layer growth rate,

according to the respective orientations of the density and

velocity gradients. This is confirmed by figure 4 on which

the predictions of the mixing layer growth rate when the

slowest stream is at rest, with the above correction and for

various values of the model constant C, are plotted. More-

over, only a small increase of the mixing layer growth rate

can be observed and the model becomes unstable for large

values of the constant C.

Second model for the density gradient effects

As pointed out previously, there are several contribu-

tions of density gradients to the two-point correlation equa-

tion (13). The sixth and seventh lines were already identified

as purely compressible terms. Using Wolfshtein’s strat-

egy (15), the volume integration of the first term of the sixth

line is straightforward.∫
V

∂

∂yl

(
ρAu′′iAu′′

lA
u′′iB

) d3rAB

‖rAB‖2

=
∂

∂yl

(
ρAu′′iAu′′

lA

∫
V

u′′iB
d3rAB

‖rAB‖2

)
(19)

∝
∂

∂yl

(
ρAu′′iAu′′

lA
u′′iAL

)
The two other terms of the sixth and seventh lines are ex-

pected to give similar contributions so that, using again a

first gradient hypothesis to model the mass flux u′′iA, the

final model form reads

∂

∂xl

(
ρu′′i u′′

l

µt

ρ2

∂ρ

∂xi
L

)
(20)

This term is of course null in an isochoric flow but not

in the logarithmic region of a boundary layer. It cannot
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Figure 4: Mixing layer growth rate versus density ratio for

u2 = 0 - Model (18) for various model constant values

be used alone to correct the model in the boundary layer.

Therefore, the only strategy is to consider that part of this

model is already included in the Catris’ correction and to

extract the part which is not active in the logarithmic region

of the boundary layer but may affect the mixing layer. With

thin layer assumptions, the model (20) can be rearranged as

∂

∂y

(
ρv′′2

µt

ρ2

∂ρ

∂y
L

)
∝

∂

∂y

(
ρk

µt

ρ2

∂ρ

∂y
L

)
(21)

while, in the logarithmic region of the boundary layer, these

various quantities evolve as

ρk ∝ ρpu2
τ µt =

√
ρρpuτ κy L ∝ y (22)

Therefore, expanding model (20), the only contribution

which is null in the logarithmic region is

∂ρu′′i u′′
l

∂xl

µt

ρ2

∂ρ

∂xi
L (23)

For flows without pressure gradients, as the self-similar

mixing layers presently investigated, the divergence of the

Reynolds stress tensor can be expressed with the help of the

momentum equation, so that the model reads

µt

ρ

∂ρ

∂xi

Dũi

Dt
L (24)

i.e. model form (17) previously investigated.

Equation (23) also suggest to test the following model

µt

ρ2

∂ρk

∂xi

∂ρ

∂xi
L (25)

which cannot be strictly derived from that equation but at

least reduces to the same form under thin layer assumptions.

For k − ε models, the correction term (25) becomes

k

ρ

∂ρk

∂xi

∂ρ

∂xi
(26)

It must be pointed out that this model form has contribu-

tions of opposite signs on both sides of the mixing layer since

ρ 2 /ρ 1
δ

’ ω
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Figure 5: Mixing layer growth rate versus density ratio for

u2 = 0 - Model (25) for various model constant values

the sign of ∂ρ
∂y

remains the same but that of ∂ρk
∂y

changes.

Analysis of DNS data (Aupoix et al., 2004) have shown that,

compared to isochoric flows, the dissipation increases on the

high density side of the mixing layer. To get such a be-

haviour, the above term must be multiplied by a negative

constant.

Figure 5 confirms that a negative value of the constant

is required to have the correct evolution. For C = −3, this

model gives fair predictions when ρ2 ≤ ρ1 but it is not

possible to have good agreement when ρ2 > ρ1, the model

underestimating the density effect.

CORRECTIONS AVAILABLE IN THE LITERATURE

Other corrections to improve mixing layer and jet flow

predictions are available in the literature. A review of some

recent models for jet flows has been provided by Georgiadis

et al. (2006).

PAB temperature correction

The PAB temperature correction has been proposed by

Abdol-Hamid et al. (2004). The Cµ coefficient in the eddy

viscosity definition is sensitized to the gradient of the stag-

nation or total enthalpy Tt as

Cµ = 0.09

[
1 +

T 3
g

0.041

]
Tg =

k3/2

ε

‖grad Tt‖
Tt

(27)

This model suffers from two drawbacks. It is not Galilean in-

variant as the total temperature depends upon the reference

frame. But mainly, it is only sensitized to the modulus of the

total temperature gradient. It therefore cannot distinguish

whether the low speed stream is the hotter or the colder.

Therefore, it has the same kind of symmetric behaviour as

the basic Kreuzinger et al. model.

Tam and Ganesam model

Tam and Ganesam (2004) performed a stability analysis

to evidence couplings between the Kelvin–Helmholtz insta-

bility and the density gradient. They considered only density
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ratio close to unity so that the effect of density gradient is

small and can be linearized. Therefore, they directly intro-

duced a correction on the eddy viscosity which reads

µt = µt ρ=cst + µρ (28)

and the correction µρ is expressed as

µρ =

{
Cρ

k7/2

ε2
‖

∂ρ

∂r
‖ if

∂ρ

∂r

∂u

∂r
< 0

0 otherwise

(29)

The above formula is of course valid only for axisymmet-

ric jets. They therefore attempted to extend it to general

geometries as

µρ =

{
Cρ

k7/2

ε2

‖grad ρ · grad ‖u‖‖
‖grad ‖u‖‖

if grad ρ · grad ‖u‖ < 0

0 otherwise
(30)

This model has the same drawback as the modified

Kreuzinger et al. model, using the gradient of the veloc-

ity modulus, which is not Galilean invariant. Moreover, this

model only acts if the density and velocity gradients have op-

posite directions, i.e. if s < 1, which is not the most difficult

case.

CONCLUSION

These model tests show that the prediction of density

effects on the mixing layer growth rate remains a challenge.

Baroclinic effects may explain the influence of density

gradient on the dynamics of the big rollers encountered in

mixing layers. Nevertheless, baroclinic effects should be

small when considering dissipative scales so that accounting

for baroclinic effects in the dissipation rate equation may

not be relevant. Nevertheless, the modified version of the

Kreuzinger et al. model remains the best compromise what-

ever the density ratio, as it can better predict the mixing

layer growth rate than models without modifications and

preserves boundary layer flows. The big drawback of this

model is that it is not Galilean invariant.

Another attempt to model density effect using the length

scale transport equation deduced from the integral of two-

point correlations led to a model which is efficient only when

the low speed stream is the heavier.

For applications such as propulsive jets in which the low

speed stream is the heaviest, this model (25, 26) as well

as the basic Kreuzinger et al. model, with a constant value

about 0.3, or other models already available in the literature

can give fair predictions. The real, still unresolved problem,

occurs when the low speed flow is the lighter (s > 1), a

situation which can be encountered e.g. in film cooling.

No model preserving the logarithmic region in presence

of density gradient and giving the right prediction of mixing

layer growth rate whatever the density and velocity ratios is

presently available.
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