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ABSTRACT

Density (temperature) variation and a dilatational ve-

locity component are hallmarks of compressible turbulence.

After an introduction to turbulent flow examples where com-

pressibility is important, attention is restricted to high-speed

flows. The turbulent Mach number, Mt, can be significantly

smaller than unity even in supersonic flows. Different ap-

proaches of low-Mt asymptotic analysis of the velocity and

thermodynamic fluctuations are discussed. Compressibility

effects are discussed through a review of four specific flows:

isotropic turbulence, uniform shear flow, mixing layer and

supersonic channel flow. The first three do not have a mean

gradient in density or temperature. The magnitude of the

dilatational component in direct simulations of isotropic tur-

bulence is dependent on both initial conditions and turbulent

Mach number, Mt. An acoustic mode with equipartition be-

tween kinetic and potential energies is observed. Turbulence

in uniform shear flow and the mixing layer is inhibited with

increasing Mach number. The pressure fluctuations play a

particularly important role in this stabilizing effect and the

gradient Mach number, Mg , is the relevant parameter that

determines this effect. Supersonic channel flow has large

gradients in mean properties that affect the log law in mean

velocity as well as inner and outer scalings of the turbulent

stresses. Some of the effects can be captured by appropriate

weighting with local values of mean density and viscosity.

However, there is an additional effect of pressure fluctua-

tions on the Reynolds stresses which cannot be represented

by such weighting.

INTRODUCTION

Compressible turbulence is concerned with turbulent

flows where the assumption of a solenoidal velocity field or

constant density/temperature cannot be made. Typical ex-

amples are high-subsonic-to supersonic flows where the mean

Mach number is large, flows with large heat release such

as combustion, and high-enthalpy flows as in hypersonics

or laser applications. Significant changes in the thermody-

namic and state variables are to be expected in such flows.

The area of compressible turbulence is the study of how

these changes couple with the velocity fluctuations. As with

turbulence in the incompressible world, the study of com-

pressible turbulence has included phenomenology, predictive

modeling, simulations and first-principles theory ordered in

descending number of contributions. An entry into the liter-

ature on compressible turbulence is provided by two mono-

graphs (Chassaing, Antonia, Anselmet, Joly, and Sarkar

2002; Smits and Dussauge 2006) and review papers (Brad-

shaw 1977; Lele 1994).

There have been many studies of compressible turbulence

motivated by supersonic and hypersonic flight applications.

The supersonic boundary layer has probably received the

most attention in the compressible turbulence literature. At

high Mach number, there are large gradients in the temper-

ature owing to viscous heating and the effect of concomitant

density changes on the log-law, scaling laws for turbulence

statistics and flow structures have been studied. The occur-

rence of shocks in external flows and propulsion systems of

supersonic vehicles has prompted the study of the unsteady

interaction of shocks with the turbulent boundary layer. Su-

personic free shear layers and jets havef received considerable

attention motivated by the necessity of efficient fuel/air mix-

ing within a short residence time in a scramjet (supersonic

combustion ram jet) engine. Turbulence in supersonic jets

has also been studied in the context of jet aeroacoustics.

In high-energy devices and explosions, there is rapid

acceleration of density interfaces which leads to compress-

ibility effects. Gravitational acceleration has strong stabi-

lizing/destabilizing effects in environmental turbulent flows,

but turbulence in such flows is excluded from the scope of

compressible turbulence since the density change is small

compared to the reference density. The situation with ac-

celeration much larger than g introduces compressibility eff-

fects. Here, both the constant acceleration case correspond-

ing to the Rayleigh Taylor problem and the impulsive case

corresponding to the Richtmeyer-Meshkov problem, have

been studied. Density (temperature) changes are large in

turbulent combustion even in the low-speed regime and orig-

inate instabilities of the flame such as the Darrieus-Landau

instability and that due to differential diffusion of temper-

ature and species. The effect of these instabilities on flame

propagation in a premixed system is important to the effi-

ciency and control of combustion. Mixing of fuel and oxidant

in the presence of heat release is of interest in non-premixed

combustion.

ANALYTICAL PRELIMINARIES

Understanding the influence of density variation in tur-

bulent flow begins with the examination of the conservation

equations for a compressible fluid. Mass conservation is gov-

erned by

∂ρ

∂t
+ (v ·∇)ρ = −ρ∇ · v . (1)

Eq. (1) states that, not only is the density advected by

the velocity field as any other scalar but it also increases

(decreases) owing to volume compression (expansion). The

dilatation, d = ∇ · v, is a kinematic quantity that is a new

feature of compressible turbulence. Indeed, incompressible

flow is defined by d ≡ 0. The magnitude of d relative to

the vorticity magnitude ω, sometimes used as an analyti-

cal measure of compressibility, can be large in shocks and

explosions.

The momentum equation is

ρ
∂v

∂t
+ ρ(v ·∇)v = −∇p + ∇ · τ (2)
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where τ is the viscous stress tensor. The density affects the

velocity field through its presence in the inertia term on the

l.h.s of Eq. (2). Consider inviscid flow where there is a bal-

ance between the first three terms. If the pressure gradient

was the same as in the corresponding constant-density case,

then high-density fluid would have lower magnitude of ac-

celeration and the converse would be true for low-density

fluid. On the other hand, if ∇p/ρ was identical to the

corresponding constant-density value, then the velocity field

would remain unmodified. Of course, neither of these two

scenarios is correct but it motivates the derivation of an

equation for p. Another motivation for closer study of p is

that, in turbulent flow, it is the fluctuating pressure gra-

dients which drive velocity fluctuations in directions other

than the primary (mean flow) direction.

When density is changed owing to local heating, there

are large changes in viscosity, µ(T ), as in the supersonic

boundary layer and in combustion. Thus, the local Reynolds

number decreases approximately as T−1.7, assuming con-

stant mean pressure. In free shear flows, the change in

Reynolds number is not expected to be a significant issue

in high-Reynolds number flows but, since laboratory exper-

iments and simulations are seldom at that limit, there may

be some residual low-Re effects. In supersonic boundary

layers, the decrease in Re has important consequences since

the friction coefficient depends on Re. Furthermore, the re-

gion where the local Reynolds number, ρ(y)U(y)y/µ(y), is

small enough for direct viscous effects on the turbulence to

be important expands in size. Here, y is the wall-normal

distance.

The equation for internal energy (equivalently tempera-

ture) for an ideal gas is

ρ
∂CV T

∂t
+ ρ(v ·∇)T = −p∇ ·v + Φ + ∇ · (κ∇T ) + Q̇ . (3)

The temperature is advected by the velocity field and

diffuses by heat conduction as in incompressible, non-

isothermal flow. The pressure dilatation, p∇ · v, and the

viscous dissipation, Φ, are additional terms that account for

exchange between mechanical and internal energy, and are

no longer negligible when the turbulence is compressible.

The pressure dilatation is the reversible part of the energy

exchange and can be important in shocks while the viscous

dissipation is the irreversible transfer to internal energy. Q̇

is the energy release associated with combustion.

The equation of state for a single-component ideal gas is

p =
ρRgT

W
. (4)

where W is the molecular weight. It follows from Eq. (4)

that
dp

p
=

dρ

ρ
+

dT

T
. (5)

The origin of thermodynamic fluctuations determines the

relative magnitude of the terms in the above equation. For

example, in the entropy mode dp/p << dρ/ρ, dT/T . Con-

sequently density and temperature fluctuations have a cor-

relation coefficient approaching unity. The acoustic mode

has isentropic fluctuations so that all terms in Eq. (5) are of

comparable magnitude.

The vorticity, ω, occupies a paramount position in the

study of turbulence mainly because the vortex stretching

term underlies our physical picture of a cascade from large

to small scales in turbulence. Vortical motion is effective

in accomplishing large-scale stirring and transport, and the

notion of eddies in turbulence is almost synonymous with

vortices. At the same time it is worth noting that the strain

rate tensor, the other component of the velocity deformation

tensor, is also important because mixing at the molecular

level is efficiently accomplished by the amplification of scalar

gradients in a compressive strain field. The equation for ω

reads as

Dω

∂t
= (ω ·∇)v + ∇×

∇ · τ
ρ

− ω∇ · v +
∇ρ×∇p

ρ2

≈ (ω ·∇)v + ν∇2ω − ω∇ · v +
∇ρ×∇p

ρ2
. (6)

The second line of the above equation is a simplification that

follows by neglecting variation of fluid properties in the vis-

cous stress tensor. The last two terms in Eq. (6) constitute

the explicit effects of compressibility. The third term on the

r.h.s represents the increase (decrease) of vorticity by com-

pression (expansion) while the fourth term represents the

so-called baroclinic torque. In an inviscid and barotropic

process where p is solely a function of ρ, the quantity ω/ρ is

conserved showing that the vorticity field is strongly linked

to the density.

There are different choices for writing the equation for

pressure. The equation for temperature, Eq. (3), can be

converted to the following equation for the thermodynamic

pressure using the equation of state:

∂p

∂t
+(v·∇)p = −γp∇·v+(γ−1)Φ+(γ−1)∇·(κ∇T )+(γ−1)Q̇ .

(7)

Another possibility is to take the divergence of the mo-

mentum equation and obtain an equation for the pressure,

∇2p = −
∂2(ρuiuj)

∂xi∂xj
+

∂2τij

∂xi∂xj
+

∂2ρ

∂t2
. (8)

An equation for the fluctuating pressure can be derived

(Chassaing et al.2002) from Eq. (8). In the constant-density

case, it simplifies to a Poisson equation for the pressure. In

the case of a compressible fluid, the following relationship

between changes in density, pressure and entropy,

dρ =
1

c2
dp−

ρ

Cp
dS,

is used to convert the ∂2ρ/∂t2 term in Eq. (8) to a term in-

volving ∂2p/∂t2 so that a wave equation for pressure results.

The change from infinite speed of propagation to finite speed

of pressure waves has important physical consequences. If τ

is the decorrelation time for velocity fluctuations of an eddy

of size l, the pressure fluctuation generated inside the eddy

can travel only a finite distance, cτ , instead of the instanta-

neous communication throughout the flow domain allowed

by the incompressible assumption. Furthermore, the zone of

influence, instead of being spherical, is anisotropic in shear

flow as discussed by Papamoschou(1993), see Fig. 1.

Decomposition of the governing equations

Kovasznay (1953) was probably the first to attempt a

systematic decomposition of the Navier-Stokes equation to

identify deviations from incompressibility. He identified the

following three modes:

vorticity mode : ω′ 6= 0 ρ′ = p′ = s′ = 0

acousticmode : ω′ = s′ = 0 ρ′ = p′ 6= 0

entropy mode : ω′ = p′ = 0 s′ = ρ′ 6= 0 (9)

By linearizing the Navier-Stokes equations with respect to

a stationary state, he showed that these three modes do

12



(a)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x
2

U
1
(x 

2
)

(b)
-1000 0 1000

-400

-200

0

200

400

x
1

x
2

Figure 1: Sketch of pressure wave propagation in uniform

shear flow: (a) Mean velocity profile, (b) Ray trajectories

emanating from source at initial angular spacings of π/4.

From Thacker et al.(2007).

not interact in that approximation and each satisfies its

own equation. One lasting contribution of the Kovasznay

modal decomposition is that it clearly identifies the qualita-

tive difference in density fluctuations depending on its origin

i.e., ρ′ in the acoustic mode satisfied a wave equation while

ρ′ in the entropy mode satisfies a diffusion equation. But,

the modal decomposition has limitations since, first, vorti-

cal turbulence itself is a nonlinear phenomenon and, second,

compressible turbulence is the problem where the interaction

terms between the various modes are important.

Lighthill (1952) proposed the acoustic analogy by a

physically-based interpretation of the wave equation for

pressure. He assumed that the r.h.s term involving the ve-

locity field occupied a compact domain, was governed by

incompressible turbulence phenomenology, and constituted

an equivalent compact acoustic source. The density (pres-

sure) fluctuations i.e; the acoustics external to the compact

domain was taken to be the effect of this source. By con-

struction, Lighthill considered the one-way coupling from

turbulence to density fluctuations, thereby bypassing the

problem of how compressibility influences turbulence.

There have been proposals to decompose the compress-

ible Navier-Stokes equations into interacting “compressible”

and “incompressible” components through a theory valid for

small Mt, the Mach number based on fluctuations. The in-

terest in low Mt theory arises because Mt is small even in su-

personic flows. The Lighthill acoustic analogy can be viewed

as one such effort which, although a one-way interaction,

serves its purpose, namely, prediction of noise generated by

subsonic flow. A generic decomposition proceeds as follows.

The velocity, density and pressure are decomposed by

v = vI(x, t) + vC(x, t) ,

ρtotal = ρ0 + ρ ,

ptotal = P0 + p(x, t) = P0 + pC(x, t) + pI(x, t) .(10)

Here ρ0 and P0 are the reference thermodynamic density

and pressure. A kinematic decomposition for the velocity

is the Helmholtz decomposition that is convenient when the

turbulence is homogeneous: vI is solenoidal and rotational

and vC is irrotational and dilatational.

Decomposition of the pressure is not as clear cut as that

for the velocity. There appears to be two main possibilities

as will be discussed below: the acoustic decomposition that

allows pressure waves traveling with the speed of sound at

lowest order and the non-acoustic decomposition that does

not. Mathematically, the first approach retains the acoustic

time scale, τA = l/c, in the limit Mt → 0 of the equation

governing vC, while the second does not. The acoustic time

scale is related to the convective time scale, τ = l/u, by

τA = τMt and is a fast time scale. Here, u and l characterize

the velocity and length scales of the fluctuations.

Acoustic decomposition.

A decomposition (Erlebacher, Hussaini, Kreiss, and

Sarkar 1990) that retains the acoustic mode as Mt → 0

is as follows. These authors neglect heat conduction and

viscous terms, assume an isentropic relation between ther-

modynamic fluctuations, and retain terms up to first order

in the pressure fluctuation, p, to obtain:

∂v

∂t
+ (v ·∇)v +

1

ρ0
∇p = 0

∂p

∂t
+ (v ·∇)p + γ(P0 + p)∇ · v = 0 (11)

They define vI and pI as the solution of the incompressible

flow problem,

∇ · vI = 0

∂vI

∂t
+ (vI ·∇)vI = −

1

ρ0
∇p

∇2pI = −
∂2vI

iv
I

j

∂xi∂xj
(12)

An evolution equation for (vC, pC) is obtained by inserting

the decomposition, Eq. (10), into Eq. (11) and then sub-

tracting Eq. (12) from the result. The following equations

for the compressible mode ensue:

∂vC

∂t
+

1

ρ0
∇pC + . . . = 0

∂pC

∂t
+ γP0∇ · vC + . . . = −

∂pI

∂t
− vI ·∇pI (13)

where the . . . in Eq. (13) denote the interaction terms be-

tween the incompressible and compressible variables. On the

fast time scale, the convective terms are neglected to give a

homogeneous system, the so-called acoustic truncation:

∂vC

∂t
+

1

ρ0
∇pC = 0

∂pC

∂t
+ γP0∇ · vC = 0 (14)

The system, Eq. (14), is hyperbolic with strongly asym-

metric coefficients. Erlebacher et al.(1990) have shown that

the above decomposition describes the evolution of the di-

latation and pressure in compressible isotropic turbulence.

The compressible velocity, vC, is known if pC is known.

Let P0 be the ambient pressure. From Eq. (13), it is seen

that pI forces pC leading to the possibility that pC/P0 =

O(pI/P0) = O(Mt
2); the consequences of such an assump-

tion on the scaling laws for the dilatational variance and

pressure-dilatation correlation have been explored (Sarkar,

Erlebacher, Hussaini, and Kreiss 1991; Sarkar 1992).

Nonacoustic decomposition.

The second possibility is to ignore the fast acoustic

time scale. Ristorcelli (1997) does so and further assumes

pC/pI = O(Mt
2) for consistency. He then obtains the

lowest order equations to be the incompressible flow equa-

tions, Eq. (12), plus the linearized isentropic relationship,

dpI/p0 = γdρ/ρ0, between the incompressible flow pressure

and the density fluctuation. The dilatation appears in the
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Figure 2: Evolution of F in isotropic turbulence. From

Sarkar et al.(1991).

mass conservation equation at next order,

d = ∇ · v = −
1

ρ0

Dρ

Dt

= −
1

γp0

DpI

Dt
(15)

Density (temperature) fluctuations directly related by the

isentropic relationship to the incompressible flow pressure,

as in Eq. (15), are conventionally called pseudo-sound to

distinguish them from sound waves which, although also

isentropic, propagate in space. The relationship, Eq. (15),

between dilatation and pressure has been used to model the

dilatational variance and pressure-dilatation correlation (Ze-

man 1991; Ristorcelli 1997).

Rehm and Baum (1978) considered low-Mach number

combustion and approximated the equations to avoid the

fast acoustic time scale. The energy equation, Eq. (7), is

rearranged:

d = ∇ · v =
1

γp0

„
−

dpC

dt
+ (γ − 1)(Q̇ + ∇ · (κ∇T ) + Φ)

«
(16)

The term, dpC/dt, is obtained by integrating the above

equation over the volume with the appropriate boundary

conditions. Then, Eq. (16) can be interpreted as an explicit

equation for the dilatation d. In the case of non-reacting

flows (Q̇ = 0) but with large temperature differences i.e.

dT/T >> dp/p = O(Mt
2), the term dpC/dt on the r.h.s

can be neglected. Such a simplification was successfully

used (Borodai and Moser 2001) to separate non-acoustic di-

latation from acoustic dilatation in a DNS database of a

supersonic boundary layer.

ISOTROPIC TURBULENCE

Isotropic turbulence in a box is an idealized initial value

problem which is particularly useful to study the interaction

of solenoidal and dilatational velocity components as well as

deviations from incompressible behavior. Assume an ideal

gas. For a given initial spectral shape, the parameters that

measure compressibility are: Mt, the fraction of kinetic en-

ergy in the dilatational mode χ = qC2
/q2, and the r.m.s

thermodynamic fluctuations: ρ′/ < ρ > and T ′/ < T >.

There have been several numerical simulations of isotropic

turbulence spanning this wide parameter range since the first

study (Passot and Poquet 1987) which employed 2-D equa-

tions.

Insofar as the energetics are concerned, the influence of

compressibility on the decay rate of the turbulent kinetic en-

ergy, K, is of interest. The equation governing K in isotropic

turbulence is:

∂K

∂t
= −ε+ < p′d′ >= −(εI + εd)+ < p′d′ > , (17)

where εs = (< µ > / < ρ >) < ω′iω
′
i > is the solenoidal

dissipation rate and εd = (4/3)(< µ > / < ρ >) < d′d′ >

is the dilatational dissipation rate. If εs remains unaffected

by compressibility, then ε would be augmented owing to εd.

Simulations of unforced isotropic turbulence generally find

that there is a small-to-modest increase in ε which is depen-

dent on Mt and the choice of initial conditions.

The role of the acoustic mode in the evolution from ini-

tial conditions has been investigated (Sarkar, Erlebacher,

Hussaini, and Kreiss 1991). They solved the initial value

problem of random fluctuations that evolve according to the

acoustic truncation, Eq. (14), to find that the initial data

evolves on the fast time scale, τA = l/c towards equipartition

between kinetic and potential energy in the compressible

component,

F =
γMt

2χ

< p′C2 > / < p >2

=
< ρ > qC2

< p′C2 > /(γ < p >)
=

K.E.

P.E.
→ 1 (18)

The rapid evolution, on the acoustic time scale, of F towards

unity in isotropic turbulence (see Fig. 2) was demonstrated

for Mt up to 0.5 (Sarkar et al.1991). Later in time, F was

found to oscillate around unity while the variance of pres-

sure and dilatation decayed at the slow eddy-turnover time

scale. The relation F → 1 was also observed (Cai, O’Brien,

and Ladiende 1997) for the situation when the entropy mode

dominated initially i.e. initial temperature (density) fluctu-

ations were anti-correlated and were also much larger than

pressure fluctuations. It appears that Eq. (18) is a good

approximation for the acoustic mode. Nevertheless, to esti-

mate qc (equivalently d), one must make a statement about

pC . If we take pC/ < p >= O(pI/ < p >) = (Mt
2) because

pC is forced by pI , it follows that χ ∝ Mt
2. The impli-

cations of such a scaling is that εd ∝ εsMt
2. However, if

we postulate that pC/pI → 0 as Mt → 0, for example, by

taking pC/ < p >= O(Mt
3) then χ = O(Mt

4). The initial

data can be chosen to minimize acoustic effects and the di-

latational variance and therefore, εd, depends on the initial

conditions (Ristorcelli and Blaisdell 1997). For instance, one

could choose a solenoidal velocity field, zero density fluctua-

tions, and a pressure field that satisfies a Poisson equation.

In this case too, the dilatation builds up on an acoustic time

scale but its magnitude is reduced relative to a case where

p′C(t = 0) is comparable to p′I(t = 0).

There is the intriguing possibility of eddy shocklets, lo-

calized jumps in the fluctuating field typical of a shock wave.

A model for the dilatational dissipation based on eddy shock-

lets has been proposed by Zeman (1990). Eddy shockets

are found in isotropic turbulence if Mt and Re are suffi-

ciently large, especially in 2-D simulations. However, they

are sparse and infrequent in 3-D simulations up to Mt = 0.5,

and the dilatational dissipation associated with them is small

compared to the solenoidal dissipation rate (Lee, Lele, and

Moin 1991).

The eddy damped quasi-normal Markovian (EDQNM)

model, has been used to simulate forced isotropic com-

pressible turbulence at high Reynolds number (Bertoglio,

Bataille, and Marion 2001). Approximate equipartition be-

tween dilatational energy and pressure was observed at each

wave number i.e. F (k) ' 1, and the dilatational dissipation

14



 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

(d
δ θ

/d
t)

/(
dδ

θ0
/d

t)

Mc

Langley experimental curve
LES, Foysi and Sarkar (2007)

DNS, Pantano and Sarkar (2002)
Hall, Dimotakis and Rosemann (1993)

Clemens and Mungal (1995)
Papamoschou and Roshko (1988)

Samimy and Elliot (1990)
Debisschop and Bonnet (1993)

Figure 3: Growth rate of the mixing layer as a function of

Mc.

was found to be proportional to Mt
2. The solenoidal veloc-

ity spectrum followed a k−5/3 law while both, dilatational

and pressure spectra, showed a steep k−11/3 law.

HIGH-SPEED MIXING LAYER

The decrease in thickness growth rate of the mixing

layer as a function of convective Mach number, Mc =

(U1 −U2)/(c1 + c2), has been observed in laboratory exper-

iments (Papamoshcou and Roshko 1988; Elliot and Samimy

1990; Hall, Dimotakis, and Rosemann 1993; Debisschop and

Bonnet 1993; Clemens and Mungal 1995) and DNS (Vreman,

Sandham, and Luo 1996; Freund, Lele, and Moin 2000; Pan-

tano and Sarkar 2002). It is remarkable that, in the absence

of mean density variation, the decrease in thickness growth

rate is so strong, about a factor of 3 reduction at Mc = 1.

Fig. 3 is a compilation of experimental and numerical data.

The Langley curve, a consensus of various laboratory data,

is regarded as representative of the influence of Mc when

the two streams have the same composition; data on Fig. 3

with significantly lower growth rate correspond to gases with

substantially different density.

DNS of the temporally evolving mixing layer has been

used to explore the reasons for the stabilizing effect of Mc

on the mixing layer growth rate as summarized below. Vre-

man et al.(1996) performed DNS for Mc = 0.2, 0.6, 0.8, 1.2.

Under the assumption of zero normal velocity and negligi-

ble molecular dissipation of the mean flow, they showed that

the turbulent production, integrated over the mixing layer, is

proportional to the growth rate of the momentum thickness.

Thus, the reduced growth rate is equivalent to a reduced

production i.e. reduced R12/∆u2. The r.m.s pressure fluc-

tuation, prms/ 〈ρ〉∆u2, was found to be reduced and so was

the pressure-strain correlation, Π11. Vreman et al.(1996)

also proposed a coherent vortex model with the azimuthal

velocity constrained to be less than or equal to the sonic

value to explain the reduced pressure.

Freund et al.(2000) performed DNS of an annular mixing

layer over the range 0.1 ≤ MC ≤ 1.8. They also found that

the pressure fluctuations and the pressure-strain term were

reduced as a function of Mc. The transverse length scale, l2,

determined by the two-point correlation of the radial velocity

fluctuation, was taken to be a large-eddy length scale and

it was found that l2 decreased with increasing Mc. The

gradient Mach number, Mg = Sl2/c increased linearly with

Mc up to Mg = 0.75 and then, after exhibiting a sublinear

growth, saturated at Mg ' 2.

Pantano and Sarkar (2002) performed DNS of the plane
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mixing layer for Mc = 0.3, 0.7, 1.1. They reconfirmed the

decrease in pressure fluctuations and pressure-strain corre-

lation with increased Mc and performed an analysis of the

wave equation for p′ that predicted a decrease. This analysis

was performed at the centerline of the mixing layer (where

< u >= 0) after assuming local homogeneity of the turbu-

lence, neglecting mean convection in the wave operator and,

based on the DNS data, assuming an exponential decorre-

lation in time of two-time turbulence correlations. These

authors obtained the following expression for the pressure-

strain correlation:

Πij

ΠI
ij

= 1−
1

ΠI
ij

Z ∞

−∞

ΨI
ij(k)

1 + (coτIk)2
dk . (19)

Here, ΠI
ij is the pressure-strain correlation in the incom-

pressible case and ΨI
ij(k) is its Fourier transform. Eq. (19)

shows that all components of the pressure-strain tensor show

monotone decrease with decreasing speed of sound in com-

pressible shear flow. Since the turbulence time scale of a

wave number k is related to its turnover time i.e. τIk '
1/u(k), Eq. (19) implies that energy-containing modes with

higher M(k)2 = u(k)2/c2 have higher relative reduction.

DNS has also been employed to investigate the effect of den-

sity ratio, s = ρ2/ρ1 = 1, 2, 4, 8, at Mc = 0.7 (Pantano

and Sarkar 2002). They found that, at s = 8, the momen-

tum thickness growth rate decreased to 40% of the value

at s = 1. The reason was identified to be the shift of the

dividing stream line to the low-density side that decreases

< ρ > R12 rather than a decrease in R12.

LES of the high-speed mixing layer

The capabilities of LES to capture the observed de-

pendence on Mc have been explored in a recent study by

Foysi and Sarkar (2007). The subgrid stress tensor, τij =guiuj − ũiũj , was modeled using the dynamic Smagorinsky
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Mc Reω,0 Nx Ny Nz
Lx
δθ0

Ly

δθ0

Lz
δθ0

0.3 705 768 48 193 1720.4 108 344

0.9 705 768 96 193 1720.4 108 344

1.2 705 768 96 193 1720.4 108 344

Table 1: Parameters, Foysi and Sarkar (2007).

model. The filtered internal energy equation was solved with

the subgrid term given by the sum of the subgrid dissipation

and a eddy diffusivity model for the subgrid heat flux:

−τij
∂ũi

∂xj
+

ρ̄νt

Prt

∂T̃

∂xj
. (20)

The parameters of LES cases are shown in Table 1. The

LES grid of approximately 14 million grid points is compa-

rable to the 17 million points DNS grid (Pantano and Sarkar

2002), but the box size is 5 times larger in the streamwise

direction and 4 times larger in the cross-stream direction to

allow a larger time interval of self-similar evolution. The

final Reynolds number based on the vorticity thickness is

Reω,f ' 16, 000. The LES results in Figure 4 show regions

of self-similar growth in each case with the slope decreas-

ing with increasing Mc. The thickness growth rates of the

LES cases (open squares in Fig. 3) are close to but slightly

higher than the Langley curve. Figs. 5-6 show profiles of

streamwise, cross-stream and spanwise turbulence intensity.

The Mach number does not affect the shape of the pro-

files or the usual ordering of the turbulence intensities of

streamwise > spanwise > cross-stream. However the peak

values of all the turbulence intensities decrease with increas-

ing Mc. In the incompressible self-similarly evolving mixing

layer, the centerline pressure fluctuations, prms/(ρ0∆u2),

and the pressure-strain correlation integrated across the

mixing layer, Π̄ij/(ρ0∆u3), become invariant with time.

These quantities, normalized by their values at Mc = 0.3,

are shown in Fig. 7. In both the DNS and LES, the r.m.s.

pressure and all components of the pressure-strain correla-

tion show monotone decrease.

The anisotropy, bij , of the Reynolds stress tensor is a

measure of the partition of the turbulent energy into the

three coordinate directions. The effect of compressibility

on bij was ambiguous in earlier studies. The earlier DNS

studies by Vreman et al.(1996) and Freund et al.(2000) show

that the normal stress anisotropy increases with increasing

Mc because R11 decreases less than the other components.

However, the more recent DNS (Pantano and Sarkar 2002)

show that such a trend occurs during the transient but, later

in time during the self-similar stage, the components of bij

are relatively unaffected by Mc. The LES results agree with

the DNS data as shown in Table 2.
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Figure 7: Influence of Mc on centerline r.m.s pressure fluc-

tuations and pressure-strain rate correlation integrated over

the mixing layer.

Mc b11 b22 b12
0.3 0.14 -0.06 0.18

0.7 0.15 -0.10 0.15

1.1 0.14 -0.10 0.16

Mc b11 b22 b12
0.3 0.13 -0.075 0.16

0.9 0.14 -0.10 0.15

1.2 0.15 -0.10 0.15

Table 2: The Reynolds stress anisotropy in the self-similar

region: left table from DNS of Pantano and Sarkar (2002),

right table from LES of Foysi and Sarkar (2007).

Figure 8: Scaling of the dilatational dissipation: symbols,

various cases, —- model of Sarkar et al.(1991), −−−−model

of Zeman (19930). From Blaisdell et al.(1993).

UNIFORM SHEAR FLOW

Uniform shear (also called homogeneous shear flow) has

mean velocity (Sx2, 0, 0) with S = constant, and is a useful

model problem because, although a shear flow, the turbu-

lence is homogeneous. The first DNS (Feiereisen, Reynolds,

and Ferziger 1981) was unable to draw conclusions about

the influence of compressibility. Later, Blaisdell, Mansour

and Reynolds (1991, 1993) and Sarkar, Erlebacher and Hus-

saini (1991) conducted independent DNS studies which iden-

tified significant changes with increasing Mach number. The

growth rate of the turbulent kinetic energy,

Λ =
1

SK

dK

dt

was found to decrease systematically with increasing initial

Mt in both studies, to approximately 65% of the incom-

pressible value at Mt ' 0.4. Explicit dilatational terms,

< p′d′ > −εd, on the r.h.s of the K equation were found to

be responsible for the reduced growth rate. Unlike isotropic

turbulence, the results after an initial transient were fairly

insensitive to the initial data because the mean shear, S,

couples the dilatation and spanwise vorticity fluctuation in

the linearized inviscid equations (Blaisdell, Mansour, and

Reynolds 1993). Both studies found that the DNS data fol-

lowed the model of Sarkar et al.(1991), εd ' 0.5εsMt
2 ,
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Figure 9: Growth rate of K in uniform shear flow normalized

by its incompressible value. Open symbols correspond to

series A and filled symbols to series B. From Sarkar (1995).

at low Mt, but there was a saturation at higher Mt to

εd/εs ' 10−15%. Fig. 8 illustrates the scaling of the dilata-

tional dissipation. Eddy shocklets were found in the DNS of

Blaisdell et al. (1993) and the intermediate values of dilata-

tion that occurred at the peripheries of the shocklets were

found to contribute significantly to εd.

Sarkar (1995) performed additional simulations to isolate

the effect of the gradient Mach number, Mg = Sl2/c, from

that of Mt. In series A, the gradient Mach number was var-

ied in the range 0.22 < Mg0 < 1.32 keeping Mt0 = 0.4

constant while, in series B, 0.13 < Mt0 < 0.40 keeping

Mg0 = 0.22 constant. Fig. 9 shows that a large reduction in

growth rate occurs in series A. The evolution equation for

K in homogeneous shear flow can be rewritten as:

Λ =
P

SK
−

εs

SK
−

(εd− < p′d′ > / < ρ >)

SK

=
P

SK
(1−Xε) , (21)

where P is the turbulent production and, in the second line,

Xε lumps together all terms other than shear production.

It was found that P/SK exhibits a large decrease from its

incompressible value of 0.15 to 0.06 while Xε ' 0.65 ± 0.05

changes little between cases. This result was independently

verified using DNS (Simone, Coleman, and Cambon 1997).

Thus, if P/SK is interpreted as the analog of normalized

production in the inhomogeneous mixing layer, the stabiliz-

ing effect of compressibility is due to reduced production in

both flows. The magnitude of shear stress anisotropy de-

creases and those of the normal stress anisotropies increase

with increasing Mg in series A. Series B exhibits a moderate

reduction of Λ similar to the earlier simulations. Further-

more, similar to these earlier studies, the reduction in series

B, unlike that in series A, is found to be mainly due to

< p′d′ > and εd

The evolution of pressure fluctuations in homogeneous

shear flow was reported by Sarkar (1996). Fig. 10 shows

that compressibility inhibits the pressure fluctuations, sim-

ilar to the trend seen in DNS and LES of the mixing layer.

In Case A4 with the largest Mg , the r.m.s. pressure ex-

hibits a monotone decrease after St = 3. Interestingly, the

cross-stream velocity fluctuations, < v′2 >, also exhibits

a monotone decrease after St = 4. A connection between

cross-stream perturbations and pressure perturbations has

been identified in a linearized analysis (Friedrich and Bertol-

loti 1997). The reduction of pressure fluctuations was also

noted and terms in the pressure-variance equation examined

in the DNS by Hamba (1999).

Simone, Coleman and Cambon(1997) peformed both

DNS and an RDT analysis. The RDT analysis involved the

Figure 10: Evolution of r.m.s pressure fluctuations in homo-

geneous shear flow : —, case A1; ...., case A2; − · −, case

A3; −−−, case A4. From Sarkar (1996).

0.0 1.0 2.0 3.0
t

-5

-4

-3

-2

-1

0

1

2

3

4

G
(k

)

(a)

0.0 1.0 2.0 3.0
t

-5

-4

-3

-2

-1

0

1

2

3

4

G
(k

)

(b)

Figure 11: Time evolution of Green’s functions bG in uniform

shear flow at Mt = 0.2 and Mg = 1.0. Two values of the

angle of propagation φ in the shear (x1 − x2) plane and

with respect to the downstream x1 direction are shown: (a)

φ = 15 degrees, (b) φ = 105 degrees.

linearized, invisicid equations for velocity, v, and pressure,

p, which were transformed to wave number space and then

numerically solved. An important finding was that both

RDT and DNS showed that, for St < 4, the growth rate Λ

increased with increasing Mg and, for 4 < St < 15, there

was a stabilizing effect i.e. Λ decreased with increasing Mg .

Thus, linear RDT analysis is successful in qualitatively pre-

dicting the stabilizing effect of compressibility. There were

some discrepancies between RDT and DNS too: RDT over-

predicted the growth rates compared to DNS; the long-time

values of b12 in the RDT solution appear to asymptote to a

unique value while those in the DNS remain separated ac-

cording to the initial value of Mg . Nonlinear and dissipative

effects are evidently important for the long-time evolution.

Thacker, Sarkar and Gatski (2007) performed a Green’s

function based analysis of the pressure fluctuations. The

following nondimensional equation governs pressure fluctu-

ations in a flow with constant mean velocity gradients:"„
Mt

∂

∂t
+ MgŨj

∂

∂xj

«2

−
∂2

∂xj∂xj

#
p′

= 2

„
Mg

Mt

«
∂Ũi

∂xj

∂(ρu′′j )

∂xi
+

„
Mg

Mt

«2 ∂Ũi

∂xj

∂Ũj

∂xi
ρ′

+
∂2

∂xi∂xj

h
〈ρ〉

“
u′′i u′′j − gu′′i u′′j

”
+ ρ′u′′i u′′j

i
. (22)

Here, Mt = uo/co and Mg = Sl0/c0 are the reference val-

ues for turbulent Mach number and gradient Mach number,

respectively. It can be seen that both Mt and Mg appear

independently in the wave operator on the l.h.s of the above

equation and that, in the limit Mt, Mg → 0, the Poisson

equation with rapid and slow forcing terms that is familiar

from incompressible flow is recovered.

Thacker et al.(2007) derived an exact expression for the

Green’s function for the convected wave operator on the l.h.s

of Eq. (22) in wave number space. The Green’s function,
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Eqs. (27)-(28) of Thacker et al.(2007), is a combination

of parabolic cylinder functions. In the absence of con-

vection by mean flow on the l.h.s, the shear-free Green’s

function (Pantano and Sarkar 2002) is recovered which cor-

responds to undamped oscillation with the acoustic time

period 2π/ck. Mean shear introduces a qualitative change:

both the amplitude and frequency of the oscillation are vari-

able. Furthermore, shear introduces strong anisotropy in

the Green’s function as may be anticipated from the sketch

of shear-induced distortion of sound waves, Fig. 1. The

Green’s function shows a secular damping trend in addi-

tion to oscillations, Fig. 11. Upstream propagating waves

may exhibit transient amplificiation as shown in Fig. 11(b);

however, the response of waves in all directions eventually

do not show amplification after St > 2−4. Waves propagat-

ing in the cross-stream x2 direction do not suffer any change

in amplitude or frequency. An increase in Mt decreases the

amplitude and time scale of the oscillations while increasing

the wave number also has the same effect.

The exact Green’s function along with assumptions of

an exponential form for temporal decorrelation, the Kol-

mogorov k−5/3 law for the isotropic energy spectrum, and

the k−7/3 law for the anisotropic energy spectrum, were

employed by Thacker et al.(2007) to calculate the rapid

pressure-strain correlation. The (Mg , Mt) values were cho-

sen to be representative of a mixing layer in one set of

calculations and of a boundary layer in another set. It was

found that, when 0 < Mt < 0.4, the boundary layer values

led to a large reduction of the pressure-strain correlation

while the mixing layer values did not. The reason is that

the boundary layer length scale near the wall is small lead-

ing to smaller Mg and weaker influence of the acoustic mode,

specifically, the influence of the wave operator in the pres-

sure equation.

SUPERSONIC CHANNEL FLOW

The influence of compressibility on wall-bounded turbu-

lent flows, at least up to M = 5, is found to be mainly due

to variation in mean properties. A comprehensive review of

laboratory data on subsonic and supersonic boundary lay-

ers and inferred conclusions about compressibility effects is

given in the monograph of Smits and Dussauge (2006). Here,

results from DNS of supersonic channel flow with cooled

walls are summarized.

The first DNS of supersonic channel flow was performed

at (M, Re) = (1.5, 3000), (3, 4880) by Coleman, Kim and

Moser (1995). In this model problem, the flow is driven

by a spatially constant, streamwise body force f = fδi1 on

the r.h.s. of the momentum equation, Eq. (2), instead of a

mean pressure gradient i.e. d < p > /dx = 0. The walls

are kept at a constant temperature lower than the adiabatic

temperature so that there is heat transfer from the fluid to

the walls. Since the streamwise and spanwise gradient of

all mean variables is zero, the turbulence is homogeneous

in these directions and statistics depend only on the wall-

normal x2 (y) direction. Owing to the cooled walls and

the viscous heating, the temperature increases from its wall

value leading to large property changes in the near-wall re-

gion, see Fig. 12.

Coleman et al.(1995) assessed the applicability of

Morkovin’s hypothesis that, in supersonic boundary lay-

ers, turbulence statistics appropriately normalized by the

mean density, would be unaffected by Mach number and also

tested the underlying assumptions. The first assumption

that pressure fluctuations are small relative to other thermo-
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Figure 2. Outer scaling of the turbulent stresses, ρ̄Rij : (a) shear stress, (b) streamwise stress.

3. The turbulent stress tensor

In this section, we study the turbulent stress tensor, ρ̄Rij = ρui
′′uj

′′, with ui
′′ denoting

the Favre fluctuation (u′
i denotes the corresponding Reynolds fluctuation).

3.1. Outer scaling

Figure 2 shows profiles of the shear and streamwise stresses using outer scaling, that
is, using τw and x2/h. Clearly, for sufficiently large x2/h, compressible and incom-
pressible cases collapse onto a universal profile. This conclusion holds for spanwise
and wall-normal components too. (We note that in this, and many other figures, the
M0.3 case and the I1 case with similar Reτ = 180 are practically indistinguishable.)

An explanation of the outer scaling follows after first integrating the ū1-equation
from the wall to obtain

µ

µw

∂u1
+

∂x+
2

− ρ̄R12

τw

= 1 − x2

h
, (3.1)

where correlations involving viscosity fluctuation, being small, are neglected. Equa-
tion (3.1) implies that, when x2/h is sufficiently large to allow neglect of the viscous
stress, ρ̄R12/τw is a linear function of x2/h. The viscous stresses are taken to be
negligible when x+

2 > 50 (equivalently, x2/h > 50/Reτ ) in incompressible flow so that,
with increasing Reτ , the region with outer scaling thickens. Thus, the shear stress in

Figure 12: Wall-normal variation of mean viscosity (lines)

and mean density (symbols) in supersonic channel flow with

cooled walls. From Foysi et al.(2004).

Case M Re Reτ Nx1 Nx2 Nx3

M0.3 0.3 2820 181 192 129 160

M1.5 1.5 3000 221 192 151 128

M3.0 3.0 6000 556 512 221 256

M3.5 3.5 11310 1030 512 301 256

Table 3: DNS of supersonic channel flow: flow and computa-

tional parameters. From Foysi, Sarkar and Friedrich (2004).

dynamic fluctuations is borne out. The second assumption

that fluctuations in total temperature, T ′0/ < T0 >, is negli-

gible is only marginally satisfied since the r.m.s value of this

quantity approaches 20% at M = 3. Nevertheless, normal-

ized turbulence statistics such as

− < ρ > R12

τw
, l =

< u′1u′2 >1/2

d < u1 > /dx2
(23)

were found not to be affected by M lending support to

Morkovin’s hypothesis. Since l is uninfluenced by M , it im-

mediately follows that the Van-Driest transformation,

< u >+
1,V D=

Z ū+
1

0

p
ρ̄/ρwdū1 , (24)

will lead to a log law in < u >+
1,V D (x2

+) with incom-

pressible boundary layer values: κ ' 0.41, B ' 5.0. The

DNS data were in reasonable agreement with such a log law.

The thermodynamic fluctuations were mostly non-acoustic

although there was a superposed low-mode acoustic signa-

ture. It was also found that a semi-local inner scaling, based

on wall shear stress and local mean properties,

x2
∗ =

x2u∗τ

< µ > / < ρ >
=

x2

p
τw/ < ρ >

< µ > / < ρ >
, (25)

led to better collapse of turbulence profiles than the use of

x2
+ = x2uτ / < ν >. In a companion paper (Huang, Cole-

man, and Bradshaw 1995), the DNS database was further

interrogated. These authors found that the contribution of

< p′d′ > and εd to the K-balance was small, order 1 %,

compared to the 10-15% contribution in uniform shear flow.

Furthermore, they found that the strong Reynolds analogy,

T ′ ∝ −u′, was violated because of significant variation in

the total temperature and proposed a modification.

Foysi, Sarkar and Friedrich (2004) examined the inner

and outer scalings of the turbulent stresses, < ρ > Rij , in

supersonic channel flow, parameters as shown in Table 3. To

discriminate between M and Re effects, these authors used

incompressible cases I1, I2 and I3 at Reτ = 180, 395, 590,

respectively, from Moser, Kim and Mansour (1999). They

found that the use of x2
∗ instead of x2

+ collapsed the lo-

cation of the peak stresses but not the magnitude of the
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Figure 5. Balance of ρ̄R11, normalized by τ 2
w/µ̄, with symbols representing incompressible

case I3 and lines case M3.0: (a) production, dissipation, and viscous diffusion, and (b) pressure
strain, turbulent diffusion, and mass flux variation.

We have considered the turbulence transport equations normalized with ρwu4
τ/νw ,

customary in the incompressible situation, as a function of y+, finding that case M3.0,
when compared with case I3 at similar Reτ , shows no tendency for collapse. Clearly, an
alternative inner scaling is required. Consider the turbulent production, P . Away from
the viscous layer, −ρ̄R12 = τw(1 − x2/h), while the mean shear is ∂ũ1/∂x2 � u∗

τ/κx2, so
that

P =
τ 2
w

µ̄κ

(

1

x∗
2

− 1

h∗

)

. (3.2)

Equation (3.2) implies that the Reynolds stress budget should be normalized with
τ 2
w/µ̄ and provides additional support for the semi-local coordinate, x∗

2 . The balance
of ρ̄R11 in figure 5(a) shows that the dominant terms in the near-wall region, namely
the production, dissipation and viscous diffusion, do not differ significantly between
cases I3 and M3.0. However, as shown by figure 5(b), the pressure–strain correlation,

Πij = p′s ′
ij = p′(∂u′′

i /∂xj + ∂u′′
j/∂xi)/2

differs significantly between cases. Since semi-local inner scaling is only a partial
improvement over wall-based scaling without giving complete collapse of the turbu-
lence balances, the turbulent stress profiles also do not collapse for incompressible
and compressible cases when using x∗

2 .
A heuristic explanation of why the local value, ρ̄, does not preserve inner scaling

follows from the fact that the pressure gradient, ∇p, in the momentum equation is
force at a distance. There is a non-local relation between pressure and fluid inertia.
Mathematically, inversion of the ∇2 operator in the pressure equation leads to a space
integral in the solution. Physically, ∇p at a point P involves momentum per unit
volume of the entire turbulent ‘eddy’ at P whose vertical extent can be estimated
using a two-point velocity correlation, taken here to be the wall-normal velocity
associated with ‘active’ turbulence, see figure 6(a). Label the two points where
u2(x1, x2, x3)u2(x1, x2 + y, x3), normalized by its maximum, drops below 0.1 as y−
and y+. Then,

ρe(x2) =
1

y+(x2) − y−(x2)

∫ y+(x2)

y−(x2)

ρ̄(y) dy

represents the effective density of the fluid volume that influences point P through

(b)
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Figure 5. Balance of ρ̄R11, normalized by τ 2
w/µ̄, with symbols representing incompressible

case I3 and lines case M3.0: (a) production, dissipation, and viscous diffusion, and (b) pressure
strain, turbulent diffusion, and mass flux variation.

We have considered the turbulence transport equations normalized with ρwu4
τ/νw ,

customary in the incompressible situation, as a function of y+, finding that case M3.0,
when compared with case I3 at similar Reτ , shows no tendency for collapse. Clearly, an
alternative inner scaling is required. Consider the turbulent production, P . Away from
the viscous layer, −ρ̄R12 = τw(1 − x2/h), while the mean shear is ∂ũ1/∂x2 � u∗

τ/κx2, so
that

P =
τ 2
w

µ̄κ

(

1

x∗
2

− 1

h∗

)

. (3.2)

Equation (3.2) implies that the Reynolds stress budget should be normalized with
τ 2
w/µ̄ and provides additional support for the semi-local coordinate, x∗

2 . The balance
of ρ̄R11 in figure 5(a) shows that the dominant terms in the near-wall region, namely
the production, dissipation and viscous diffusion, do not differ significantly between
cases I3 and M3.0. However, as shown by figure 5(b), the pressure–strain correlation,

Πij = p′s ′
ij = p′(∂u′′

i /∂xj + ∂u′′
j/∂xi)/2

differs significantly between cases. Since semi-local inner scaling is only a partial
improvement over wall-based scaling without giving complete collapse of the turbu-
lence balances, the turbulent stress profiles also do not collapse for incompressible
and compressible cases when using x∗

2 .
A heuristic explanation of why the local value, ρ̄, does not preserve inner scaling

follows from the fact that the pressure gradient, ∇p, in the momentum equation is
force at a distance. There is a non-local relation between pressure and fluid inertia.
Mathematically, inversion of the ∇2 operator in the pressure equation leads to a space
integral in the solution. Physically, ∇p at a point P involves momentum per unit
volume of the entire turbulent ‘eddy’ at P whose vertical extent can be estimated
using a two-point velocity correlation, taken here to be the wall-normal velocity
associated with ‘active’ turbulence, see figure 6(a). Label the two points where
u2(x1, x2, x3)u2(x1, x2 + y, x3), normalized by its maximum, drops below 0.1 as y−
and y+. Then,

ρe(x2) =
1

y+(x2) − y−(x2)

∫ y+(x2)

y−(x2)

ρ̄(y) dy

represents the effective density of the fluid volume that influences point P through

Figure 13: Balance of 〈ρ〉R11, normalized by τ2
w/ < µ >,

with symbols representing incompressible case I3 and lines

case M3.0: (a) Production, dissipation, and viscous diffu-

sion, and (b) Pressure strain, turbulent diffusion, and mass

flux variation. Cases I3 and M3 have similar Reτ . From
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Figure 8. The pressure–strain correlation: (a) 11-component, and (b) 33-component.

M0.3 and notice that, in the region 0 <x∗
2 < 40, the value of Re∗

τ is larger in case
M3.0; however, the spanwise intensity in figure 4(b) is somewhat smaller in that
region, again not a Re-effect. It appears that, when M increases, there is an additional
effect on near-wall turbulence: the spanwise and wall-normal components of ρ̄Rij are
generally smaller than corresponding values in incompressible flow, the streamwise
component is larger, and the shear component shows little change. The Reynolds
stress anisotropy defined by bij = ρ̄Rij/ρ̄Rkk − δij/3 is of interest. Foysi, Sarkar &
Friedrich (2003) compared case M3.0 with case I3 having similar Reτ at the wall
finding that, in the near-wall region, the normal stress anisotropies (b11, b22, and b33)
are larger in case M3.0, while the shear stress anisotropy, b12, is smaller.

The observed differences between the turbulent stresses can be explained based on
their transport equations. For instance, the streamwise balance in figure 5(a) shows
that the dominant terms do not differ significantly between cases M3.0 and I3, while
figure 5(b) shows a significant reduction in case M3.0 of the pressure–strain correlation
Π11, a sink term in the budget, leading to an increase of ρ̄R11/τw with respect to
case I3. In the spanwise balance, the pressure–strain term, Π33, the dominant source,
is less in the M3.0 case relative to case I3 in figure 8(b), leading to the observed
reduction of the spanwise component. The reduction in the wall-normal component
(not shown here) is also attributable to the reduction in Π22.

4. Pressure–strain correlation

Although a heuristic explanation for the failure of inner scaling was advanced
in § 3.2, a more quantitative explanation based on analysis of the pressure–strain
correlation can be constructed as follows.

4.1. Equation governing the pressure fluctuation

A starting point is to derive an equation for the pressure fluctuations that is valid for
both incompressible and compressible flow. Taking the divergence of the momentum
equation, using mass conservation, and, after some algebraic manipulation, we obtain
the following equation in channel flow:

∇2p′ = −ρ̄(u′′
i u

′′
j − u′′

i u
′′
j ),ij − 2ρ̄ũ1,2u

′′
2,1 + σ ′

ij,ij − 2ρ̄,2(u
′′
2u

′′
j − u′′

2u
′′
j ),j

A1 A2 V1 B1

− ρ̄,22

(

u′′2
2 − u′′2

2

)

− 2ũ1,2(ρ
′u′′

2),1 − (ρ ′u′′
i u

′′
j − ρ ′u′′

i u
′′
j ),ij − Dt tρ

′. (4.1)

B2 C1 C2 C3

Figure 14: The pressure-strain correlation, 11-component,

plotted using outer scaling. From Foysi et al.(2004).

peaks. The turbulence transport equations were examined.

The balance of 〈ρ〉R11 in Fig 13(a) shows that the domi-

nant terms in the near-wall region, namely, the production,

dissipation and viscous diffusion do not change significantly

between cases I3 and M3.0. However, as shown by Fig. 13(b),

the pressure-strain correlation, Π11 is reduced with respect

to the incompressible case. This is the reason why peak

〈ρ〉R11 is also larger by about 15% at M = 3 relative to I3.

Π11, over the half-channel width, is plotted in Fig. 14. In

the core of the channel, all cases collapse since the gradient in

mean properties is negligible in that region. However, near

the wall, Π11 is systematically lower in the supersonic cases.

This is not a low-Re effect since case M3.5 has Reτ = 1030.

The reason for this compressibility effect needs explanation.

The wave operator in the p′ equation can be ruled out since

both Mg and Mt do not exceed 0.3 and, furthermore, the

acoustic mode was found to be small compared to the en-

tropy mode in the near-wall region. A heuristic argument

and a Green’s function analysis has been used to show that

the reduction of pressure-strain is a mean density effect. So-

lution for the pressure at a point involves inversion of the

Laplacian leading to a space integral of the source; this

source includes the mean density as can be seen from the

r.h.s of Eq. (22). Consider the wall pressure. It is deter-

mined by the entire turbulent “eddy” in the vicinity of the

wall and includes fluid of mean density lower than that at

the cooled wall. Therefore the effective density, ρe, must

be smaller than < ρ > and so must the pressure-strain be

relative to the constant-density case. This qualitative argu-

ment was made mathematically precise by utilizing a Green’s

function for the Poisson equation in channel flow, see Foysi

et al.(2004) for details.

CONCLUDING REMARKS

Compressible turbulence can be conceptually viewed as

vorticity interacting with an acoustic and an entropy mode.

A split of the velocity component into dilatational and

solenoidal velocity is also useful. The fluctuating dilatation

is small in all the flows considered here. However, since the

dilatation is multiplied by the reference pressure, see Eq.

(14), small dilatation does not mean that it’s effect on fluc-

tuating pressure is small. Indeed, pressure satisfies a wave

equation and, as shown by Eq. (22), the wave operator can-

not be neglected if Mt or Mg are O(1). In uniform shear

flow and in the mixing layer, Mg is O(1) and r.m.s pressure

fluctuations, normalized using the characteristic velocity, are

found to decrease. This, in turn, leads to inhibition of the

turbulence intensities and shear stress.

High-speed wall-bounded flows are inevitably accompa-

nied by large mean temperature gradients and the dominant

influence on the turbulence is due to changes in mean den-

sity and viscosity. The thermodynamic fluctuations in the

boundary layer are, for the most part, associated with the

entropy mode. Appropriate mean density-weighted scaling

can account for some observations: the Van Driest transfor-

mation that leads to a log law and semi-local (local mean

density and viscosity combined with wall value of viscous

stress) scaling for the turbulence statistics. However, the

pressure is non-local and, owing to its dependence on a

spatial integral involving the density, correlations involving

pressure cannot be collapsed using a local mean density.
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