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ABSTRACT

In this paper, we present our recent research activities

on control of flow over a bluff body such as a circular cylin-

der, a two-dimensional bluff body with a blunt trailing edge

and a sphere. First, we introduce a three-dimensional forc-

ing applied to a two-dimensional bluff body and show that

it significantly changes vortical structures in the wake and

reduces mean drag and lift fluctuations. Second, by provid-

ing an appropriate active or passive control to a separating

shear layer, one can destabilize the shear layer and reattach

the flow on the surface before main separation, which de-

lays main separation and decreases drag. Finally, we apply

three-different active control methods based on control the-

ories (i.e. linear proportional feedback control, suboptimal

feedback control, and active open-loop control using surro-

gate management framework) to flow over a sphere and show

that they successfully reduce the lift fluctuations.

INTRODUCTION

The flow over a bluff body is a common occurrence as-

sociated with fluid flowing over an obstacle or with the

movement of a natural or an artificial body. Evident ex-

amples are the flows past an airplane, a submarine and an

automobile, and wind blowing past a bridge and a high-rise

building. At much low Reynolds numbers, the flow over a

bluff body is highly viscous and the force exerted on the body

is mainly attributed to the skin friction. However, when

the Reynolds number exceeds a critical value, vortex shed-

ding occurs in the wake, resulting in a significant pressure

drop on the rear surface of the body. This vortex shed-

ding occurs over a wide range of Reynolds numbers, causing

serious structural vibrations, acoustic noise and resonance,

enhanced mixing, and significant increases in the mean drag

and the lift fluctuations. Therefore, the effective control of

vortex shedding is important in engineering applications.

Efforts have been made to alter and suppress vortex shed-

ding (see the reviews by Zdravkovich (1981), Oertel (1990),

Griffin & Hall (1991) and Choi et al. (2008) for these re-

search activities). In the past, many passive and active

open-loop control methods were introduced to control vortex

shedding behind a two-dimensional bluff body such as a cir-

cular cylinder and a two-dimensional blunt-based bluff body.

Examples are the endplate, splitter plate, geometric modi-

fication in the trailing edge, base bleed, oscillation in line

with the incident flow, and rotary oscillation. These control

methods are passive or active open-loop in the sense that

there is no power input or no feedback sensor, respectively.

Many attempts have been also made to improve the

control efficiency and effectiveness using active feedback con-

trol methods with the advent of micro-electro-mechanical-

system, development of control theory, and fast growth of

computer power. The merit of this approach is to obtain

the information of the response of flow system to the actua-

tion, and to use it to obtain better control performance than

that from the passive or active open-loop control method.

The purpose of this study is to develop effective methods

for the control of flow over a bluff body. Three differ-

ent control approaches are considered. First, we apply a

three-dimensional forcing to a two-dimensional bluff body.

Second, we provide an appropriate active or passive control

to a separating shear layer for its destabilization. Third,

we apply active control methods based on control theo-

ries (i.e. linear proportional feedback control, suboptimal

feedback control, and active open-loop control using surro-

gate management framework) to flow over a sphere. For

the shapes of bluff bodies, we consider a circular cylinder,

a two-dimensional bluff body with a blunt trailing edge,

and a sphere. The circular cylinder and sphere are the

representative two- and three-dimensional bluff bodies, re-

spectively, and their separation points change depending on

the Reynolds number. On the other hand, in the case of two-

dimensional blunt-based bluff body, the separation is fixed

at the trailing edge and hence the flow suddenly changes

at the trailing edge from a boundary-layer flow to wake,

which is quite different from the cases of circular cylinder

and sphere. Therefore, different control strategies may have

to be developed when the body shapes are different. A part

of the present paper is excerpted from a recent review paper

of Choi et al. (2008).

THREE-DIMENSIONAL FORCING FOR TWO-

DIMENSIONAL BLUFF BODY

In this section, we provide passive and active open-loop

controls varying along the spanwise (or azimuthal) direction,

called three-dimensional forcing, to control nominally two-

dimensional wake.

Passive control

Examples of three-dimensional geometric modification

are the helical strake, segmented trailing edge, wavy trail-

ing edge on a blunt-based model, spanwise waviness to front

stagnation face of a rectangular cylinder, circular cylinder

with a sinusoidal axis, and circular cylinder with hemispher-

ical bumps (see Choi et al. (2008) and references therein for

more details).

We propose a small-size tab, mounted on a part of the

upper and lower trailing edges of a two-dimensional bluff

body (Fig. 1a; Park et al., 2006), for effectively attenuating

vortex shedding and reducing drag. We perform a para-

metric study by varying the height (ly) and width (lz) of

the tab and the spanwise spacing between the adjacent tabs

(λ). Drag is decreased (or the base pressure is increased)

by attaching this simple device at the trailing edge (see Fig.
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(a)

(b)

Figure 1: Three-dimensional forcing by tabs: (a) two-

dimensional model vehicle; (b) circular cylinder.

2). The optimal configuration of tabs produces about 33%

increase in the base pressure. Owing to the tabs, the vor-

tices shed from the upper and lower trailing edges loose their

two-dimensional nature and the vortex dislocation occurs.

The vortex shedding completely disappears right behind the

bluff body but occurs weakly at farther downstream loca-

tions (Fig. 3). Since the main mechanism of drag reduction

by the tab is to introduce the spanwise phase mismatch in

the vortex shedding process and thus to break the nominally

two-dimensional nature of vortex shedding, this passive de-

vice should work for other two-dimensional bluff bodies such

as the circular cylinder.

Therefore, we apply this tab to flow over a circular cylid-

ner at Re = 100 (Fig. 1b). The tab located near the

separation point reduces drag on a circular cylinder and at-

tenuates the vortex shedding in the wake (Fig. 4). The

optimal spanwise spacing between the adjacent tabs is sim-

ilar to that in Darekar & Sherwin (2001).

However, for three-dimensional bluff bodies such as the

sphere or some transportation vehicles, the vortical struc-

tures are essentially three dimensional (Yun et al., 2006).

In this case, the three-dimensional geometric modifications

described above may not produce any drag reduction be-

cause they promote three-dimensional vortical activities in

the wake. Our preliminary study about flow over a three-

dimensional body with the tab did not produce any drag

reduction. Therefore, some other types of passive device

should be developed for reduction of drag on a three-

dimensional body.

Active open-loop control

When a time-periodic open-loop forcing is applied, vor-

tex shedding in the wake is in general locked in phase to

the forcing (Blevins, 1990), and consequently the forcing

strengthens vortex shedding and increases the mean drag

and the lift fluctuations. There are a few successful active

open-loop controls that attenuate vortex shedding and re-

duce drag. One example is the high-frequency rotation of

the circular cylinder by Tokumaru & Dimotakis (1991) and
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Figure 2: Contours of ∆C̄pb with respect to λ and ly at Re =

u∞h/ν = 40, 000: (a) lz/h = 0.1; (b) 0.133; (c) 0.2. ∆C̄pb =(
C̄pb(controlled)− C̄pb(uncontrolled)

)
/|C̄pb(uncontrolled)|×

100, and C̄pb is the mean base-pressure coefficient. From

Park et al. (2006).

another is the base bleed (Wood, 1964; Bearman, 1967). Al-

though these controls are effective in reducing drag, their

efficiencies are not so high.

There are only a few active control methods employing

the three-dimensional forcing in the literature. In Kim &

Choi (2005), we numerically investigate the effect of the

three-dimensional (called ‘distributed’) forcing on the drag

and lift forces on a circular cylinder. The distributed forcing

considered is a blowing and suction from the slots located at

upper and lower surfaces of the cylinder. The blowing and

suction profile from each slot is sinusoidal in the spanwise

direction but is steady in time (Fig. 5a):

φ1(z) = φ2(z) = φo sin (2πz/λ) , (1)

where φ1 and φ2 are the radial velocities at the upper and

lower slots, respectively, z is the spanwise direction, φo is the

forcing amplitude, and λ is the forcing wavelength. For all
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Figure 3: Instantaneous vortical structures in the wake

(Re = u∞h/ν = 4, 200): (a) uncontrolled flow; (b) con-

trolled flow with tabs of (λ/h, ly/h, lz/h) = (2, 0.2, 0.2).

Shown in this figure are the three-dimensional views of vor-

tical structures (left column) and top views of iso-pressure

surfaces (right column). From Park et al. (2006).

DC

/ d

1.34(nocontrol)DC

(a)

(b)

Figure 4: Flow over a circular cylinder with tabs of

(ly/d, lz/d) = (0.2, 0.2) at Re = u∞d/ν = 100: (a) vari-

ation of the drag coefficient with the spanwise spacing (λ)

of tabs; (b) instantaneous vortical structures in the wake at

λ = 4d. In (b), vortex shedding completely disappears due

to the tab.

the Reynolds numbers larger than 46, the distributed forc-

ing attenuates or annihilates the vortex shedding as shown in

Figs. 5(b) and (c), and thus significantly reduces the mean

drag and the drag and lift fluctuations. Note that, due to the

control, vortex shedding completely disappears at Re = 100

(Fig. 5b), and nearly disappears in the near wake and reap-

pears weakly in the far wake at Re = 3900 (Fig. 5c). The

distributed forcing produces the phase mismatch along the

spanwise direction in vortex shedding, weakens the strength

of vortical structures in the wake, and thus reduces drag.

It is important to note that drag reduction by the dis-

tributed forcing is caused by the direct interaction with

(a)

(b)

(c)

u
u

1

2

Figure 5: Distributed forcing by Kim & Choi (2005): (a)

schematic of the forcing; (b) Re = 100 (λ = 5d); (c)

Re = 3900 (λ = πd). Shown in (b) and (c) are the instan-

taneous vortical structures without (left column) and with

(right column) control.
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Figure 6: Spanwise variation of the separation angle due to

the distributed forcing at Re=100 (λ = 5d). From Kim &

Choi (2005).

vortex shedding, not by the separation delay: as shown in

Fig. 6, the separation angle delays at the suction locations

but significantly advances at the blowing locations. This

fact suggests that the distributed forcing should be also ap-

plicable to a body with fixed separation for drag reduction or

reduction of lift fluctuations. Thus, we apply the distributed

forcing to turbulent flow over a two-dimensional model ve-

hicle having a blunt trailing edge and obtain a significant

amount of drag reduction (Kim et al., 2004).

Therefore, the three-dimensional forcing should be ap-

plicable to flow over any two-dimensional bluff body, which

contains nominally two-dimensional vortex shedding, for

drag reduction at various Reynolds numbers.

EARLY SEPARATION AND REATTACHMENT BEFORE
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Figure 7: Oil flow pattern on the sphere surface at the crit-

ical Reynolds number (Suryanarayana & Prabhu, 2000).

mm600600

s

Figure 8: Schematic diagram of the experimental set-up

(Jeon et al., 2004).

MAIN SEPARATION

In this section, we consider a sphere which has a movable

separation point. For this shape, delay of main separation

produces significant drag reduction. To achieve the sep-

aration delay, near-wall streamwise momentum should be

enhanced near and before the separation point such that it

can overcome the adverse pressure gradient formed in the

rear part of bluff body. The enhancement of near-wall mo-

mentum can be realized by controls either through direct

boundary layer transition to turbulence or through early

separation and reattachment before main separation. In this

study, we show some results from the latter approach.

In the uncontrolled flows over a circular cylinder and a

sphere, the drag coefficients rapidly decrease down to about

0.25 and 0.07, respectively, and this phenomenon has been

called as the drag crisis (Fage, 1936; Bearman, 1969; Achen-

bach, 1972; Farell & Blessmann, 1983). The cause of this

rapid drag-coefficient reduction is known to be the existence

of small separation bubble(s) above the surface (Fig. 7;

Suryanarayana & Prabhu, 2000). At the critical Reynolds

number, disturbances existing in the boundary layer rapidly

grow along the separating shear layer and high momentum

fluids in the free-stream are entrained toward the bluff-body

surface. This causes the reattachment of the flow (thus form-

ing a separation bubble above the surface) and generates

strong near-wall momentum, resulting in the delay of main

separation.

We conduct an active control of flow over a sphere for

drag reduction using a local time-periodic blowing and suc-

tion at subcritical Reynolds numbers, Re = 6×104 ∼ 2×105
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Figure 9: Variations of the drag coefficient with respect

to the forcing frequency: ♦, φo/u∞ = 0.05; ◦, 0.1; 4,

0.15. The vertical bars denote the measurement uncer-

tainty obtained for φo = 0.1u∞. The drag coefficient at

Std = fd/u∞ = 0 decreases by about 5%, indicating that

the flow is a little affected by the blowing/suction slot itself.

From Jeon et al. (2004).

separation bubble

(a) (b)

main separation

Figure 10: Oil (top) and smoke-wire (bottom) flow visual-

izations from high frequency forcing (Jeon et al. 2004): (a)

without control; (b) with control at Std = fd/u∞ = 4.95.

Here, the flow goes from right to left.

(Fig. 8; Jeon et al., 2004). Significant reductions of the

drag coefficient are obtained at the forcing frequencies much

higher than the vortex-shedding frequency (Fig. 9). The

disturbances from the high frequency forcing rapidly grow

along the separating shear layer and high momentum in the

free-stream is entrained toward the sphere surface, resulting

in the reattachment of the flow (thus forming a separation

bubble above the sphere surface; see Fig. 10) and delay of

main separation. This mechanism is nearly identical to that

observed from the drag crisis.

In Choi et al. (2006), we recently presented a mech-

anism of drag reduction by dimples on a sphere such as

golf-ball dimples by measuring the streamwise velocity above

the dimpled surface. It was found that dimples cause local

flow separation and trigger the shear layer instability along

the separating shear layer, resulting in generation of large

turbulence intensity, reattachment to the sphere surface with

high momentum near the wall, and delay of main separation
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Figure 11: Schematic diagram of drag-reduction mechanism

by dimples (Choi et al., 2006).
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Figure 12: Variations of the drag coefficient on a smooth

sphere without (×) and with (solid symbols) free-stream tur-

bulence. Three different turbulence intensities are tested.

(Fig. 11). Again, this mechanism is not very different from

that of the drag crisis.

We also investigate the effect of free-stream turbulence

on flow over a sphere by installing various types of grids

upstream of the sphere. The free-stream turbulence gener-

ates small separation bubble above the sphere surface and

decreases the critical Reynolds number at which the drag

coefficient rapidly decreases (Fig. 12). With further in-

creasing the Reynolds number, the laminar separation point

is delayed downstream but the reattachment point closing

the separation bubble is fixed at 115◦. The main separa-

tion point is also fixed at around 130◦, resulting in constant

drag coefficient after the critical Reynolds number. As the

Reynolds number is further increased, the small separation

bubble finally disappears but the main separation point is

still fixed at 130◦. Therefore, the formation, regression and

disappearance of the separation bubble are the key to the

drag change due to the free-stream turbulence.

The drag on a sphere is also changed by a trip wire lo-

cated on the sphere surface. Although this behavior is well
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Figure 13: Variations of the drag coefficient on a sphere with

a trip wire located at φ = 50o. Two different trip-wire sizes

are tested.
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Figure 14: Schematic diagram of the linear proportional con-

trol.

known, the flow characteristics have not been clearly pre-

sented except that the trip wire promotes transition to tur-

bulence. In our study, we vary the diameter and location of

the trip wire, measure the drag, surface pressure and velocity

profiles inside the boundary layer, and conduct flow visual-

ization. With a thick trip wire (2mm; k/d = 1.3×10−2),

a separation bubble is formed right after the trip wire and

transition to turbulence occurs there, resulting in main sep-

aration delay and drag reduction (Fig. 13). On the other

hand, with a thin trip wire (0.5mm; k/d = 0.3×10−2), tran-

sition to turbulence does not occur at the trip wire but a

separation bubble is newly formed at 100◦ ∼ 115◦, which

significantly delays the main separation.

Therefore, it is suggested that the generation of a separa-

tion bubble before main separation through the separating

shear layer instability is an important flow-control strategy

for drag reduction on a bluff body having movable separation

point such as the sphere and cylinder.

CONTROL THEORIES FOR THREE-DIMENSIONAL

BLUFF BODY

Feedback control methods are attractive over the passive

and active open-loop controls in that the control input is

continuously modified according to the response of the flow

system. In this section, we present three successful control

methods such as the linear proportional feedback control,

suboptimal control, and control based on surrogate manage-

ment framework.

Linear proportional feedback control

We apply a linear proportional control similar to that

proposed by Park et al. (1994). The velocity at the cen-

terline in the wake region is measured for feedback and the

control input (blowing/suction) at a part of the sphere sur-
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CL

Figure 15: Time histories of the drag and lift coefficients

and phase diagram (Re = 425): (a) time histories of drag

coefficient; (b) time histories of the lift coefficient. ——,

Without control; – – –, with control. Shown here is the case

of xs = 1.2d and α = −0.5.

face is determined by the measured velocity as follows (Fig.

14):

ψ(θ) = α|ur,sensed| cos(θ − θ′) (2)

Here, ψ is the wall-normal actuation velocity (blow-

ing/suction), θ is the azimuthal angle, α is the feedback

gain, ur,sensed is the measured radial velocity at the sensing

position, xs, and θ′ is the azimuthal angle of measured ve-

locity. Thus, the blowing/suction varies along the azimuthal

direction and maximum blowing and suction occur in phase

and out of phase to the measured velocity at xs. Also the

amplitude of blowing/suction linearly increases as the mea-

sured velocity increases. For the actuation location, we set

φ = 100o and ∆φ = 20o (see Fig. 14).

We consider Re = 425, at which the base flow is unsteady

asymmetric. Among various xs’s and α’s tested, the most

effective sensing position and amplitude are xs = 1.2d and

α = −0.5, respectively. Figure 15 shows the time histories of

drag and lift coefficients. Here, the lift coefficient is defined

as CL =
√

C2
y + C2

z . The drag and lift fluctuations are

significantly reduced by the control. However, the mean

drag is almost unchanged.

The present control method strongly depends on the

feedback gain α and sensing position xs. As shown in Fig.

16, when the sensing position or the feedback gain is changed

slightly, the drag increases significantly. The fluctuations of

lift coefficient are closely related with vortex shedding, and

thus it is important to know the sensor location at which

the radial velocity along the centerline in the wake is con-

nected with vortex shedding. For this purpose, we define a

/tU d

(a)

CD

/tU d

(b)

CD

Figure 16: Variations of the drag coefficient with the sensing

position and feedback gain (Re = 425): (a) – – –, xs/d = 1.1;

——, 1.2; -.-.-, 1.3 (α = −0.5); (b) – – –, α = −0.4; ——,

−0.5; -.-.-, −0.6 (xs/d = 1.2).

s
x

( )C x

Figure 17: Correlation of the azimuthal angles between the

lift and measured velocity (Re = 425).

correlation function as follows:

C(x) =
1

T

∫ T

0

cos(θCL
− θur )dt, (3)

where θCL
is the azimuthal angle of lift direction, θur is

the azimuthal angle of the direction of measured velocity at

the sensing location, and T is the time period of averaging.

The value of C(x) becomes 1 when the directions of lift and

measured velocity are equal from each other, and -1 when

the directions are opposite. Thus, when |C(x)| → 1, the

lift force and measured velocity are well correlated. Figure

17 shows the variation of C(x) with xs. A strong negative

correlation occurs at xs = 1.2d. This location is in good

agreement with the xs location where the control performs

well.
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Figure 18: Suboptimal control of flow over a sphere at Re =

425: (a) real (solid line) and potential (dashed line) pressure

coefficients on the sphere surface; (b) blowing/suction profile

along the polar angle; (c) instantaneous vortical structures

without control; (d) with control.

Suboptimal control

Optimal control theory has received much attention in

flow control. However, the procedure requires the veloc-

ity information inside the flow in order to solve the adjoint

equations, from which a feedback control input is derived.

Therefore, the application of optimal control algorithm to

the unsteady three-dimensional Navier-Stokes equations is

not practical owing to the complexity of the algorithm. In

order to overcome the complexity of the optimal control

procedure, Choi et al. (1993) introduced a suboptimal feed-

back control algorithm, in which the iterations required for

a global optimal control were avoided by seeking an optimal

condition over a short time period. This control algorithm

has been successfully applied to turbulent channel flow (Lee

et al., 1998), and flows behind a circular cylinder (Min &

Choi, 1999) and a backward-facing step (Choi et al., 1999;

Kang & Choi, 2002).

In Min & Choi (1999), we applied a suboptimal feed-

back control to flow around a circular cylinder at Re = 100

and 160. The location of sensors for feedback was limited

to the cylinder surface and the control input from actuators

was the blowing and suction on the cylinder surface. The

cost function to be minimized was the difference between

the real and potential pressures on the cylinder surface, and

the control input was determined based on the measurement

of instantaneous surface pressure. As a result, vortex shed-

ding became weak or disappeared, and the mean drag and

drag/lift fluctuations significantly decreased.

We also apply a suboptimal control to flow over a sphere

at Re = 425. The cost function to be minimized is the

difference between the real and potential pressures on the

sphere surface (Fig. 18a). The control input is the blowing

and suction on the sphere surface and is determined from the

measurement of instantaneous surface pressure (Fig. 18b).

As a result, we obtain a significant drag reduction through

the change in the vortical structures (Figs. 18c and d).

Surrogate Management Framework (SMF)

In the present study, we apply SMF to flow over a sphere

to reduce the drag. In the previous sub-section, we applied

suboptimal control to the flow over a sphere. As shown in

Fig. 18(b), the blowing/suction profile has a wavy shape.

Therefore, we adopt sinusoidal blowing/suction as a base

function for SMF. The blowing/suction velocity is given as

follows:

ψ(φ) = α
(
ψin(φ)− ψ

)
, (4)

α2 =
0.01∫ ∫ (

ψin(φ)− ψ
)2

r2 sin φdφdθ
, (5)

ψin(φ) = A cos 2φ−B sin 2φ, (6)

ψ =
1

π

∫ ∫
(A cos 2φ−B sin 2φ) r2 sin φdφdθ. (7)

Here, r is the radial direction, 0 ≤ φ < 180o, θ is the

azimuthal direction (0 ≤ θ < 360o). The parameters A

and B are determined through SMF, with the constraints of

−1 < A < 1 and −1 < B < 1. The blowing/suction velocity

is homogeneous in the azimuthal direction.

Figure 19 shows the optimal blowing/suction profile ob-

tained from SMF (A = 0.5, B = −0.3), which produces

about 17% drag reduction. Suction locates at 70o < φ <

140o, and blowing does elasewhere. Figure 20 shows vorti-

cal structures without and with control. As shown, the base

flow (unsteady planar-symmetric structure) changes to be

steady planar-symmetric with the control.

CONCLUSIONS

In this study, we presented three control methods applied

to bluff-body flows. First, we introduced a three-dimensional

forcing applied to a two-dimensional bluff body and showed

that it significantly changes vortical structures in the wake

and reduces mean drag and lift fluctuations. The control di-

rectly interacted with flow in the wake rather than through

the change in the boundary layer before main separation.

Therefore, this control can be applied to flows over two-

dimensional bluff bodies with and without fixed separation.

Second, by providing an appropriate active or passive con-

trol to a separating shear layer, we destabilized the shear

layer and reattached the flow on the surface before main

separation, which delayed main separation and decreased

drag. This phenomenon is quite similar to what happens at

the critical Reynolds number without any control. Finally,

we applied active control methods based on control theo-

ries (i.e. linear proportional feedback control, suboptimal

feedback control, and active open-loop control using surro-

gate management framework) to flow over a sphere. Three

controls were all successful in reducing the lift fluctuations.
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Figure 19: Optimal blowing/suction velocity from SMF.

(a)

(b)

Figure 20: Vortical structures at Re = 300: (a) without

control; (b) with SMF control.
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