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ABSTRACT

An overview is provided of recent results on patterns of
internal variability of the midlatitude wind-driven ocean circu-
lation. This variability arises through successive instabilities
of these flows. Bifurcation diagrams are presented for single-
layer flows and physical mechanisms associated with some of
the instabilities are briefly described. A homoclinic bifurca-
tion is central for the low-frequency, aperiodic variability in
these flows. The different flow regimes, as found in transient
flow computations in both single- and multi-layer flows, can
be interpreted with help of the bifurcation diagrams.

INTRODUCTION

The large-scale ocean circulation is driven both by momen-
tum fluxes, as well as by fluxes of heat and freshwater at
the ocean—atmosphere interface. The near-surface circulation
is dominated by horizontal currents that are mainly driven
by the wind-stress forcing, while the much slower motions
of the deep ocean are mainly induced by buoyancy differ-
ences. Figure 1 gives an impression of the near-surface flow
in the northwestern part of the North Atlantic basin, based
on a multi-pass satellite image of the sea-surface temperature
(SST) field.

The wind-stress curl induced by the easterly winds in very
low and very high latitudes, on the one hand, and the mid-
latitude westerlies, on the other, induces midlatitude cellular
flows, called gyres. The North Atlantic is typical of several
other ocean basins in exhibiting a dominant anticyclonic cell,
called the subtropical gyre, and a smaller cyclonic cell, called
the subpolar gyre (Fig. 1). Each of these gyres has a nar-
row, fast-flowing western boundary current and a slower, more
diffuse eastern boundary current. The major surface current
is the Gulf Stream, an eastward jet that arises through the
merging of the two western boundary currents, the northward-
flowing Florida Current and the southward flowing Labrador
Current.

The variability of the Gulf Stream has been studied for
decades through time-continuous in situ measurements, at a
few locations, as well as by more detailed one-time-only hy-
drographic surveys. As the Gulf Stream penetrates further
east into the open ocean, it spreads out due to meandering.
In this region, cut-off eddies are formed and move away from
the main jet, generally in a westward or southwestward di-
rection. Their average wavelength is about 100 km and their
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propagation speed is of the order of 10 km/day. The scale of
the eddies is related to an internal length scale of the ocean,
the internal Rossby deformation radius (Pedlosky, 1987); both
stratification and rotation effects contribute to define this ra-
dius. In the oceans, motions with this horizontal scale are
commonly referred to as mesoscale. Generally, the presence of
mesoscale eddies causes variability on a subannual, 2-3-month
time scale.

Figure 1: Composite, multi-pass satellite image of the av-
erage SST field in May 1996 within the Gulf Stream re-
gion. The infrared data wused to obtain this picture were
obtained from high-resolution (0.5° horizontally) observations
from the Advanced Very High Resolution Radiometer (AVHRR,
see http://fermi.jhuapl.edu/avhrr/index.html). The dark shad-
ing indicates a warm sea surface, with SSTs of typically 25°C
in the Gulf of Mexico and the Florida Straits; lighter shading
indicates a colder sea surface.

The last decade has seen a huge increase in the observa-
tional information available on the oceans’ basin and global
scales (WOCE, 2001). As a result, attention has focused more
and more on the temporal variability of the wind-driven circu-
lation that is associated with larger spatial scales and involves
lower frequencies. Various observations — though limited in
spatial and temporal coverage — suggest the existence of dis-
tinct scales of temporal variability from subannual (Lee and
Cornillon, 1995), through seasonal (Schott and Molinari, 1996)



to interannual (Auer, 1987) scales.

The sources of this low-frequency variability and of the as-
sociated spatio-temporal patterns have become an object of
intense scrutiny. The classical view is that the overall red
spectrum of the oceans’ variability in time is due to its “fly-
wheel” integration of atmospheric white noise (Frankignoul
and Hasselmann, 1977) and that any peaks that rise above
this broad-band spectrum also result primarily from changes
in the external forcing, especially in wind stress or buoyancy
fluxes. The forced variability does not always account, how-
ever, for all or even most of the observed variability. Internal
ocean dynamics — i.e., intrinsic variability due to nonlinear
interactions between two or more physical processes that af-
fect the wind-driven ocean circulation — may therefore play
an important role on these time scales.

In this paper, an overview is given of results of internal vari-
ability of the wind-driven ocean circulation. Using dynamical
systems theory, we will first analyze successive bifurcations
in single-layer (constant density) models and next use these
results to interpret flow regimes as found in multi-layer (strat-
ified) models.

SINGLE-LAYER FLOWS

The theory of the homogeneous wind-driven ocean circula-
tion (Sverdrup, 1947; Stommel, 1948; Munk, 1950) is one of
the cornerstones in physical oceanography. This theory de-
scribes the mid-latitude wind-driven ocean flows in an active
layer of ocean water with constant density p in an idealized
L X B rectangular basin. Below this layer, with equilibrium
thickness H, there is a very deep motionless layer of density
p+ Ap (Fig. 2). The basin is located on a midlatitude 8-plane
with Coriolis parameter f = fo + Boy.

Figure 2: Sketch of the ocean model set-up in a rectangular
basin on a midlatitude B-plane.

Let the flow be characterized by a horizontal length scale L
and a horizontal velocity scale U. When the Rossby number
U/(foL) is small, quasi-geostrophic theory is an ade-
quate description of the large-scale flow (Pedlosky, 1987). Let
1 indicate the geostrophic streamfunction in the horizontal
plane, then the zonal velocity u, the meridional velocity v and
the vorticity ¢ are given by uw = —0v /9y, v = 9¢P/dx and
¢ = O/dx — du/dy = V21, respectively. When the flow is
driven by a zonal wind stress 7, the governing equation in this
theory is the (equivalent) barotropic vorticity equation, given
by
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Here, ¢ is the potential vorticity, ¢’ = gAp/p is the re-
duced gravity and the Jacobian operator J is defined as
J(F,G) = FyGy — FyGy where the subscripts indicate differ-
entiation. The quantity Apg represents the turbulent lateral
friction coefficient. The strict homogeneous case is obtained
when the second layer is a solid, for which g’ — oo. No-slip
boundary conditions are usually prescribed at the east-west
boundaries and slip conditions at the north-south boundaries,
ie.
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The wind-stress profile often considered with (1) is
7 (z,y) = —7T0 (UCOSTK‘% +(1-o0) COSQW%) ; T(x,y) =0

3)
where the dimensionless parameter o controls the shape and
7o is a typical amplitude. Following Veronis (1963), much
attention (Ierley and Sheremet, 1995) has focussed on the sub-
tropical (single) gyre system as obtained above with the choice
o = 1. The single-gyre wind-stress forcing consists of easter-
lies (westerlies) at the south (north) part of the basin. The
so-called double-gyre case has more recently received much at-
tention and is obtained with ¢ = 0 in (3). In this case, both
the subtropical and subpolar gyres are forced and the wind
stress is symmetric with respect to the mid-axis of the basin
(Fig. 3).
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Figure 3: Plots of the zonal wind stress (3) for three different
values of o.

Under a given steady wind-stress forcing, the linear steady
quasi-geostrophic theory predicts a Sverdrup interior flow and
a frictional western boundary layer. The linear theory pro-
vides a first order explanation of the existence of western
boundary currents, such as the Gulf Stream. The nonlinear
theory is, however, far from complete. Although the strong
effect of inertia on the flows was already shown by Vero-
nis (1963), the work to determine systematically the solution
structure of (1) versus the lateral friction parameter Ay did
not start until the mid 1990s (Cessi and Ierley, 1995).

PRIMARY BIFURCATIONS

For large values of Ap, a unique and globally stable flow
state for both single- and double-gyre cases is found (Dijkstra



Table 1: Standard values of parameters used in the computa-
tions

Parameter Value Parameter Value
L 1.0 x 106 m To 1.5 x 10~1 Pa
H 6.0 x 10> m Bo 1.6 x 1071 (ms)~!
fo 1.0x 1074 s~ 1 U 1.6 x 1072 ms~1!
P0 103 kgm—3 B 1.0 x 106 m

and De Ruijter, 1996). To investigate the solution structure
of the equations when Ap is decreased, continuation methods
(Dijkstra, 2000) have been used on discretized versions of (1).
In the results below, a 128 x 128 equidistant grid is used and
the steady states are computed versus Re = UL/Ap. In other
studies, also the ratio of boundary layer thicknesses d;/das,
where 6; = (U/Bo)Y/? and 6; = (A /Bo)'/? is used. Other
parameters are fixed at values shown in Table 1 and g’ — oo.

Single-gyre flows

In the bifurcation diagram (Fig. 4a) for the single-gyre flows
(0 = 1), a value of the streamfunction at a certain gridpoint
(v r) is plotted versus Re. Each point on the curve represents
a steady state and its stability is indicated by the linestyle,
with solid (dashed) curves indicating stable (unstable) solu-
tions. At small and large values of Re, there is a unique
steady solution, while between the two-saddle node bifurca-
tions Lj and Lo there is a regime of multiple equilibria. Plots
of the streamfunction ¢ at labelled locations in Fig. 4a are
shown in Fig. 4b-d. The pattern in Fig. 4b near Re = 10
deviates already from the symmetric linear Munk-Sverdrup
solution. The effects of strong nonlinearities on the flow can
be seen in the streamfunction for both solutions at Re = 60.
A strong north-south asymmetric solution (Fig. 4c) appears
on the lower branch and a gyre filling up the basin (Fig. 4d)
develops on the upper branch.

Double-gyre flows

For the case o = 0, the structure of the steady solutions
is shown through the bifurcation diagram in Fig. 5a, where
the value of the streamfunction at a point in the southwest
part of the domain (¢ g) is plotted versus Re = UL/Ag. At
large values of Ay (small Re), the anti-symmetric double-
gyre flow (Fig. 5b) is a unique state. When lateral friction is
decreased, this flow becomes unstable at the pitchfork bifurca-
tion P; and two branches of stable asymmetric states appear
for smaller values of Ay (larger Re). The solutions on these
branches have the jet displaced either southward or northward
(Fig. 5¢) and are exactly symmetrically related for the same
value of Re. For even smaller friction, the anti-symmetric flow
becomes inertially dominated and g increases rapidly. A
pitchfork bifurcation P, occurs on the anti-symmetric branch
where an additional pair of asymmetric solution branches ap-
pear (Fig. 5d); all these solutions are unstable.

The existence of the bifurcation P (Fig. 5a) captures the
heart of the physics of symmetry breaking in these flows. The
physical mechanism of the instability can be analyzed with
help of the patterns of the steady state and the eigenvec-
tor of the linear stability analysis which has a zero growth
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Figure 4: (a) Bifurcation diagram for the single-gyre (o = 1)
barotropic quast geostrophic model for a square basin with Re =
UL/Ap as the control parameter. (b) Pattern of 1) near Re = 10
on the lower stable branch in (a). (c¢) Same for Re = 60 along
lower branch and (d) for Re = 60 along the upper stable branch.

rate just at P;. The streamfunction and vorticity field of
the steady state are presented in Fig. 6a, while those of the
streamfunction and vorticity perturbation (determined from
the eigenvector) are shown in Fig. 6b. The streamfunction
perturbation has a tripole-like structure with a negative vortic-
ity center along the jet-axis and two positive vorticity centers
at either side. The special property of these patterns is that
the center negative vorticity lobe is exactly localized within
the vorticity extrema of the anti-symmetric basic state. If
we consider the region just above the symmetry line of the
eastward jet (y = 0.5), the perturbation zonal flow is east-
ward, and therefore in the same direction as that of the basic
state. More northward (above y = 0.7), the perturbation flow
is westward and therefore also in the same direction as the
steady flow. If we consider the flow just below the symmetry
line of the steady jet, it is observed that the flow perturba-
tions are in the opposite direction to that of the basic state.
Hence, the flow perturbation weakens the subtropical gyre and
strengthens the subpolar gyre. The asymmetric change in the
strength of the basic flow due to the perturbations leads to
increased horizontal shear in the eastward jet, which leads to
an additional negative vorticity. This extra vorticity just am-
plifies the original perturbation flow in this region leading to
instability.

Connection between single-gyre and double-gyre flows

We can follow the branches of the double-gyre case in the
parameter o (controlling the asymmetry of the wind stress) to
connect to the single-gyre case. The bifurcation diagram for
o = 0.1 (Fig. 7a) shows the basic imperfections of the double-
gyre flow. The branch S; connects to the branch Aq,; this is



20 T 3 T T 3 T

Figure 5: (a) Bifurcation diagram for the double-gyre (o = 0)
barotropic quasi geostrophic model for a square basin with Re =
UL/Ay as the control parameter. (b) Pattern of 1) near Re = 10
on the lower stable branch in (a). (c¢) Same for Re = 60 along
the branch Aiy.; the pattern on the branch Aiq at Re = 60 is
the mirror image of (c) with respect to reflection through the
midaxis of the basin. (d) The pattern at Re = 60 on the branch
Aag.

Figure 6: (a) Contour plots of the steady state at the pitchfork
bifurcation Py in Fig. 5a with the streamfunction (i) in the left
panel and the vorticity (C) in the right panel. (b) Contour plots
of the perturbation destabilizing the steady state of (a) with the
streamfunction () in the left panel and the vorticity (C~) in the
right panel (from Digkstra and Katsman (1997)).
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expected because the o = 0.1 wind stress induces a preference
for the jet-up solution. Both the branches containing jet-down
solutions (the branches A4 and Asg) connect to the branch S
to give the branch labeled with A14—S2 — Agq in Fig. 7a. The
branch of jet-up solutions Asg, connects to the branch S3 and
forms the S3— Az, branch. When the wind stress is made more
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Figure 7: (a) Bifurcation diagram for o = 0.1
larger values of o.

and (b) for several

asymmetric through an increase in o, both the A14—S2 — Azg
and S3 — Ag, branches move quickly to higher values of Re
and eventually move out of the computational domain. What
remains is the S; — A1, branch. Up to ¢ = 0.75, there are no
saddle-node bifurcations on this branch (Fig. 7b), but these
appear for values of ¢ just before ¢ = 0.9. It is clear that the
S1 — A1y branch eventually deforms into the single branch of
the single-gyre wind stress case (o = 1).

SECONDARY BIFURCATIONS: DOUBLE-GYRE CASE

The secondary bifurcations of the single-gyre flows have
been studied in detail by Sheremet et al. (1997) and time-
dependent behavior of the single-gyre flows has also been
studied extensively (Berloff and Meacham, 1997; Meacham
and Berloff, 1997, 1998; Berloff and Meacham, 1998a). We
will here only focus on the double-gyre case since it appears
to be a better prototype situation for the actual North Atlantic
Ocean circulation (Dijkstra, 2000).

Hopf bifurcations

The symmetry-breaking associated with the pitchfork bi-
furcation P; leads to two branches of stable asymmetric steady
states. However, these states also become unstable at larger
values of Re due to the occurrence of Hopf bifurcations. The
pattern of the oscillatory mode which destabilizes the asym-
metric double-gyre flow at each Hopf bifurcation can be de-



termined from the solution of the linear stability problem. At
the Hopf bifurcation, a complex conjugate pair of eigenvalues
o = oy £ i0; crosses the imaginary axis. The corresponding
complex eigenfunction x = xg + ix; provides the disturbance
structure ®(t) with angular frequency o; and growth rate o,
to which the steady state becomes unstable, i.e.,

®(t) = et [k cos(oit) — X1 sin(o;t)] (4)
Propagation features of a neutral eigenmode (o, = 0.0) can
be determined by first looking at ®(—n/(20;)) = X and then
at ®(0) = xg. The period P of the oscillation is given by
P =2n/0;.

The first Hopf bifurcation is associated with the destabi-
lization due to a so-called Rossby-basin mode. These modes
can be described by a sum of free Rossby waves where the
coefficients are chosen such that the boundary conditions are
satisfied. The simplest patterns of these modes can be deter-
mined by solving the normal mode problem for the motionless,
unforced, non-viscous flow in (1). For the gravest Rossby basin
mode, the period P is about 20 days. The pattern of this
mode is shown in Fig. 8 at three instances during its prop-
agation. The transition patterns at the Hopf bifurcations of
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Figure 8: Sketch of the streamfunction pattern of the gravest
Rossby-basin mode at three different instances during its prop-
agation. (a) t/P =0; (b) t/P =1/4; (c) t/P = 3/8.

the asymmetric double-gyre flows (near Re = 52 in Fig. 5a)
are deformations of the pattern in Fig. 8. The growth rate
of this mode is determined by the horizontal shear within the
asymmetric double-gyre flow.

At the second Hopf bifurcation, the asymmetric state desta-
bilizes to a mode which has an interannual period and the
perturbations strengthen and weaken the eastward jet during
both phases of the oscillation. These interannual, so-called
gyre modes do not have their origin in the spectrum of the
linear operator related to free Rossby-wave propagation. Si-
monnet and Dijkstra (2002) clarified the spectral origin of the
gyre mode and presented a physical mechanism of its propa-
gation. The gyre mode destabilizes the asymmetric solutions
at a Hopf bifurcation located near Re = 83. The gyre mode,
therefore has a negative growth factor o, for Re < 83 (Fig.
9). In the rightmost panels of Fig. 9, the patterns of the real
and imaginary parts of this eigenmode (X and %X) are shown
near Re = 40. The path of the gyre mode (the dash-dotted
curve in Fig. 9) ends at the point M, where it splits into two
stationary eigenmodes. These stationary modes exist up to
the point P; where the asymmetric solutions cease to exist.

Also shown in Fig. 9 are the leading eigenmodes on the
symmetric solution branch. The non-oscillatory mode respon-
sible for the first pitchfork bifurcation (P;) has a symmetric
tripolar structure (Fig. 9, upper-left panel), similar to the
streamfunction pattern in Fig. 6b and is called the P-mode.
At P1, the growth rate o, of this mode becomes positive which
means that the symmetric steady flow becomes unstable to
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Gyre mode

Figure 9: Real part o, of the eigenvalues closest to the imagi-
nary axis of the linear stability problem of the symmetric double-
gyre flow (thin lines) and along one of the asymmetric steady
states (thick lines). The P-mode (streamfunction pattern in the
upper left panel) destabilizes the symmetric state at the pitchfork
P (from Simonnet and Dijkstra (2002)). Along the asymmet-
ric states, however, it deforms and merges with the L-mode
(streamfunction pattern in the lower left panel) at the point M.
This gives rise to the gyre mode (streamfunction patterns in the
right panel).

this perturbation pattern. The non-oscillatory mode respon-
sible for the saddle-node bifurcation at L in Fig. 5a has a
dipolar anti-symmetric structure (Fig. 9, lower-left panel). It
thus acts on both gyres simultaneously so that they either in-
crease or decrease in intensity. Simonnet and Dijkstra (2002)
called this non-oscillatory mode the L-mode. At P;, the L-
mode is damped and o, becomes positive at the saddle-node
bifurcation.

Relevant for the spectral origin of the gyre mode is the path
of both the P-mode and L-mode on the asymmetric branches
for Re > 29.4. For Re slightly above P;, both modes are
still non-oscillatory and have negative growth factor since the
asymmetric branch is stable. The paths of the eigenvalues of
both modes are indicated by the thick lines in Fig. 9 (starting
at Re = 29.4). The growth factor of the P-mode decreases
with Re, whereas that of the L-mode increases. Both modes
meet at the point M (Fig. 9), which Simonnet and Dijkstra
(2002) called the merging point, and give birth to the gyre
mode.

Homoclinic bifurcations

‘We now consider the transient behavior of the double-gyre
flows for values of Re beyond the first Hopf bifurcation. Tra-
jectories computed for the 1000 x 1000 km basin show that
indeed intermonthly variability first occurs with increasing Re
in the form of periodic oscillations. Subsequently, when Re is
increased, a quasi-periodic orbit is obtained with both inter-
annual and intermonthly frequencies. Soon after Re = 85, the
flow becomes irregular.

In Meacham (2000), transient flows in a basin of 1024 x 2048
km with no-slip boundary conditions on the lateral walls are
considered. Transient solutions are computed versus lateral
friction and either steady, periodic and aperiodic solutions are
found. The structure of the steady states and periodic or-
bits can be understood with help of the bifurcation diagram
Fig. 4a, where the periodic orbits are coming from the Hopf
bifurcations. In some aperiodic solutions, large excursions
are made and ultra low-frequency variability arises; Meacham
(2000) suggests that it arises through a homoclinic orbit.

In Nadiga and Luce (2001), the location of the homoclinic
orbit in the double-gyre flows is precisely located for flows in



a basin of size 1000 x 2000 km. Many transient computations
are performed for different parameters and spectra are versus
parameters. In this way, they find evidence for the occurrence
of a homoclinic orbit of Shilnikov (1965) type. This behavior
is characterized by specific periodic and aperiodic orbits that
can be observed in the spectrum of the time series. Nadiga
and Luce (2001) also demonstrated the importance of this dy-
namical phenomenon in explaining low-frequency variability
in these flows.

For a 2560 x 2560 km basin, Chang et al. (2001) show
that the anti-symmetric flow also destabilizes through a pitch-
fork bifurcation and that the asymmetric double-gyre flows
subsequently destabilize through Hopf bifurcations. The first
periodic orbit that appears has a subannual time scale and in-
terannual variability occurs at slightly larger values of §7/dx;.
They monitor the transition to aperiodicity in detail by plot-
ting the transport difference A® between the subtropical and
subpolar gyre versus the basin kinetic energy FE of the flow for
different ratios d7/dps (Fig. 10). The quantity A® is defined
as

AD — 71/1170 - wt'r

max | ¥ |

(5)

where v, < 0 is the maximum transport of the subpolar
gyre and ¢ > 0 the maximum transport of the subtropical
gyre. Note that A® = 0 for an anti-symmetric flow, with
1/’;)0 = *d’tw
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Figure 10: Phase projections of trajectories computed by Chang
et al. (2001). On the horizontal axis, the basin averaged ki-
netic energy (BKE) of the flow and on the vertical axis, the
asymmetry of the flow measured through TD = A® is plotted.
The different panels are for several values of the ratio BLR =
51/6m. (a) 0.880, (b) 0.884, (c) 0.888, (d) 0.892, (e) 0.897
and (f) 0.900.

In Fig. 10a, the projection of a periodic orbit around an
asymmetric steady state can be seen and it has a period of
about 148 days. As d7/dp increases, the periodic orbit at
some instant of time reaches the symmetric double-gyre solu-
tion, for which A® = 0 (Fig. 10b-d). For slightly larger values
the flow becomes aperiodic while the trajectory now attains
both positive and negative values of A® (Fig. 10e-f). It ap-
pears as though the periodic orbit makes a connection with
the branch of steady symmetric solutions and then connects
to the periodic orbit which is present around the symmetry-
related asymmetric state: this is characteristic of the presence
of a homoclinic bifurcation.

The connection between the pitchfork bifurcation, the gyre
modes and the occurrence of the homoclinic bifurcation was
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clarified in Simonnet et al. (2005) and an overview of the bi-
furcation behavior leading to the homoclinic orbit is plotted
in Fig. 11. The symmetry-breaking pitchfork bifurcation P is
responsible for the asymmetric states; the P-mode is involved
in this instability. The merging of the P-mode and the L-
mode on the branches of the asymmetric states (at the points
M) is responsible for the Hopf bifurcations H associated with
the gyre modes. Finally, the periodic orbits arising from these
Hopf bifurcation points on both asymmetric branches connect
with the unstable anti-symmetric steady state at the point A;
this gives rise to the homoclinic orbit. The type of homoclinic

asymmetry

L i i

forcing/dissipation

Figure 11: Schematic bifurcation diagram of the solutions of the
barotropic vorticity equation, plotted in terms of a measure of
the asymmetry of the solution (for example, A®) versus either
wind-stress intensity, the ratio 61 /6y or simply the Reynolds
number Re (from Simonnet et al. (2005)).

orbit depends on the eigenvalues associated with the linear
stability of the symmetric state at the connection point A
(Wiggins, 1990). In case there are only real eigenvalues, there
is a homoclinic connection of Lorenz-type and when the sec-
ond and third eigenvalue form a complex-conjugate pair, there
is a homoclinic bifurcation of Shilnikov type. Simonnet et al.
(2005) show that both types can occur and that Shilnikov is
more likely to occur at small lateral friction, in accordance
with the results in Nadiga and Luce (2001).

LOW-FREQUENCY VARIABILITY

McCalpin and Haidvogel (1996) investigated the time-
dependent solutions of (1) for a basin of realistic size (3600
X 2800 km), as well as the sensitivity of solutions to the mag-
nitude of the wind stress and its meridional profile. They
classified solutions according to their basin-averaged kinetic
energy, and found three persistent states in their simulations
(Fig. 12a). High-energy states are characterized by near-
symmetry with respect to the mid-axis, weak meandering,
and large jet penetration into the basin interior (Fig. 12b, left
panel). Low-energy states have a strongly meandering jet that
extends but a short way into the basin (Fig. 12b, right panel),
while intermediate-energy states resemble the time-averaged
flow and have a spatial pattern somewhere between high- and
low-energy states (not shown). The persistence of the solu-
tions near either state is irregular but can last for more than
a decade of simulated time (Fig. 12a).

Primeau (1998) reproduces the time-dependent behavior of
the flows found by McCalpin and Haidvogel (1996). By pro-
jecting the instantaneous flow fields onto four of the steady
solutions, he found that a significant amount of the low-
frequency variability of the trajectories are associated with
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Figure 12: (a) Typical variation of the basin averaged kinetic
energy of the double-gyre flow in a large basin for the high-
forcing or low-dissipation regime (from McCalpin and Haidvogel
(1996)). (b) Typical patterns of the streamfunction for the high-
energy state (left panel) and the low-energy state (right panel).

transitions between these steady solutions. Furthermore, he
explained that the reduction of the low-frequency variability
associated with an increased asymmetry of the wind forcing
is a result of the fact that some of the steady states cease
to exist. However, knowing that there are many branches of
steady solutions, many gyre modes and possibly several ho-
moclinic connections, much more work is needed to figure out
the precise dynamics causing the different energy states found
in McCalpin and Haidvogel (1996).

At very high values of Re, Greatbatch and Nadiga (2000)
analyze the flows for a 1000 x 2000 km basin and find that typ-
ically a four-gyre pattern arises in the mean flow. The upper
and lower gyres (which circulate against the wind direction)
are driven by mesoscale variability and are associated with a
homogenization of potential vorticity (Salmon, 1998).

MULTI-LAYER FLOWS

We next consider a model with a more detailed representa-
tion of the stratification through the increase in the number
of layers. In this three-layer model, the stratification is ideal-
ized by three stacked layers of water with constant densities
pi, p1 < p2 < p3, and mean layer thicknesses H;, with
H = H; 4+ Hz + H3z. The governing equations of the model
are

Iq1 VXT

J = AVt 6
e + J(1,q1) Vi + il (6a)
fo
= V% — Zh
Q U1 T 1+ Boy
Io]
gu(wz,qz) = AV (6b)
@ = Vi - ﬁ(hz — h1) + Boy
Hy
Io]
S HIna) = AnVies (6¢)
Qg = V2w3+&h2 + Boy
Hj

where the g; represent the potential vorticity and the ; the
streamfunction in layer i. The quantities h; represent interface
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perturbations related to the streamfunctions, 1;, through h; =
fo(¥i—vi41)/g; for i = 1,2, in which the g] = g(pi+1—pi)/po
represent the reduced gravity parameters. Conditions of no
normal flow and no-slip, ¢; = 0 and 9v;/9n = 0, are applied
to the lateral boundaries.

Because of the representation of vertical shear in this
model, the flows become susceptible to baroclinic instabilities
(Pedlosky, 1987) which show up in the bifurcation diagrams
as additional Hopf bifurcations (Dijkstra and Katsman, 1997).
The patterns of the eigenmodes are labeled classical baroclinic
modes CB1, CB2, etc. Nauw et al. (2004) used the three-layer
model to investigate the different flow regimes (in a 2000 x 2000
km basin) which appear when the lateral friction coefficient
Apr is decreased from Ay = 2400 m2s—1 to Ap = 300 m2s—1.
Parameter values are as in Table 1 with additional parameter
values H; = 600 m, Hy = 1400 m, H3 = 2000 m, g7 = 0.02
ms~2 and g5 = 0.03 ms™2.

Four flow regimes are identified by the analysis of a combi-
nation of the maximum northward transport of the time-mean
flow and the normalized transport difference between the sub-
tropical and subpolar gyre (A®). In this case, AP is defined
as in (5) in which the streamfunction ¢ is that of the depth
averaged flow. With decreasing Ap, the regimes found are
the viscous anti-symmetric regime (for Az > 2100 m?s™1),
the asymmetric regime (for 1400 < Ay < 2100 m?s™1), the
quasi-homoclinic regime (for 700 < Ay < 1400 m?s~1) and
the inertial anti-symmetric regime (for Ay < 700 m2s~1).

For four different values of Ap, the value of Ad is plotted
versus time in Fig. 13 and time-mean plots of the barotropic
transport streamfunction ¥ of the vertically averaged flow
are shown in Fig. 14. The time-series of A® in the viscous
symmetric regime (Fig. 13a) displays a low-frequency modu-
lation of a high-frequency signal, while the time-mean state
(Fig. 14a) is anti-symmetric. A transition to an asymmetric
regime occurs at smaller Ay and a typical time-series of AP
in that regime is shown in Fig. 13b. The value of Ad re-
mains positive after a spin-up of slightly more than 25 years
and the amplitude of the high-frequency oscillation changes
on a decadal time-scale. The time-mean barotropic transport
streamfunction is asymmetric and displays a jet-down solution
(Fig. 14b) in correspondence with the positive value of A®.
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Figure 13: Time series (including spin-up) of the transport
difference, A®, for different values of Ay in the large basin
case. (a) Ay = 2400 m?s™ 1, viscous anti-symmetric regime; (b)
Ap = 1600 m?s~ !, asymmetric regime; (c¢) Ay = 900 m2s~?t,
quasi-homoclinic regime; (d) Ay = 600 m?>s™1, inertial anti-
symmetric regime.



For the flow in the quasi-homoclinic regime, several in-
tervals can be distinguished in which there is a preference
for either positive or negative values (Fig. 13c). The time-
mean flow in this regime is slightly asymmetric (Fig. 14c).
The time-series of the case in the inertial anti-symmetric
regime (Fig. 13d) consists of a mainly high-frequency sig-
nal. The time-mean flow in this regime (Fig. 14b) is also
anti-symmetric, but the midlatitude jet is much stronger than
in the anti-symmetric viscous regime. Moreover, the large-
scale gyres are accompanied by small-scale subgyres near the
northern and southern boundary (Fig. 14d), similar to those
in Greatbatch and Nadiga (2000).

Figure 14: The patterns of the barotropic transport function, ¥,
averaged over the final 75 years of integration for selected values
of A. (a) Ay = 2400 m?s™', viscous symmetric regime; (b)
Ay = 1600 m?s~ 1!, asymmetric regime; (c) Ay = 900 m2s~1t,
quasi-homoclinic regime; (d) Ay = 600 m2s~', inertial sym-
metric regime.

The four regimes are also characterized by different types
of variability. In Nauw et al. (2004), the spatio-temporal
variability of the flows (of which time series were shown for
different values of Ay in Fig. 13) was analyzed with the M-
SSA technique (Plaut et al., 1995). In Fig. 15, a histogram
is shown of the variance explained by each of the statisti-
cal modes, classified into groups that can be related to an
internal mode. Case (a) is for a symmetric wind-stress forc-
ing (0 = 0.0), while case (b) is for a slightly asymmetric
wind stress (o > 0). Most of the variance in the viscous
anti-ymmetric regime can be explained by two classical baro-
clinic modes (CB1 and CB2), both with a period of about 3
months. In the inertial anti-symmetric regime, the variability
is controlled by Rossby basin modes (RB) with intermonthly
periods. Part of the variance in the asymmetric and quasi-
homoclinic regimes can be explained by a gyre mode (G). It
causes low-frequency variability with a period of about 3 years.
The case with asymmetric wind-stress forcing demonstrates
that the presence of the gyre mode is linked to the asymmetry
of the time-mean state (Fig. 15b).

Nauw et al. (2004) also explain the transitions between
the different regimes. The transition from the viscous anti-
symmetric regime to the asymmetric regime is associated with
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Figure 15: Histograms of explained variances (%) for each of the
different statistical oscillations, as determined from the M-SSA
technique. (a) symmetric wind-stress forcing and (b) asym-
metric wind-stress forcing. CB1 = classical baroclinic mode,
causing meandering of the midlatitude jet; CB2 = classical baro-
clinic mode causing strengthening and weakening of the midlat-
itude jet; D = dipole oscillation; G = gyre mode; RB = Rossby
basin mode; WT = wall-trapped mode. The D and WT modes
are not discussed here.

a symmetry-breaking pitchfork bifurcation. A homoclinic bi-
furcation, caused by the merging of two mirror-symmetric low-
frequency relaxation oscillations and the unstable symmetric
steady state, marks the transition from the asymmetric regime
to the quasi-homoclinic regime. The transition from the quasi-
homoclinic regime to the inertial anti-symmetric regime occurs
through symmetrization of the zonal velocity field of the time-
mean state. The interactions of high-frequency modes (such as
CB1 and CB2) introduces forcing terms that oppose the wind-
stress forcing, thereby moving the system towards a regime
where both multiple equilibria and the gyre mode cease to ex-
ist. The results in Nauw et al. (2004) indicate that the study
of the steady states, the bifurcations and the internal modes
of variability provide an interpretation framework for com-
plex time-dependent multi-layer flows. But, as the bifurcation
diagrams become more complicated for ‘realistic’ size basins,
much work is needed to obtain a more detailed dynamical in-
terpretation of time-dependent flows in these basins.

Berloff and McWilliams (1999a) computed numerical solu-
tions of the double-gyre flows in a two-layer model for five
values of the lateral friction coefficient Agy in a basin of re-
alistic size (3200 x 2800 km). For Az = 1200 m2?s~!, an
asymmetric steady state is found. At Ay = 1000 m2?s~1!,
quasi-periodic variability is found containing two dominant
frequencies in the sub- and interannual range. The inter-
monthly variability is characterized by the presence of Rossby
waves in the interior, while the interannual time-scale vari-
ability is associated with a fluctuating envelope surrounding
a standing Rossby wave. At even smaller friction, a broad-
band spectrum appears, with the spectral power of the total
energy increasing towards lower frequencies. At Ay = 800
m?s~1, the behavior of the solutions is called ‘chaotic’, while
at Ay = 600 m?s~! the flow patterns hover near three states
with distinct total energy. These states are characterized by
a different penetration length of the eastward jet and the



presence or absence of dipole-pattern oscillations in the re-
circulation region.

Characteristics of the asymmetric and quasi-homoclinic
regimes are found in Berloff and McWilliams (1999a). The
spatial pattern of the interannual mode in the symmetrically
forced case at Ay = 1000 m2s~! (their Fig. 15) is similar to
that of the gyre mode. The meridional position of the sep-
aration point of their time-dependent solution at Ay = 600
m?s~! alternates between locations to the north and to the
south of the mid-axis of the basin on a decadal time-scale
(their Fig. 18). This indicates an alternation between a jet-up
and a jet-down solution and provides support for the nearby
presence of a homoclinic orbit. Hence, this solution is likely to
reside in a quasi-homoclinic regime. Berloff and McWilliams
(1999b) investigate the double-gyre flows at even smaller val-
ues of Ay in a three-layer model and find a destabilization of
the western boundary current at very small values of Ag.

In Siegel et al. (2001), flows for very small values of Ay
are computed in a high resolution 6-layer model for a 3200
km square basin. In Fig. 16, upper layer streamfunction plots
are shown from several numerical experiments differing in the
values of Ap. The displayed sequence goes from relatively low
Reynolds numbers Re (see definition in caption of Fig. 16) in

3200

Y (km)

0 X(km) 3200 O X (km) 3200
Figure 16: Upper layer streamfunction snapshots of the ocean
in a 3200 km square basin for varying Reynolds numbers, Re,
with Re = 0.375, 1.5, 6.0, 24 for the panels (A)-(D), respec-
tively. Here, Re = UL/Ap, with U = 102 ms~! and L = 3200
km. The time-mean flow consists of an anticyclonic midlatitude
subtropical gyre and a cyclonic subpolar gyre. The resolution in
the computations increases from 25 km in (A) to 1.56 km in
(D). Note the appearance of coherent vortices throughout the
circulation in the highest value of Re results (from Siegel et al.
(2001)).

panel A to very high values in panel D. In panel D, numer-
ous small-scale coherent vortices are displayed. Comparable
features occasionally appear in the flow in panel C, but are es-
sentially absent in the panels A and B. In C, the vortices are far
sparser and do not survive for ‘long’ times (relative to vortex
turnover time scales). The highest Re computations possess
eddy kinetic energies approaching values like those observed
in the open ocean. The dynamical origin of this so-called co-
herent vortex regime is still unknown.
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SUMMARY AND OUTLOOK

With the dynamical systems approach as presented here,
the idea is that an understanding of the physics of the ob-
served complex ocean flows can be obtained by approach-
ing the ‘real’ situation from particular limiting flows. One
path proceeds from simple to complex situations through a
hierarchy of models. We considered only single- and multi-
layer quasi-geostrophic models here, but the hierarchy is much
larger including shallow-water models and primitive equation
models. A second path was taken within one particular mem-
ber of the model hierarchy where we proceeded from steady,
highly-dissipative or weakly-forced flows to irregular, weakly
dissipative or strongly forced flows by varying parameters, here
only Ap.

By proceeding along both paths, two important issues have
become apparent. The first issue is the existence of multiple
steady flow patterns in wind-driven midlatitude ocean flows.
These multiple states have been robust in the model hierar-
chy and their origin is a symmetry breaking shear instability,
most apparent in the single-layer model. The second issue
is that a classification of internal modes of variability is ap-
pearing. From a mathematical point of view, there are two
types of modes. One type of modes, the Rossby-basin modes
(RB), comes from the basic linear operator arising from the
linear stability analysis of the no-flow state. The other types
of modes (CB and G) do not have an origin in this basic linear
operator. The oscillatory classical baroclinic modes (CB) arise
when vertical shear is present in the background state. The
low-frequency gyre modes (G) arise through a merger process
of stationary modes. The gyre modes play an important role
in the generation of aperiodic flows through the occurrence of
homoclinic bifurcations.

It is less clear at the moment, why the transition behavior
to aperiodic behavior differs in both single- and double-gyre
flow. In Berloff and Meacham (1998b), it is suggested that the
route to chaos in the baroclinic single-gyre case is the classi-
cal three-frequency route (Ruelle and Takens, 1970). which
appears different from the Lorenz (Simonnet et al., 2005) and
Shilnikov (Nadiga and Luce, 2001) route (through a homo-
clinic connection) as found in double-gyre flows. The study of
the route to complex flows over the model hiearchy, however,
is in its infancy and many exciting new results can be expected
in the near future.
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