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ABSTRACT

Laboratory experiments designed to shed light on fluid
flow through collapsible tubes, a problem with several phys-
iological applications, invariably give rise to a wide variety
of self-excited oscillations. This talk surveys the background
and then outlines a two-dimensional model that has been de-
veloped to describe the standard experiment, of flow along
a finite length of elastic tube mounted at its ends on rigid
tubes and contained in a chamber whose pressure can be in-
dependently varied. The configuration is that of flow in a
parallel-sided channel with a segment of one wall replaced by
a membrane under longitudinal tension 7. In the absence of
bending stiffness the flow and membrane displacement have
been calculated using an unsteady Navier-Stokes computation.

For a given Reynolds number, Re, steady flow becomes un-
stable when T' falls below a critical value (equivalently, when
Re exceeds a critical value for fixed T'), and the consequent os-
cillations reveal at least one period-doubling bifurcation as T' is
further reduced. The effect of wall inertia has also been inves-
tigated: it is negligible if the flowing fluid is water, but leads
to an independent, high frequency flutter when it is air. The
most recent version of the computations incorporates elonga-
tional and bending stiffness, and a surprising finding is that a
narrow band of stable states occurs in the middle of an other-
wise unstable region of parameter space.

1. INTRODUCTION

1.1 Collapse

Any elastic tube will collapse if it is squeezed hard enough.
If a long segment of uniform elastic tube is subjected to
different levels of transmural (internal minus external) pres-
sure, ptm, the cross-sectional shape and area, A, will vary
as sketched in Figure 1. When pym is large and positive,
the cross-section will be circular and rather stiff because the
perimeter must be stretched in order to increase A. As pem is
lowered, a critical value is passed at which the circular cross-
section buckles, becoming at first elliptical and then more
significantly deformed. During this phase a thin-walled tube
is very compliant (large area change for small pressure change)
because only wall bending is required for a change of shape
and hence area. At very low values of A the tube is almost to-
tally collapsed and becomes stiff again. During the compliant
phase, even the small pressure changes associated with flow
through the tube (viscous or inertial) can be enough to cause
collapse.

The collapse of compressed elastic tubes conveying a flow
occurs naturally in several physiological applications. Exam-
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ples include: (i) Blood flow in veins, either above the level of
the heart where the internal pressure may be subatmospheric
because of the effect of gravity (the jugular vein of the giraffe is
particularly interesting in this context: Pedley, Brook & Sey-
mour (1996); Brook, Falle & Pedley (1999)), or being squeezed
by contracting skeletal muscle as in the ”muscle pump” used to
return blood to the heart from the feet of an upright mammal.
(ii) Blood flow in arteries, such as intra-myocardial coronary
arteries during the contraction of the left ventricle, or actively
squeezed by an external agency such as a blood pressure cuff.
(iii) Air flow in the large intrathoracic airways of the lung
during a forced expiration or cough, because an increase in
alveolar air pressure, intended to increase the expiratory flow
In this
case, increasing alveolar pressure above a certain level does
not increase the expiratory flow rate, a process known as flow

rate, is also exerted on the outside of the airways.

limitation. (4) Urine flow in the urethra during micturition,
where flow limitation is again commonplace. These and other
examples are discussed in greater detail by Shapiro (1977 a,b).
Note that in all the cases mentioned the Reynolds number of
the flow (Re) is in the hundreds or higher.

1.2 In vitro experiments

Many workers have performed laboratory experiments on
nominally steady flow through collapsible tubes. In the stan-
dard experiment a segment of collapsible (e.g. rubber) tube is
mounted at its ends on rigid tubes and contained in a cham-
ber whose pressure, pe, can be independently controlled; the
behaviour of the system depends on two independent pressure
differences, e.g. py —pg and pe —pg, where p,, and pg are pres-
sure far upstream and downstream. Some early experimental
studies sought to characterise the collapsible tube by plotting
the pressure difference along it (Ap = p1 — p2: see Figure 2)
against the flow-rate, g; there was some confusion in the litera-
ture because it was not always clear which controlled pressure
difference was being varied, as flow rate was varied, and which
was held constant. Three different examples, in each of which
the shape of the Ap — g curve is quite different, are shown in
Figure 3 (a,b,c), taken from Brecher (1952), Bertram (1986)
and Conrad (1969), respectively. The following explanations
of the three different curves are taken from Kamm & Pedley
(1989).

For the case depicted in figure 3(a), p1 — p2 is increased
while p1 — pe is held constant. This can be accomplished ei-
ther by reducing p2 with p; and pe fixed, or by simultaneously
increasing p1 and pe while p2 is held constant. With either
manoeuvre, g at first increases but above a critical value it lev-
els off and exhibits flow limitation: however much the driving
pressure is increased the flow rate remains constant or may



even fall as a result of increasingly severe tube collapse. This
version of the experiment is directly relevant to forced expi-
ration from the lung (Elad & Kamm, 1989; Lambert, 1989)
to venous return (Guyton, 1962) and to micturition (Griffiths,
1971).

Different results are obtained if p; — p2 or ¢ is increased
while p2 — pe is held constant at some negative value (Fry,
1958; Brower & Noordergraaf, 1973; Bonis & Ribreau, 1978).
In this case the tube is collapsed at low flow rates, but starts
to open up from the upstream end as ¢ increases above a crit-
ical value, so that the resistance falls and p; — p2 ceases to
rise; so called ”pressure-drop limitation” (figure 3(b)). This
experiment is not directly applicable to any particular physi-
ological condition, but it turns out that p2 — pe is a natural
control parameter for at least one of the types of theoretical
model that have been proposed (Shapiro, 1977a). Figure 3(b)
represents some experimental results of pressure flow relations
for several values of pe — p2 (Bertram et al, 1990).

In a third type of experiment, p1 —p2 is held constant while
p2 — pe is decreased from a large positive value. The tube first
behaves as though it were rigid and the flow rate is nearly con-
stant. Then as pa —pe becomes sufficiently negative to produce
partial collapse, the resistance rises and g begins to fall. This
is analogous to what happens in the pulmonary capillaries
near the apex of the lung (Permutt et al, 1963). One notable
variation on these experiments is that pioneered by Conrad
(1969) who held pe constant and the pressure downstream of
the collapsible segment but upstream of a flow resistance, pa,
varies with ¢ as does the degree of tube collapse. Thus at
high flow rates the tube is distended and its resistance is low,
but as the flow rate is reduced below a critical value the tube
starts to collapse and its resistance and p; — po increase as q
is decreased. Only when the tube is severely collapsed along
most of its length does p1 — pa start to decrease again as ¢
approaches zero (figure 3(c)).

In almost all such collapsible tube experiments with Re >
about 200, ranges of parameters were found in which steady
flow could not be achieved but, instead, large-amplitude, flow-
induced oscillations were observed. Bertram and his colleagues
(1982,1986,1990,1991) have made probably the most system-
atic series of experiments on self-excited oscillations in col-
lapsible tubes, recording as functions of time the pressures
(p1,p2) and flow rates (q1,g2) at the upstream and down-
stream ends of the collapsible segment, and the cross-sectional
area Ap at the narrowest point. Examples of some of the mea-
surements of p2(t) for various parameter values are shown in
Figure 4; a great variety of oscillatory behaviour is exhibited.
Bertram, et al. (1990) have tried to map out the associated
control space diagrams, to identify regions in which different
types of oscillation arise. All that can be said in summary is
that a finite length of compressed collapsible tube conveying
a flow represents a dynamical system of remarkable richness
and complexity. It would clearly be of great interest to be
able to model the system theoretically and hence understand
it physically. That interest is independent of any physiolog-
ical relevance, though it should be noted that flow-induced
oscillations do arise in some of the physiological applications:
wheezing during forced expiration; the Korotkov sounds lis-
tened for during blood pressure measurement with a cuff; and
?cervical venous hum” (Danaky & Ronan, 1974) are but three
examples.
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2. ONE-DIMENSIONAL MODELS

2.1 Basic equations

The earliest and simplest theoretical models of collapsible-
tube flow were lumped-parameter or zero-dimensional models,
in which the relevant variables were functions only of time ¢,
and satisfied nonlinear ordinary differential equations. The
geometry of the whole collapsible segment would be rep-
resented, say, by the cross-sectional area at the narrowest
point, Ay (t), and the other variables would be the pressure
at that point, pn(t), together with the measurable quan-
tities p1(t), p2(t),q1(t), q2(t). The variables were linked by
dynamical equations representing conservation of mass and
momentum, together with a tube law (Figure 1) relating the
transmural pressure py — pe and the area Ay, but only at the
narrowest point. The system of ordinary differential equations
was typically of second or third order (Conrad (1969), Schoen-
dorfer & Shapiro (1977), Pedley (1980, Chapter 6), Bertram &
Pedley (1983)), though the well-known model of Katz, Chen
& Moreno (1969) was of fifth order. Some authors, in the
days before modern dynamical systems theory, were content
to imply that, since both their experiments and their model
produced oscillations, the problem was solved. Because many
real mechanical features cannot be incorporated in lumped-
parameter models, we do not discuss them further here.

The next level of sophistication is a one-dimensional model,
in which the pressure p and the longitudinal velocity u, both
averaged across the tube cross-section, together with the cross-
sectional area A, are regarded as functions of the longitudinal
coordinate z and time ¢. The governing equations have tradi-
tionally been taken to be the following (Shapiro, 1977a):

conservation of mass %—f 8(;:1) =0 (1)
. du 1dp R(A,u)uA
conservation of momentum — — =
ot dx pdx p
2)
elasticity (tube law) p —pe = P(A) (3)

where the function P(A) represents the tube law (figure 1).
In equation (2) the body force term has been omitted since
the longitudinal component of gravity is equivalent to a gradi-
ent in external pressure,pe. The convective inertia term does
not include the contribution from the non-flat velocity profile,
which can in general be incorporated into the term, RuA, rep-
resenting viscous resistance; R is assumed to be positive, and
increases rapidly as A decreases. The set of equations (1)-
(3) are exactly analogous to those for water flow in shallow
channels with a free surface.

An interesting application of the above one-dimensional
equations is provided by blood flow in the giraffe jugular vein:
see Pedley et al (1996), Brook et al (1999), Brook & Pedley
(2002). I shall not repeat those studies here, except in the
following brief summary:

The giraffe has a neck of phenomenal length
Up which blood must be pumped to the brain.
The consequence is a heart of great strength
And collapse of the jugular vein.



2.2 Modelling the laboratory experiments

Instead we consider the experiment depicted in figure 2,
with the tube horizontal, and see how well it can be described
by the one-dimensional theory. We again consider steady flow,
so the governing equations are (3), plus the time-independent
versions of (1) and (2). Eliminating p we obtain:

1dA  R(A)q
Ade = 2@ —u?) (4)
Adz  p(c® —u?)
where
2o AdP
p dA

Note that ¢(A) is the speed at which small amplitude pres-
sure waves propagate along the tube, in the absence of through
flow, when its cross-sectional area is uniformly equal to A
(Shapiro, 1977a) and ¢ is the flow-rate uA (constant). Sup-
pose that, at an upstream station, the tube is circular and
u < c¢. dA/dz is negative, so A decreases (tending to reduce
¢) while u increases because uA is constant. Thus dA/dz be-
comes increasingly negative and, if the tube is long enough,
a choke point will be reached at which u is predicted to be
equal to ¢ and dA/dx = —co. By this stage the steady flow
model will clearly have broken down: steady flow at the pro-
posed flow rate g, from the postulated upstream conditions,
is not possible. If ¢ and the upstream area are held fixed,
and the model is a correct one for steady flow, then unsteady
behaviour must follow. A number of authors (e.g. Brower &
Scholten, 1975) have gone further and suggested that the pres-
ence of a point at which the fluid speed is equal to the wave
speed is the prime mechanism for the initiation of unsteady
behaviour - i.e. of self-excited oscillations.

However, the one-dimensional model contained in equations
(1)-(3) must break down anyway, even without choking, in or-
der to describe the experiment depicted in figure 2, because
dA/dx would have to become positive again near the down-
stream end z = ¢. Cancelli & Pedley (1985) added two new
features, both of which should be important in the region
downstream of the narrowest point. One was longitudinal
tension in the tube wall, the simplest model for which causes
equation (3) to be replaced by

D%A
da2

In the highly collapsed region the tube wall resembles two

p—pe=PA)-T (5)

flattish membranes under tension, with longitudinal curvature
roughly proportional to d?A/dx?. It was felt that the addition
of extra z-derivatives would enable more boundary conditions
to be applied, such as A(¢) = A(0) = Ag. The other new fea-
ture was the recognition that flow through a constriction will
separate, a process leading to enhanced energy loss and there-
fore substantially incomplete pressure recovery in the region
downstream of the narrowest point. The energy loss down-
stream of the narrowest point had already been identified as
important in lumped-parameter models (Pedley, 1980). Can-
celli & Pedley (1985) used momentum arguments to suggest
that a reasonable, yet still simple, model of the energy loss in
steady flow could be achieved by replacing the steady version
of equation (2), downstream of the narrowest point, by

Xdz_

1d
Lap

pdx’ ©)
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where x is a non-negative quantity, less than 1; in their
(unsteady) calculations Cancelli & Pedley took x = 0.2.

The steady flow model described by equations (15) and (16)
with ¢ = uA and

P(A)=K,(1-a"3?) for a<1 (7)

= Kpk(aw—1) for a>1

(where @ = A/Ap) was exhaustively analysed by Jensen
& Pedley (1989). These authors neglected the direct viscous
term Ru, taking x = 1 for 0 < z < s (the unknown point of
flow separation, taken to be identical with the narrowest point
at sufficiently high Reynolds number) and x = constant < 1
for s < & < €. Their principal results can be summarised as
follows:

(i) when x = 1 everywhere, i.e. there is no energy loss in
the collapsible tube downstream of the narrowest point, then
there exists a critical value of the flow rate g, dependent on
the longitudinal tension 7', above which the steady problem
has no solution. In other words, the presence of longitudinal
tension alone does not abolish choking; this should not have
been a surprise: in the same way, surface tension does not
abolish critical behaviour in shallow-water channel flow.

(ii) However, whenever there is any downstream-energy
loss, i.e. x <1 for s < z < ¢, then a steady solution exists
for all positive values of flow rate ¢ and tension T'. Since some
such energy loss is inevitable, it follows that the breakdown of
steady flow is not caused by choking, i.e. the non-existence of
a steady flow at the chosen parameter values, but must arise
through instability of the steady solution.

Jensen (1990) gave a detailed linear, and weakly nonlin-
ear, analysis of the instability of the steady flow. He used the
same one-dimensional model with the time derivatives, A/t
and du/0t, restored. The elasticity equations (5) and (7) re-
mained unchanged. When appropriately non-dimensionalised,
Jensen’s model has two principal governing dimensionless pa-
rameters, in addition to x (which was fixed at a value of 0.2 in
all numerical computations): @, which is proportional to the
flow rate g, and P, proportional to the transmural pressure,
pe — p2, at the downstream end of the collapsible segment
when the flow is steady. Other parameters describe the re-
sistance and inertance of the upstream and downstream rigid
segments; these were kept fixed throughout. Figure 5 shows
the computed stability boundaries in the P — Q plane, for the
first two instability modes found. The general shape, show-
ing stable steady flow for sufficiently small P at all @ (the
tube remaining effectively open), and for sufficiently small @
at all P (the tube being collapsed when P is large enough),
is in qualitative agreement with the control diagrams plotted
by Bertram, et al. (1990). So too are the presence of mode
crossing points (i) and (ii) and the existence of several regions
in parameter space in which different behaviour of the system
is to be expected. Jensen’s weakly nonlinear analysis showed
that both modes become unstable through supercritical Hopf
bifurcations everywhere except for the small segments of the
stability boundaries marked as dotted in figure 5, where they
are subcritical Hopf bifurcations.

In a subsequent paper Jensen (1992) showed some results of
a numerical integration of the fully nonlinear one-dimensional
equations, at a few selected points in parameter space, near
the upper left mode crossing point in figure 5. Some of the
computed time series, of p2(t) = p(¢,t) for example, look quite



similar to the measurements of Bertram, et al (1990). It is
clear that this one-dimensional model contains much that is
relevant to the self-excited oscillations of real collapsible tubes
in the laboratory. It would be possible to extend Jensen’s
(1991) full nonlinear computations to cover the whole of pa-
rameter space, and map out the behaviour in as much (or
more) detail as has been done experimentally.

However, this has not been done, and should not, because
of the severe a priori weaknesses of the one-dimensional model
as a scientific description of the real system. First, the solid
mechanics of equations (5) and (7) is an extremely crude rep-
resentation of the nonaxisymmetric, large deformation of a
cylindrical shell under pre-stretch, external pressure, and the
stresses exerted by internal flow. Second, the fluid mechan-
ics is also extremely crude, primarily because of the ad hoc
way of representing flow separation and the processes of en-
ergy loss/pressure recovery downstream of the constriction.
This is especially weak in unsteady flow, since the arguments
leading to equation (6) were based on steady flow (Cancelli
& Pedley, 1985) and take no account, for example, of the
time delay between the emergence of a sufficiently adverse
pressure gradient and the breakaway of previously attached
flow (see the experiments of Bertram & Pedley, 1983). What
is required is a solution of the unsteady, three-dimensional
Navier-Stokes equations, coupled to the equations for the un-
steady, three-dimensional, large-deformation theory of highly
compliant shells. Numerical codes for the solution of such
problems are not yet available in any branch of computational
mechanics, and would require resources in excess of any avail-
able to us. Heil and his colleagues have been aproaching this
goal through a series of increasingly demanding computations
(Heil & Pedley (1996), Heil (1997), Hazel & Heil (2003)) but
they are still some way short of a fully versatile description of
self-excited oscillations.

3. TWO-DIMENSIONAL MODELS

3.1 The membrane model

Instead of attempting the full three-dimensional problem,
we have sought a sound scientific solution for a simpler, two-
dimensional configuration which is nevertheless in principle
realisable experimentally. The configuration is sketched in fig-
ure 6. A two-dimensional channel consists of two parallel,
rigid planes, distance ho apart, from one of which a seg-
ment of length Lho has been removed and replaced by a thin
membrane, with no bending stiffness or inertia but under lon-
gitudinal tension 7. Steady, plane Poiseuille flow with flow
rate g enters far upstream. The external pressure takes a con-
stant value, pe, referred to the pressure at the far end of the
downstream rigid segment.

In all the following discussion, lengths are made dimension-
less with respect to hg, and the position of the membrane is
given by

y = h(z,1),

where h(0,t) = h(L,t) = 1.

The first approach to this problem (Pedley, 1992) was based
on lubrication theory, assuming negligible fluid inertia, steady
flow and small wall slope: a one-dimensional model for low
Reynolds number flow, but rationally derivable from the full
equations of motion. The main innovation of that paper was

0<z<L

3)
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its inclusion of the fact that the longitudinal tension in the
membrane falls with downstream distance as a consequence of
the viscous shear stress exerted by the fluid. However, the re-
sults were not qualitatively very different from the constant
tension case, except when T fell close to zero. The main
conclusion was that the steady problem has a solution, for
all values of ¢ and pe, as long as T remains positive every-
where. For given positive values of longitudinal tension Tp
and transmural pressure pe — pp at the downstream end of
the membrane (see figure 6), the membrane is collapsed ev-
erywhere (h < 1 for all 0 < z < L) for sufficiently small
flow rate g, but exhibits a bulge outwards at its upstream
end when ¢ exceeds a critical value qp. In these respects, the
conclusions are the same as from the high Reynolds number
one-dimensional model discussed above.

Even for low Reynplds number flow, the lubrication the-
ory analysis was not uniformly valid because the wall slope
became large at the downstream end in cases for which Tp
was small. The next stage was therefore a numerical solution
of the Stokes equations, coupled to the membrane equations.
This was performed iteratively by Lowe & Pedley (1995), who
used the finite element method to solve for the flow with the
membrane position assumed given, calculated the pressure and
shear stress exerted on the membrane, and then updated the
membrane position by requiring that the membrane equilib-
rium equations be satisfied, and so on. This procedure led to
predictions of membrane shape, for given values of ¢, Tp and
pe — pp, which agreed remarkably well with the lubrication
theory results even when the wall slope was quite large, but
failed to give a solution for sufficiently small (but positive) val-
ues of membrane tension. We attribute this failure at small
Tp to a poor iteration scheme for very compliant boundaries.

We now formulate the general problem for unsteady flow,
although the next computation to be described will be for
steady flow at non-zero Reynolds number (Luo & Pedley,
1995). The full governing equations and boundary condi-
tions for the unsteady problem, in dimensionless form, are
as follows, where velocities are made non-dimensional with
up = g/ho, time with hg/Ug, stresses with pUO2 (p is fluid
density), and wall tension with pUOZhO; the Reynolds number
is Re = pUoho/p (p is fluid viscosity) and the summation
convention is used over suffixes i,j = 1, 2.

Navier-Stokes w; ¢ +ujui; = —p; + Re_lui’jj (9a)
Conservation of mass wu;; =0 (9b)
Boundary conditions (refer to figure 6):
on AB(x = —Ly)
uy =6y(l —y), u2=0 (10a)
on EF(x =L+ Ly)
—p+ Re tup ) =0,up =0 (10b)

on BC,DE,AF(y =1for z <0or z > L; y =0 for all x)

ur =uz =0 (10¢)
on CD(y = h(z,t),0 <z < L)
up =uz =0 (steady) (11a)



u; = velocity of membrane (unsteady) (11b)
Pe — on = Thag (1+ h2)~3/2 (11c)
—oy = 0T/0s. (11d)

In the membrane equations (11c,d), on and o¢ are the nor-
mal and tangential components of the stress exerted by the
fluid on the membrane and s is the distance measured along
the membrane. There should, in addition, be an equation
relating the tension of each element of the membrane to its
extension, but in this work we assumed that 7" is independent
of time, ¢, which is equivalent to assuming that the tension
is sufficiently large for length variations to cause negligible
changes in T' (but see section 3.2 below). That suggests that
the tension is also sufficiently large for the longitudinal varia-
tion to be negligible, so from henceforth we ignore condition
(11d) and take T" in (11c) to be a constant. The computations
have confirmed that the overall length changes are no more
than +4%, even during the most vigorous oscillations found
(Luo & Pedley, 1996).

Although the non-dimensionalisation described above is the
most convenient for numerical solution, it is not convenient for
the presentation of results because Up appears in the scalings
for pe and T. In presenting the results, therefore, we shall
take

T =To/BRe?, pe = Peo/vRe%,

where Tp and peo are reference values, and increasing 3 or
~ alone is equivalent to decreasing T' or pe at fixed Reynolds

(12)

number Re.

Steady flow at finite Re was computed independently by
Luo & Pedley (1995) and by Rast (1994), who both used the
finite element method for the fluid flow, but used quite differ-
ent techniques for coupling it to the membrane displacement.
Luo & Pedley (1995) used the commercial flow solver FIDAP
and iterated for the wall position in the manner described
above in the context of Stokes flow. Rast (1994), on the other
hand, used a finite element mesh which was coupled automat-
ically to the membrane displacement by the method of spines
(see Ruschak, 1980), and the membrane equation (11c) was
discretised and solved simultaneously with the flow equations
using Newton’s method. The authors of both papers reported
extensive accuracy tests, such as the effect of mesh refinement
and adjustment of the location of the downstream boundary
(i.e. the value of Lg), not only on membrane shape but also on
the wall vorticity distribution, always one of the most sensi-
tive tests of a CFD code. The best tests of all were agreement
(a) between the results of the two computations and (b) with
those of Lowe & Pedley (1994) at low Re.

Both approaches to the steady problem, like Lowe & Ped-
ley (1995), failed to find a convergent solution for sufficiently
small, but positive, values of T (or sufficiently large 3: equa-
tion (12)). Luo & Pedley (1995) discussed whether the break-
down was associated with the corner singularity at the up-
stream end of the membrane (point C on figure 6) when the
membrane began to bulge out there. (Note the appendix to
Lowe & Pedley (1995), in which Moffatt’s (1964) corner so-
lution is extended to the case where one of the walls is a
membrane under tension.) However, Rast (1994) and more re-
cent computations of our own (Luo & Pedley, 1996) have found
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converged solutions with upstream bulging; breakdown occurs
at a much lower tension (for given Re) than bulging. We have
concluded that such problems are extremely ill-conditioned
when the boundaries are highly compliant (cf. free-surface
flow: Ruschak, 1980).

Steady flow results

Just the main features of the results will be presented here;
more details can be found in the original papers. One gen-
eral finding is that qualitatively similar behaviour is obtained
when Re is increased at fixed tension (8) as when tension is
decreased (8 increased) at fixed Re. In what follows we fix Re
at the value 300 and vary 3. Other dimensionless parameters
(chosen for comparison with previous papers) are taken to be:
L=5,Ly=5,Lg=30,Tp=1.61x107, peo = 9.3 x 10* and
v=1

The membrane displacement for various values of 3 is plot-
ted in figure 7. At small 8 (large T') the membrane is stretched
tight and is not deformed. As S is increased, the deformation
increases, the minimum channel width Ay, occurring close to
the mid-point of the membrane. As the constriction becomes
more severe, it tends to move downstream and a point of in-
flection appears in the upstream half. When 3 increases above
about 30, two, possibly independent, phenomena are seen: the
upstream part of the membrane begins to bulge out and the
constriction, while continuing to move downstream, ceases to
become more severe. In fact, hy,i, increases somewhat as 3
increases. The membrane slope becomes very large.

Both the above phenomena are also seen in the correspond-
ing high-Reynolds-number one-dimensional model, which is
exactly that of Jensen & Pedley (1989) described above (equa-
tions (5) and (6) plus uA = q) but with h for A and P(A) = 0.
Indeed, the shape of the graph of hin against 8 predicted by
that model is very similar to that given by the full compu-
tation, as shown in figure 8; the value of 8 at which bulging
is first predicted is particularly close. The same is true at
all Reynolds numbers from 50 to 500 (Luo & Pedley, 1995)
though, as Re is decreased, hmin also falls, and occurs at
larger 3 (smaller T'). The one-dimensional model appears to
be better than it deserves to be, at least in steady flow.

Unsteady results

Extension of the above studies to time-dependent flow and
membrane displacement required extensive development of
the computational scheme. The fully-coupled finite element
method of Rast (1994) was extended to deal with time de-
pendence. The mesh was taken to be time-dependent, but
based on fixed spines; Newton’s method was used to obtain
convergence at each time step. Details are given in Luo &
Pedley (1996). The main difficulty concerned the kinematic
boundary condition (11b), because it is necessary to track
boundary points as they move, and that is not possible in the
absence of a description of membrane elasticity. The bound-
ary condition was eventually based on the assumption that
elements of the membrane always move in a normal direction;
this is not strictly true, but is reasonable. To check the im-
portance of this boundary condition, we compared the results
with those obtained with the even simpler assumption that
boundary points move only in the y-direction. This is clearly
less satisfactory (e.g. near the downstream end of the mem-
brane) but fortunately there was not much difference in the



results.

The unsteady code was used to investigate the stability of
the steady solutions already computed (Luo & Pedley, 1996).
The procedure was to start with a steady solution at a partic-
ular value of 3, then increase the value of 3 a small amount
and start the computation; the initial condition was therefore
a small displacement from the steady solution at the new value
of B. For values of (3 less than a critical value B.(~ 27.5 for
Re = 300) the perturbation dies away, revealing the steady
solution to be stable. For 8 > ¢, the perturbation grew and
finite-amplitude oscillations ensued, showing that there had
been a Hopf bifurcation. Examples of the behaviour are given
in figure 9, which shows the wall displacement h as a func-
tion of time at a fixed value of z(xz = 3.5, close to the site
of greatest constriction in the steady solution) and for three
values of 8. For 8 = 30.0, figure 9(a) shows an approximately
sinusoidal oscillation, as is to be expected for a slightly super-
critical value of 3, with period 11.7 time units. However, for 3
= 32.5, figure 9(b) shows a few cycles of adjustment, followed
by a (nearly) periodic oscillation, of period 21-25, in which
large maxima and minima alternate with small ones. It seems
clear that the system has gone through a period-doubling bi-
furcation. Finally, figure 9(c) shows the wall motion for 8 =
35.0; the wave-form is again more complex, indicating that at
least one further bifurcation has occurred. We conclude that
even this simple, two dimensional, constant-tension model is
an interesting dynamical system which may well incorporate
some of the complexities of real collapsible tube flow.

Effect of wall inertia

Real membranes have mass, so it is important to see
whether wall inertia has a significant effect on the computed
oscillations. Wall inertia can be included (approximately) by
adding a term —mhy to the right-hand side of equation (11c),
where

m = pww/pho (13)

and pyw,w are the density and thickness of the membrane.
Estimates for a thin rubber membrane suggest that m = 0.01
is a reasonable value when the flowing fluid is water and
m = 0.1 or greater when it is air. The computations and
results are described in detail by Luo and Pedley (1998). In
brief, putting m = 0.01 makes essentially no difference to the
results reported above, but m = 0.1 has a considerable effect.
Examples are shown in figure 10. At 8 = 30 (figure 10a),
the regular oscillations are set up as before, but are gradually
swamped by a high-frequency flutter which eventually grows
to such large amplitude that the code breaks down. Even at
B = 25 (figure 10b), a previously stable state, high frequency
flutter develops and grows large. These findings are consis-
tent with those of experimentalists who have used air as well
as water as the fluid flowing in a collapsible tube (e.g. Sakurai
& Ohba (1986) compared with Ohba et al (1984)).

Streamlines and energy dissipation

We revert now to the case of no wall inertia, in an attempt
to understand the mechanism of the instability and oscilla-
tions. In figure 11 we show the streamlines of the flow at
various times during the oscillation cycle in just one case, that
of Re = 300, B = 32.5 (figure 9b). The important point to
note is that the flow separation downstream of the narrowest
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point does not occur always at or near that point, as it would
if the flow were quasi-steady. Moreover, waves are seen to be
generated and to propagate downstream in the rigid channel
downstream of the oscillatory membrane. These are clearly
the same as the vorticity waves observed and analysed by Ped-
ley & Stephanoff (1985); not only do they look the same, but
the wavelength A\ &~ 3.6 of the nearly sinusoidal oscillations
of period =~ 11.5 at 8 = 30 is comparable in magnitude to
those measured by Pedley & Stephanoff. Their run 5 with
Re = 487 and the inverse of the dimensionless oscillation pe-
riod, St, = 0.77 had wavelength ~ 2.6; that was the shortest
wavelength observed by those authors, corresponding to the
highest value of St - theory suggests that A oc St—1/3. [Note
that what we call vorticity waves, because they are formed by
the time-dependent, inviscid distortion of an oncoming flow
with a non-zero vorticity gradient (cf. Rossby waves), are also
an example of large-amplitude, inviscid Tollmien-Schlichting
waves.] The streamline plots make it look as if the coupling
between the vorticity waves and the flow separation process is
somehow important for the latter, and hence for the separated
flow energy loss that, according to the one-dimensional model,
is a crucial feature in the system.

However, if we compute the rate of energy dissipation per
unit volume, ® = pu; j(us,; + uj;), we are led in a different
direction. Figure 12 shows contours of ® for the same case
and at the same times as the streamline patterns in figure
11. The remarkable feature is that, at almost all times, the
highest rates of energy dissipation occur in viscous boundary
layers, on the membrane and on the opposite wall upstream of
the point of greatest constriction, not downstream as postu-
lated by Cancelli & Pedley (1985) and used in the subsequent
one-dimensional models. There are occasional pockets of high
dissipation, at the edges of the primary separated eddy and as-
sociated with the vorticity waves, but most of the dissipation
is upstream. The volume integral of ® over four equal seg-
ments of tube (0 <z < 4,4<z<8,8<x<12,12 <z < 16)
shows that the upstream segment contains the most dissipa-
tion all the time. The same is true for 8 = 30 (a fortiori),
and for 3 = 35 except for a brief phase when the second seg-
ment, associated with the first separated eddy, has the most
dissipation (see the corrigendum to Luo & Pedley (1996)).

A good physical explanation for the above findings still
eludes us. Part of the difficulty is that the full time-dependent
computations require very large computer resources, so we
have not as yet examined parameter space in any detail.

3.2 The beam model

The membrane model described above contains a number
of idealisations whose importance ought to be checked.
particular, it was assumed that the motion of a point on the
membrane is always normal to the membrane, that the mem-
brane has zero bending stiffness, and that the longitudinal
tension in the membrane is constant. These assumptions have
been relaxed in recent work by Cai & Luo (2003, 2005), whose
computations have led to a surprising new result. These au-
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thors have replaced the constant-tension membrane equation
(11c) by the Kirchhoff beam equations, whose dimensionless
form is

m
Y (xxzet + yxyet) = ckhXx + CAAX + ATn



1
% (yx et — xxYtt) = Cr (—lix) —ART —cxAk(A=1)=X (on — pe)
X

A

where zx = Acosf, yx = Asinf,0x = Ak, 0 being the
angle made by the tangent to the beam with the z-axis; (z,y)
is the current position of a point in the beam initially at (X, 1);
K is the curvature: \ = (acg( + yg()l/2 is the principal stretch

ratio; and
Oun )
+ 2.
Js

The quantity ¢y is proportional to the stretching stiffness
(Young’s modulus), while ¢, is proportional to the bending

" Re \on

2 Oun 1 (aus
" Re

stiffness; m is the wall inertia parameter, and 7' is the ini-
tial tension when the beam is stretched but remains planar.
Also the boundary conditions on the fluid velocity are now the
correct no-slip and no-penetration conditions:

(u» U) = (:tt, yt) .

As in Luo’s earlier work, the Navier-Stokes and beam equa-
tions are solved simultaneously, with inlet flow (Re) held fixed,
on an adaptive mesh based on rotating spines.

Cai & Luo have investigated a number of parameter values;
here we restrict ourselves to cases for which bending stiffness is
expected to be negligible except in very small neighbourhoods
of the beam ends, where the condition 8 = 0 is imposed, i.e.
cw < cx. In fact, cx/cy is held fixed at the value 1075,
and we also take m = 0, neglecting wall inertia. In the limit
¢y — 0, this problem reduces to that of the constant-tension
membrane, as presented above apart from using the correct
boundary condition.

The results for steady flow are indistinguishable from those
already presented, the membrane shape varying gradually as
c) Is increased (at fixed T'). When ¢y < 1 the unsteady results
are also indistinguishable. However, when c), is increased sig-
nificantly above 1, and then T is decreased, from a high value
at which the steady flow is stable, a new phenomenon ap-
pears, as shown in figure 13. There is a critical value of T'
below which oscillations set in and grow, but as T is further
decreased the oscillations disappear and a zone of stability is
found, before a new instability sets in. For yet lower values of
T the progression through period doubling to probable chaos
is the same as for the membrane model. This phenomenon
is found for all ¢y up to about 932 for Re = 300 (the value
for which figure 13 was plotted). An independently conducted
linear stability analysis gives neutral curves that coincide with
the stability boundaries according to the nonlinear computa-
tions, which tends to confirm the finding as a real physical
phenomenon not a numerical artefact. However the authors
and I have not yet succeeded in understanding the physical
mechanism at work here, despite having followed the neutral
curves over a range of Reynolds numbers, and despite hav-
ing replotted them in various ways — see figure 14, in which
the neutral curve is plotted in Ty — Re space, where T is
the final tension in the corresponding steady solution, at the
downstream end of the beam:

Ty =T+ exAX =1)— 1] (14)

3.3 High Reynolds number asymptotics
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Another recent approach to understanding the two-
dimensional membrane model of collapsible tube behaviour
has been based on asymptotic analysis for high Reynolds
numbers (Guneratne & Pedley, 2005). Here we follow the
ground-breaking work of Smith (1976a,b), who analysed the
perturbation to a steady Poiseuille flow in a channel encoun-
tering a slender, prescribed indentation in one or both walls
(see also Pedley & Stephanoff (1985) for time-dependent in-
dentations, and Pedley (2000) for a recent summary). The
new feature here is the fact that the indentation shape is not
prescribed in advance and has to be calculated as part of the
solution.

At large Reynolds number (Re) the flow experiences a side-
ways displacement which is unaffected by viscosity except
in boundary layers on the walls, of dimensionless thickness
8 = O[(\/Re)'/3], where X is the ratio of membrane length
to channel width (1 <« Rel/7 < A <« Re). The boundary
layer equations are self-consistent if the membrane displace-
ment € = O(J), and their solution implies two relationships
between the pressure gradient in the boundary layers, the core
flow displacement A and the membrane displacement F'. The
membrane equation (11c) gives another relation from which, in
principle, F' can be calculated for any value of the membrane
tension, T, and the transmural pressure p—pe (at the upstream
end of the membrane, say), suitably non-dimensionalised. The
most interesting feature of the steady-flow results is the fact
that the solution to the problem is multiply non-unique, as
shown in figure 15, if |p — pe| and T are sufficiently small.
Many of these solutions will clearly be unstable, but their ex-
istence reinforces ones view of the collapsible tube or channel
with flow through it as a complex and interesting dynamical
system. Time-dependent solutions must be the subject of fu-
ture work, as already begun in one region of parameter space
by Jensen & Heil (2005).
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FIGURE CAPTIONS
Figure 1. Sketch of the ”tube law” for a collapsible tube,

relating transmural pressure P and cross-sectional area A.
Sketches of the cross-sectional shape are given for three re-
gions of the curve.

Figure 2. Sketch of the standard laboratory experiment.
P1, Q1 are pressure and flow rate upstream of the collapsible
segment; Pa, Q2 are pressure and flow rate downstream; Py,
is total pressure far upstream; P, is pressure in the chamber
surrounding the collapsible segment. R; and Ra represent
the rigid pipes up- and downstream, whose resistance can be
prescribed.

Figure 3. Pressure drop p; — p2 along the collapsible seg-
ment, plotted against flow-rate q for three different conditions:
(a) pu — pe held constant (from Brecher, 1952); (b) pe — p2
held constant (from Bertram, 1986); (c) pe — pq held constant
(from Conrad, 1969).

Figure 4. Pressure, p2, at the downstream end of the col-
lapsible segment, plotted against time ¢ during self-excited
oscillations for various values of the governing parameters
(from Bertram, et al. (1991)).

Figure 5. Stability boundaries for the first two modes of
instability, plotted on the dimensionless P — Q plane (P o
pe — p2; Q < q), as predicted by the one-dimensional model
of Jensen (1990). The Hopf bifurcations are subcritical where
the curves are dotted, supercritical elsewhere; (i) and (ii) are
mode crossing points.

Figure 6. Sketch of the two-dimensional model problem.

Figure 7. Predictions of steady membrane shape at Re =
300 and various values of tension parameter 8(cx 1/T'), from
Luo & Pedley (1996).

Figure 8. Predictions of minimum channel width during
steady flow, plotted against 8 for fixed Re(= 300). Bold
solid and broken curves, from the two-dimensional computa-
tions; fine solid and broken curves, from the one-dimensional
model. The broken curves represent steady states that are
subsequently found to be unstable. Circles mark the value of
[ at which upstream bulging first appears.

Figure 9. Membrane displacement h at fixed x = 3.5 as a
function of time during self excited oscillations. Re = 300; (a)
8 =130.0, (b) B =325, (c) B =35.0.
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Figure 10. Membrane displacement h at z = 3.5 as a func-
tion of time ¢ in the presence of wall inertia. Solid curves,
m = 0.1; dotted curves, m = 0.Re = 300; (a) 8 = 30.0, (b)
B =25.0.

Figure 11. Streamline plots at various times during self-
excited oscillations for Re = 300, 8 = 32.5.

Figure 12. Contours of energy dissipation rate for the same
parameters and times as the streamlines of figure 11.

Figure 13. Neutral stability curves in the T' — ¢y plane for
Re = 300. Shaded zones are zones of instability according to
linear theory. Points refer to the full computations (ignore the
lettering). Note the zone of stability between the two unstable
zones. The results from the previous membrane model are
shown on the line ¢y = 0. (From Cai & Luo (2005)).

Figure 14. The neutral stability curve in the Ty — Re plane
for ¢y = 600; Ty is defined in equation (14). (From Cai & Luo
(2005)).

Figure 15. Bifurcation diagrams in which the membrane
slope at x = 0 is plotted against dimensionless tension 7', for
P x p(x = 0) — pe = 0 and £0.1. Multiple non-uniqueness
can be seen, especially as T — 0. (Adapted from Guneratne
& Pedley (2005)).
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