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ABSTRACT

The direct numerical simulation (DNS, hereafter) of turbu-
lent heat transfer in a fully developed turbulent channel flow
has been carried out for streamwisely varying thermal bound-
ary condition (Rer = 180) with Pr = 0.71 to obtain the
statistical mean temperature, the temperature variance, their
budget terms and the time scale ratio etc. The present re-
sults have indicated that the time scale ratio and the turbulent
Prandt]l number vary along a streamwise direction. Therefore,
the turbulent Prandtl number cannot be used for the estima-
tion of the turbulent heat flux in the case of thermal boundary
condition with rapid streamwise variation. The counter gradi-
ent diffusion takes place near the heated wall and downstream.

INTRODUCTION

With the aid of recent developments in super and parallel
computers, the DNS of turbulent flow is now often performed.
The DNS is able to provide with a large amount of detailed
data on the turbulent heat transfer with various thermal
boundary conditions. Several experiments (Johnson, 1959 and
Antonia et al., 1977) and turbulent modelling studies (Nagano
et al., 1995) for the streamwisely varying thermal boundary
conditions were carried out in the past studies. However, no
DNS has been done for streamwisely varying thermal bound-
ary condition.

The present study aims to obtain the distribution of var-
ious thermal statistics by DNS of the turbulent channel flow
and also to examine the turbulent scalar transport quanti-
ties in detail with the streamwisely varying thermal boundary
condition.

NUMERICAL PROCEDURE

The DNS of turbulent heat transfer in a fully developed
turbulent channel flow has been carried out for streamwisely
varying thermal boundary condition with Pr = 0.71 and
Rer = 180, based on the friction velocity u, and channel
half width §, and Re. = 6600, based on the center veloc-
ity u. and 26. The computational domain is given in Fig. 1.
The computational domain is divided into three parts; the en-
trance region, the test region and the cooling (fringe) region.
In the fringe region, an extra damping function is added in
the energy equation to attenuate the temperature. Thus the
periodic boundary condition can be applied in the streamwise
direction with maintaining the inlet temperature being zero.
The buoyancy effect is not taken into consideration to exam-
ine the fundamental nature of the convective turbulent heat
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Figure 1: Configuration.

transfer in this research.

The coordinates and flow variables are normalized by the
channel half width d, the kinematic viscosity v, the friction ve-
locity u,, and the maximum temperature on the bottom wall

Tmaz- The fundamental equations are the continuity equa-
tion:
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and the Navier-Stokes equation:
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Here, i = 1, 2 and 3 indicate the streamwise, wall-normal and
spanwise directions, respectively. The variables ¢ and p are
the time and the pressure, respectively. Variables with the
superscript + and * indicate those normalized by wall units
and the channel half width 4, respectively. The third term in
the right-hand side of Eq. (2) is the streamwise mean pressure
gradient. The boundary condition for the momentum field is
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The enegy equation for the instantaneous temperature
Tt (x*,y*, 2*) is expressed as
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The endothermal term (Q(x) = A(x)T*) is non-zero only in
the fringe (cooling) region, where the fringe function A(z) is



Table 1: Computational conditions.

Ly X Ly XL, NyxNyXN, Azt Ayt Azt

12.86x20%x6.46  512x128%256 4.5 0.2~5.9 4.5

the strength of the heat sink with a maximum of inverse num-
ber of the time step At*~1. The form of A(z) is designed to
minimize the upstream temperature influence. The heating

condition at the bottom wall is

Twall(&) = Tmax Sin2 (775)
if 0<E<L1, else Tyau(€) =0 at y =0,

where € =2'/Dp, ' =x—3Dyp, (5)
where Dy, is the heated streamwise length of 1.26. Figure 2
shows the thermal boundary condition given by Eq. (5) at
the bottom wall. On the other hand, the thermal boundary
condition at the top wall is assigned to be zero.

Statistic quantities are taken to the spanwise direction and
the time step. The simulation has been made with the use
of the finite difference method in which special attention is
paid to the consistency between the analytical and numerical
differential operations (Kawamura, 1994). The method was
confirmed to give good agreement with the spectral method
(Kawamura and Kondoh, 1996). This consistency with the
analytical operation ensures the balance of the transport equa-
tions for the statistical correlations such as the temperature
variance and the turbulent heat flux. A fourth-order central
difference scheme is adopted in the streamwise and spanwise
directions, and the second-order central difference scheme is
used in the wall-normal direction. Further details of the
method can be found in Abe et al. (2001), Kawamura (1994),
and Kawamura and Kondoh (1996). The computational con-
dition is shown in table 1. The computation has been per-
formed with the use of 8 processing elements of VPP5000.
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Figure 2: Variation of bottom wall temperature.

RESULTS AND DISCUSSION

Mean temperature profiles are shown in Fig. 3. If the max-
imum temperature (above ambient) T and the wall-normal
distance vy of T/Ty = 0.5 are chosen as the temperature and
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Figure 3: Mean temperature, symbols are experimental data
(Sreenivasan et al., 1976), V:z’ = 9.6, Az’ = 37.2, O/ =
75.6, iz’ = 122.4.
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Figure 4: Streamwise turbulent heat flux; u/+6’*.
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Figure 5: Spanwise turbulent heat flux; v/+6"*.

length scales respectively, the values of DNS (upstream of
x’/8 = 0.8) are similar to experimental data (Sreenivasan
et al., 1976) of heated wall-Cylinder immersed in a turbulent
boundary layer. The mean temperature gradient becomes the
plus in downstream of z//§ = 1.0 because of a rapid reduc-
tion of wall-temperature. Moreover, the peak of the mean
temperature is maintained at y/y = 0.5 independent of the
downstream position in case of this normalization.

Figs. 4 and 5 show the turbulent heat flux v/*6"* and v/+6'*
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Figure 6: Contour of the turbulent heat flux u/t6’* (dot line). The gray region presents the counter gradient diffusion in which
both the negative turbulent heat flux u/+6’* and the negative mean temperature gradient d7* /dx* exist.

in the near wall region, respectively. The mean temperature
gradients are also plotted in these figures. The sign of the
turbulent heat flux is usually opposite to the temperature gra-
dient. This relation can be written as:

u;Jr 9%

(6)

where k¢ is thermal eddy diffusivity. In the gray region of
Fig. 4, however, u/t6’* is still negative despite negative tem-
perature gradient d7*/dz*. This indicates that the counter
gradient diffusion takes place in the gray region. The counter
gradient diffusion exists for u/+60’* behind z’/§ = 0.8 at the
yt = 5. The counter gradient diffusion is observed behind
x'/§ = 1.1 for v/+0'* at the y* = 5 as well. Figure 6 shows
the two dimensional distribution for u/+6’*. The gray repre-
sents the region where the turbulent heat flux u/t6’* and the
mean temperature gradient d7* /dz* are both negative.

Kt X dT*/d;c;‘,

Turbulent Prandtl nhumber
The turbulent Prandtl number Pr;, defined as the ratio of
momentum diffusivity to thermal diffusivity, i.e.,
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Figure 7: Turbulent Prandtl number, O:Uniform heat source
(Antonia and Kim, 1991), A:Constant wall temperature dif-
ference (Seki et al., 2003), [J:Uniform heat flux heating (Seki
et al., 2003).
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Figure 7 shows Pr; evaluated from the present data at sev-
eral stations. The calculated result (Antonia and Kim, 1991)
for uniform heat source is also plotted in Fig. 7. The other
calculated results of the constant wall temperature difference
and the uniform heat flux heating by authors’ group (Seki et
al., 2003) are also plotted in Fig. 7. In most of the existing
studies, Pry tends to be a constant value of 1.0 for several
thermal boundary conditions (Antonia and Kim, 1991; Seki
et al., 2003). In the case of the present streamwisely varying
thermal boundary condition, however, Fig. 7 shows that Pr; is
totally different than the constant value of 1.0. This tendency
is qualitatively similar to the one reported by Antonia et al.
(1977). Especially, in the near-wall region, Pr¢ becomes neg-
ative downstream. The sign of Pr; related with the turbulent
heat-flux and temperature gradient can be obtained through
the following relation:

whot AT Jdyt — 4
Pry = - — = =-—.
/o du+/dy+ + -+

(8)

Thus, this result
sion.

correlates well with counter gradient diffu-

Turbulent Prandtl number Pr; is often used to obtain
the turbulent heat flux from the mean temperature gradient.
Figure 7, however, indicates that it cannot be used for the
estimation of the turbulent heat flux in case of the thermal
boundary condition with rapid streamwise variation since Pr;
changes significantly along the streamwise direction.

Time scale ratio
The time scale ratio R is expressed as the ratio of the scalar

time scale 79(= kg/cg) to the momentum one 7, (= k/¢);
R=T6 _ ko e (9)
Tu eg k'

Because the velocity field is the fully developed turbulent
channel flow in this study, the momentum time scale 7, (=
k/e) is constant along the streamwise direction. Therefore, the
scalar time scale 79(= kg /eg) determines R along the stream-
wise direction:

ko

Rox 1= —.
€0

(10)

Figure 8 shows the distribution of the time scale ratio. The
wall-asymptotic value of R is analytically equal to the molec-
ular Prandtl number. The near-wall limiting value of R given
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Figure 9: kj and its dissipation rate.

in Fig. 8 becomes indeed the molecular Prandtl number irre-
spective of the streamwise position. On the other hand, the
obtained result in Fig. 8 has indicated that the time scale ratio
varies along the streamwise direction in the outer region.

In the position of ’//§ = 0.4, R is significantly higher than
the unity at y* = 4.3 in Fig. 8. As can be seen from Fig. 9, it is
due to the occurence of the peak in the temperature variance
kg at yt = 4.3. Moreover, the local minimal value of its
dissipation rate g4 is also observed at y*+ = 4.3 in Fig. 9.
The local maximal values occur around y+ = 0 and 7.5. This
local maximums in ey arise to dissipate the turbulent energy
transported through molecular and turbulent diffusions from
the peak in kj around yt = 4. The local minimal value of the
dissipation rate exists at the peak of the temperature variance.
Therefore, the peak of the time scale ratio occurs at y+ = 4.3.

Figure 10 shows R at yT = 5, where an abscissa is assigned
to the streamwise direction. It indicates that the time scale
ratio varies along the streamwise direction. To examine the
peak of both Pr; and Pga, the budget for kj is shown in
Fig. 11. The positions where the maximal and minimal peaks
of the time scale ratio exist are in agreement with those of the
production term Py, for kj. In the case of the present stream-
wisely varying thermal boundary condition, Py, is negative in
latter half of the heated section. To explain the negative value
of Py, , the terms which constitute Py, in the transport equa-
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Figure 11: Budget of kj.

tion of kj are examined. Their expression and sign of the
terms in the relevant region are

——— 9T —— T
Pk‘g — (_u/+9/* o > + (_UI+91* [—)y >
11
(- = ) A ) ()
= negative.

The relation among w/+60'*, dT*/dx, v'+0’*, and dT*/dy is
seen in Figs. 4 and 5. In the position of the negative value
of Py,, w'+60" and dT*/dx stay negative and others positive
value.

Figure 12 shows the two dimensional distribution of Py, .
The solid and dashed lines show the positive and negative
values, respectively. The negative region of the production
term occupies a fairly large area behind the heated section.
This is because the hot fluid is convective from upstream, and
thus the mean temperature gradient is inverted in the near-
wall region. The two dimensional distribution of R is also
shown in Fig. 13. There are one local maximum in the heated
section and one local minimum in latter half of the heated
section. A noticeable agreement in the profiles of Py, and R
is observed through the comparison of Figs. 12 and 13. The
negative region of Py, is in good agreement with that of the
local minimum of R.
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Figure 12: Side view of the production term Py, for kj. Solid line are the positive value and dashed line are the negative one.
Contour level is from —1.0 X 10~ to 3.0 x 10~ with increments of 5.0 x 1075.
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Figure 13: Side view of the time scale ratio R. Contour level is from 0.2 to 4 with increments of 0.2.
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Figure 14: Side view of k} (dot line) and e} (solid line). Contour level for k} is from 1.7 x 1074 to 8.7 x 10™% with increments of
1.0 x 10~%, while that of EZ is from 1.1 x 1078 to 1.7 x 10~% with increments of 1.0 x 10~2.

Figure 14 indicates the relation between the two dimen-
sional profiles of kg and ey is the same at any downstream
position. It can be seen that the profiles of both kg and gy are
inclined toward the streamwise direction. One can notice that,
in general, g¢ is high where kg is large. More detailed inspec-
tion indicates that the contour of 9 possesses a large number
of inflection points than that of ky. We have seen in Fig. 10
that the position of the local minimum in €9 corresponds to
the maximum point of ky. This trend can be observed also
in the two-dimensional contour of £y, which causes the more
complex profile of 9 than that of kg.

CONCLUSIONS

The DNS of turbulent heat transfer in a fully developed
turbulent channel flow has been carried out for streamwisely
varying thermal boundary condition with Pr = 0.71 and
Rer = 180 (Re. = 6600). The thermal turbulence statis-
tics such as the mean temperature, the turbulent heat flux,
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the temperature variance, its dissipation rate, the turbulent
Prandtl number, and the time scale ratio have been discussed.
These turbulence statistics significantly varies at the down-
stream position near the heated wall. In the streamwise and
wall-normal turbulent heat flux, the interesting feature is that
the counter gradient diffusion exists in both the latter half of
the heated section and downstream. The observational ev-
idence indicates that the region of the negative production
term Py, correlate well with the counter gradient diffusion.
The time scale ratio also varies along the streamwise direction
in the outer region. It results from the tendency that kg tends
to decrease more rapidly than ey in the near-wall region be-
hind the heated section. Moreover, it has been confirmed that
the local minimal value of €9 almost always exists at the peak
of the temperature variance. This study indicates that the
turbulent Prandtl number cannot be used for estimating the
turbulent heat flux because it changes downstream remarkably
due to the rapid variation in the thermal boundary condition.
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