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ABSTRACT

The influence of unequal strength opposing shear layers on
the vortex formation process and coherent wake structure in the
near-wake region of a triangular cylinder is experimentally
investigated. Phase-averaged Laser Doppler Velocimetry
measurements were made in the wake of a triangular cross-
section cylinder for a Reynolds number of 22 500. The relative
intensity of the shear layers was adjusted through the angle of
incidence, o. The influence o on the flow characteristics,
specifically the shedding frequency and surface pressure
distribution, was also studied. It is shown that even a mild
difference in the strength of the shear layers can significantly
modify the structure of the wake and shed vortices.

1.0 INTRODUCTION

Theoretical studies and experimental investigations have
focused on the stability analysis, the formation process and
downstream evolution behind the bluff bodies with a line of
symmetry parallel to a uniform oncoming stream giving rise to
equal intensity, opposite-sign vorticity shear layers. Existing
models rely extensively on this inherent symmetry for
predicting the shedding frequency, the induced drag and for
relating base pressure to the strength of the shed vortices.
However, it is still not well understood how the strength of the
shed vortices and their downstream structure are modified
when the opposing shear layer is of unequal strength. The aim
of present research is thus to investigate how the structure of
the Karman vortex street is influenced by ratios of circulation
of opposing shear layers different from unity.

In previous analytical work, Bailey et al. (2000) proposed that
there periodic shedding was possible for a range of intensity
ratios. However, a principal difficulty is to isolate the influence
of the intensity differential. Therefore, an experiment was
developed for which the intensity differential for the two shear
layers can be isolated. The aim of this work is to test earlier
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stability criteria and document the structure of the turbulent
wake and the vortex formation process.

Von Karman (1912) postulated the existence of a universal
Strouhal number for symmetric flows. Using a stability
analysis of the vortex street to small perturbations, he
determined that the vortex street was stable only for the
spacing ratio b/a = 0.281, where a is the streamwise and b is
the vertical distance of vortex cores. Bailey et al. (2000)
modified Karman’s original analysis to show that periodic
vortex shedding can exist for a range of shear layer strength
ratios. Several studies have shown that b/a is geometry
dependent. Roshko (1954) extended the analysis to include
different bluff-body wakes and introduced a universal wake
Strouhal number St* using the shear layer separation as a
length scale the velocity at the point of separation along the
free streamline scale. Bearman (1967) modified the analysis by
using b as a length scale, but kept the same velocity scale.
Gerrard (1966) showed that Bearman’s definition is less
sensitive to freestream turbulence. Both models predict
unique relationships between the velocity at the point of
separation and the product of drag and shedding frequency.

The effect of the shape of the cylinders on the structure of the
vortex street in turbulent regimes was experimentally
investigated, for example, Cantwell and Coles (1983) for the
circular cylinder, Lyn et al. (1995) for the square cylinder and
Luo et al. (1993) for different prismatic cylinders. Comparing
measured phase-averaged velocity field in the wake of the
square and circular cylinders, the downstream evolution of the
vortex parameters and wake are similar. All studies observe
that between 40% to 50% of the circulation generated at the
separation point is contained in the shed vortices. They also
observed that the drag-shedding frequency relationship is well
predicted by theory, but b/a varies significantly. These results
are summarized in Table 1. All of these studies are for
symmetric flows, but Luo et al. (1993) do show explicitly that
the interaction between the afterbody and wake play a
significant role in modifying the shed vortex structure.



2.0 EXPERIMENTAL TECHNIQUE

The experiments were performed in an open suction-type
wind tunnel with an inlet contraction ratio of 4:1. The working
section was 2.1m long with a 460mm x 460mm cross-section.
The obstacle was placed at the centre of the working section.
The approach flow velocity, U,, was verified to be uniform
within 0.5% across the working section. The turbulence
intensity of the approach flow was approximately 1%.

An acrylic smooth surface triangular cylinder of 21 mm x 21
mm X 30 mm cross section was used as the bluff body. The
cylinder spanned over the entire working section (460mm),
resulting in an aspect ratio of 15.33 based on D = 30mm. The
geometry and nomenclature are shown in Fig. 1. The origin of
the coordinate system (x, y) was located at the centre line of the
base (leeward) cylinder wall. Tests were done for U, ranging
from 5~15m/s, corresponding to Reynolds numbers, Re based
on U, and D, of 10 000 to 30 000.

Simultaneous pressure measurements were made from 13
pressure taps (diameter¢ = 0.8mm) on the cylinder faces. Nine
pressure taps were located along the cylinder centreline as shown
in Fig. 1. Four pressure taps were located along the cylinder
leading face at the level of Tap P2 at z = +2.2D and z = £5D to
verify the two-dimensionality. The effective blockage due to the
cylinder was approximately 6.9%. All pressure data presented are
thus blockage-corrected following West and Apelt (1981).

The pressure acquisition system consisted ofa 16-channel
scanning pressure transducers (Pressure Systems Inc. Model
ESP-16) and a barocell. Pressure was acquired simultaneously
from the taps and a Pitot-static tube (for U,). Reference static
pressure and velocity (P, and U,) were determined from the
barocell in parallel. The frequency response of the pressure
system (tubing, taps, transducer), determined from an initial
calibration test, was flat to 200 Hz. The pressure taps were
simultaneously sampled at 400 - 650 Hz for 60 seconds (or at
least 1200 shedding cycles). The shedding frequency f; was
estimated directly from the power spectra.

Velocity measurements for the cases oo = 0° and o = 10° were
carried out along the vertical centre plane (z = 0) with a two-
component Laser Doppler Velocimetry system (LDV) operated
in backscatter mode using a 4W Ar-Ion laser light source. A
2.6 beam expander and 480 mm focal length lens were for a
beam spacing of 130 mm resulting in measuring volume
diameter 46 pum with measuring volume length 340 pm.
Atomized oil provided light-scattering particles injected into
the inlet of the tunnel. The number mean particle size was
determined to be 2 pm using a Phase-Doppler Anemometer.
Velocity data were processed using an IFA 650 processor (TSI
Inc.). To avoid flow angle bias, the shift frequency was set at
least three times the largest negative Doppler frequency. To
avoid filter bias the band pass filters were selected to enclose a
range of +5c about the mean velocity components (c is the
standard deviation of each single-channel measurement). The
coincidence window was set to 400 ps after determining that
the velocity cross-correlation coefficient was independent of
the coincidence window in the range of 50 us to 500 us. The
LDV probe was positioned by three-axis traverse to a
positional accuracy at = 1 mm / 1m travel.
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To determine the vortex structure in the wake and calculate
the location of vortex centroids, a phase-averaging technique
was used. The velocity field is decomposed:

U(t)=<U,>+u,=U, +u, +u

where Uj(t) is the velocity component measured, <U;> the
phase-averaged, U; the mean, u; the coherent and u; the
incoherent contributions to the velocity. Pressures located at
the upper (P4) and lower (P8) trailing edges were used as phase
reference to synchronize the velocity field. Only one reference
signal is strictly necessary and the second signal was used for
verification. If the estimates for the coherent and incoherent
components varied by more than the calculated uncertainty, the
measurement point was rejected.
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Figure 1: Schematic of cylinder geometry and nomenclature
showing pressure tap locations. Dimensions are given in mm.

3.0 RESULTS

Experimental tests were conducted for angles of incidence
a=0°, 10°, 20°%nd 30° for 10x10° < Re < 30x10’. The mean
pressure, Cp, distribution along three sides on the triangular
cylinder were obtained at the locations shown in Fig. 1. No
effect of Re number is observed on the shedding frequency, f;,
in terms of the Strouhal number for Re >13 000. As o increases,
Stp (=£D/U,,) increases monotonically. However, for all o
tested, Stp' (D’=Dcosa) collapses onto a single curve as shown
in Fig. 2. Figure 3 shows that the product of the drag and
shedding frequency are, as predicted in theory, uniquely related
to the velocity separation velocity, U;, as per Roshko (1954):

=./1-Cpb

k=2
U

©

where Cpb is the base pressure. The agreement between these
data is surprisingly good. In the original derivation, £ is related
to the pressure directly behind the separation point and it is
assumed that it is Cpb and equal on both opposing faces. For
a # 0°, this condition is not true and & should be interpreted in
average sense.
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Figure 2: Blockage corrected Strouhal number St as a
function of Re for different angles of incidence, o.
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Figure 5: rroauct or arag COeTTICIéNt ana Strounal numoer as a
function of the speed parameter & for square and triangular
prisms for different a. Square prism data from Bailey et al.
(2000). Broken line due to Bearman (1967). For the square
prism, 45° refers to the case when one face is perpendicular to
the on-coming flow. 45°(t) refers to the square cylinder with
different on-coming boundary layer profiles (on-coming shear
condition).

The long time (mean) flow field is useful for comparison. The
mean streamwise velocity along the centreline is compared for
different bluff bodies in Fig. 4a. A common feature is the rapid
increase of the velocity in the base region. Further downstream,
the mean flow varies much more slowly. Because the wake of
the square cylinder is wider than that of the circular cylinder
(approximately 25 %), the mean centreline velocity recovery
for the square cylinder is expected to be slower than for
circular cylinder as seen in Fig. 4a. For the triangular cylinder,
the velocity recovery is slowest, indicating the widest wake.

The periodic (coherent) and turbulent (incoherent) shear

stresses, (-u,v,) and (-(u'v')), averaged over a shedding

cycle, are shown in Fig. 2b for a = 0° and 10° compared to
data for circular and square cylinders at x/D = 0.5, in the
formation region. For the symmetrical cases, only data above
the line of symmetry are shown. Considering the region 0 <
y/D < 1, the incoherent contribution has a single peak. The

total shear stress has two peaks, developed through (-%,v,_),

which also has two peaks in the formation region. Good
agreement with other results indicates the similarity in
formation of vortex structure patterns for both cases studied
here. The coherent contribution is weaker for the present case,
probably due to a lower initial circulation (see Table 1).
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Figure 4: Comparison at x/D = 0.5 of the a) mean streamwise
centreline velocity distribution, xg = mean recirculation length;

b) mean coherent (-u,v,) and incoherent (-(u'v'))

component shear stresses (right pane: SQ and o = 0°; right
pane: o = 0° and 10°. CCs=circular cylinder (Cantwell and
Coles. 1983). SC=Sauare cvlinder (Lvn et al.. 1995).
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Figure 5: Mean velocity vector field and mean vorticity
contours for oo = 10°.

The mean velocity vector field for a=10° is shown in Fig. 5.
At the end of the formation region, x/D ~ 1.5, the mean
velocity vectors show an upward motion, which increases
downstream. This distortion indicates a net circulation for
a=10°: i.e. the strength of the opposing shear layers is unequal.
The vorticity field shows higher vorticity in the lower shear



layer in the upper, which is consistent with the overall direction
(counter-clockwise) induced in the downstream field. Note
that the mean vorticity diffuses very quickly to the end of the
recirculation region. In contrast, for a = 0°, the velocity and
vorticity fields have mirror symmetry about y/D = 0, as
expected for opposing shear layers are of equal strength.

More informative is the streamwise evolution of the mean
coherent and incoherent normal stresses, shown along the locus
of points for which V = 0 (U is a minimum), which coincides
with the line y/D = 0 for a=0° based on symmetry, in Fig. 6.
Along this line, the shear stresses are negligible. This line was
selected to avoid ambiguity of interpretation since the wake is
skewed o = 10°. The general trends are similar. The normal
stresses increase in the base region, reaching a maximum at the
end of the formation region, and decaying slowly downstream
due to diffusion. Upon closer inspection, <v’v’ > reaches a
maximum at the end of the formation region, while <u’u’ >
reaches a maximum further downstream. The influence of the
o on the incoherent contributions is otherwise indistinguishable
otherwise. For the coherent <v.,v.>> contributions, however,
there is a clear influence a.. In the base region the fluctuations
for oo = 0° are higher than for 10°. Downstream, the converse is
true and is consistent with the data presented in the previous
figures and in Table 1. The formation region for o = 10° is
longer than for the symmetric case, but the circulation
contained in the shed vortices is higher for oo = 10°, leading to
a higher contribution to <v,v.> downstream.
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Figure 6: Streamwise evolution along the locus of points V=0
of a) the coherent and b) the incoherent normal stresses.
Values are normalized by the freestream velocity, U,.

It is further possible to estimate the circulation of the shed
vortices, v, and their convective velocity, U,, from the coherent
velocity field obtained from the phase-averaged measurements.
The vortex cores were identified using the pressure field
second invariant criterion of Jeong and Hussain (1994) and the
centroid of the vortices were associated with the peaks of the
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second invariant. This approach is convenient because it is
reference frame independent. Figure 7 shows the evolution of
U, as a function of the downstream distance as was estimated
by following the motion of the second invariant peaks for each
phase of the average shedding cycle. The present results are
similar to those obtained for circular (cf. Cantwell and Coles,
1983) and square cylinders (Lyn et al., 1995). The shed
vortices move slowly in the formation region and the end of the
formation region can be recognized by the rapid increase of the
convective velocity. Further downstream, the convective
velocity is constant, approximately 0.76U., and 0.72U,, for a =
0° and 10°, respectively. For a = 10°, the convective velocity
downstream of the formation region is the same in both shear
layers within experimental uncertainty. Since the circulation is
directly related to the convective speed of the vortices, these
results imply that the circulation contained in the shed vortices
is also equal, but of opposite sign, in the opposing shear layers.
This conclusion was verified by direct estimates of the
circulation as described below. Since the vorticity and net
circulation at the trailing edge of the obstacle are different for
the two shear layers, it is apparent that the mixing in the
formation region results in different fractions of the initial
circulation being transferred to the shed vortices for the two
shear layers.

From the motion of the centroids of the vorticies using the
second invariant method it is also possible to estimate the
vortex spacing ratio. These results are shown in Table 1. The
spacing increases as o increases, which is consistent with an
increase in the strength of the vortices. However, this result is
not consistent with the universal Strouhal number hypothesis
put forward in the literature. For example, Bearman (1967)
suggested that a universal Strouhal number of the form:

SB :Sl‘zf

where % is the obstacle dimension normal to the flow.
Bearman suggests a value of Sz ~ 0.181 and showed that it
applied for symmtrical flows over a wide range conditionsin
the present experiments, it is found that Stp = St-cosa =
0.182+0.002, implying that:

b _kcos’a U,
a Sty U,
which predicts a decreasing spacing ratio with increasing o.
The streamline topology for the shed vortices is correctly
viewed in the reference frame moving at the convective speed.
An example is provided in Fig. 8 for o = 10°. The reference
convective velocity is that of the downstream vortex, for which
the core and the associated saddle point can be clearly
identified. Note that for the base vortices, which move at a
different convective velocity, the streamline topology is
distorted and not representative. Having established the correct
reference frame for the shed vortices, it is then possible to
obtain the circulation shed from each vortex using
y= J'Q .d4 where Q is the vorticity and 4 is the vortex core



area defined by the closed streamline originating at the saddle
point. The average circulation is shown in Table 1, where the
initial circulation is calculated according to Roshko (1954):

T

0 —

u,D

©
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28t 28t

Data for different bluff bodies show that while the initial
circulation can change widely, the ratio y/Ty is similar (0.4 —
0.5). The circulation convected in the mean shear layer can be
estimated at the trailing edge of the obstacle from:

r 1
U,D 28t

= E (Uzz - Ulz)

where the subscripts 1 and 2 correspond to the minimum and
maximum streamwise components at the shear layer edges.
Thus, it is expected that y/I', =1 - I'/T',. Using data as in Fig.
3fora=0°:1T/Ty~0.6 ory/Ty~ 0.4, which is close to the
estimate of 0.42 given in Table 1. For a =10°, I'Ty~ 0.59
and 0.51 for the upper and lower shear layers. Using the
average value of 0.55 yields y/T'y = 0.45, which is again close
to 0.47 calculated from the velocity data. Thus, the
relationship relating &, Cpb and I'y holds in an average sence.

Further insight into the evolution of the vortices can be
obtained from the phase-averaged field representation. Figure 9
shows a frozen field representation of the vortex passage for o
= 0° and 10° obtained at x/D = 5.1. This representation was
selected for convenience, since the present measurements
extend to x/D = 6 and it is not possible to view two opposing
vortices traveling at the downstream any single frame. In the
figure, the vortex cores are clearly defined and b/a is larger for
o = 10° than for 0° and is consistent with the analysis of phase-
averaged frames. For o = 0°, the vorticity peaks are slightly
offset from the cores. Similar observations were made for the
circular and square cylinders. However, for o = 10°, there is a
significant structural difference, since the vorticity peaks now
align with the vortex cores. The vorticity levels for the latter
case are also greater than for o = 0°, which is again consistent
with the earlier analysis showing that the circulation contained
in the vortices was larger for the asymmetric case.

Structural differences are further evidenced when considering
the distribution of the coherent component of the normal stress
<v.v> as shown in Fig. 10 for a frozen field view at x/D = 5.1.
Structural differences are further evidenced when considering
the distribution of the coherent component of the normal stress
<v.v> as shown in Fig. 10 for a frozen field view at x/D = 5.1.
In both cases, there is a high intensity concentration located
between the vortex core and saddle point. A more detailed
look, however, shows that the concentration is divided in two
local maxima. For a = 0°, these maxima are contiguous, but
for a = 10° these lie on the opposite side of the axis y/D = 0.
Furthermore, the absolute local maximum for a = 0°,
approximately 0.26, is greater than for o = 10° (~ 0.22), which
appears to violate the results shown in Fig. 6. This apparent
contradiction is simply resolved by observing that for the
asymmetric case, there is a bridge of high <v,v>> joining the
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two maxima across the axis y/D = 0, which does not exist for o
= 0°. The significance of this structural difference is unclear.
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Figure 8: Sample phase-averaged velocity field for arbitrary
phase of the shedding cycle in the reference frame U,/U, =
0.72 for o = 10°.

4.0 CONCLUSIONS

The flow over a two-dimensional triangular cylinder was
experimentally investigated using pressure measurements and
phase-averaged LDV. Tests were conducted at several angles
of incidence to generate unequal intensity opposing shear
layers. It is found that the modified Strouhal number, based on
the projected width of the obstacle, was independent of the
angle of incidence. When comparing results to classical vortex
shedding theory, developed on the assumption of equal
opposing shear layers, it is found that the velocity parameter £,
relating base pressure, Cpb, to the initial circulation, I',, is a
valid “average” representation of the influence of the two
unequal shear layer strengths and represents well the product of
drag and shedding frequency as predicted by Bearman (1967).
However, the theoretical relationships between the universal
Stouhal number, initial circulation and vortex spacing ratio are
not satisfied for the present results. Specifically, while the
theory predicts that b/a decreases according to kcosc., these
experiments suggest that the vortex spacing ratio actually
increases with o.. These results suggest that the classical theory
only partially captures the behavior for shedding with unequal
strength shear layers and requires further modification.

More detailed observation of the velocity field in the wake of
the obstacle shows that even a mild asymmetry results in some



significant changes in the downstream structure, which may be
sufficient to explain some of the differences between
symmetric and asymmetric shedding phenomena.

Figure 9: Frozen field representation of the vortex street in the
convective frame of reference. Vectors show the normalized
velocity field components. Contours show normalized
vorticity: a) o = 0% b) o = 10°. The streamise axis represents
x*/D = (U/U,)xAd/(27)/St; Ad is the shedding phase.
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Source Geometry b/a I'/U,D v/,
Von Karmén Theory 0.28
Csiba Triangular,o. = 0° 0.22 6.1 0.42
Martinuzzi — 'p o oularo = 10° | 025 6.0 0.47
Lyn et al

Square 0.19 10 0.45
(1995)
Cantwell and .

Circular 0.16 5.9 0.44
Coles (1983)
Luo et al Rev.triang,a = 0° 0.21 3.0
(1993) Rev.triang,c. = 10° | 0.20 3.1

Table 1: Comparison of circulation and spacing ratios for
different bluff body geometries.
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Figure 10: Caption as in Fig. 9. Contours show normalized
coherent Reynolds Stress <v,vo>: a) o = 0% b) o = 10°.






