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ABSTRACT

The main aim of the present work is to develop a
anisotropic one equation model based on the subgrid
scale (SGS) kinetic energy for the large eddy
simulation (LES) and test on a fully developed
channel flow with constant spanwise rotation. The
present model considers an anisotropic eddy viscosity
formulation. The production term is then computed
using the local coefficient by using dynamic
procedure without any averaging restrictions or
clipping. For the prediction of the correct asymptotic
behavior near wall an additional modification to the
dissipation term is introduced following the RANS
low Reynolds number modeling. The proposed model
is first tested on fully developed channel flow and
compared with some existing models results. Second,
efficiency of this model has been demonstrated by the
prediction of re-laminarization of grid scale (GS)
turbulence on the suction side of the spanwise
rotating channel flow.

INTRODUCTION

In Large eddy simulation (LES) the largest scales
are resolved numerically, while the unresolved scales
must be modeled with a subgrid scale model (SGS).
The success of LES depends on how accurately the
SGS stresses are modeled. Most commonly used SGS
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model is Smagorinsky (1963) model. It is recognized
that the performance of Smagorinsky based models
are improved by using the dynamic procedure relayed
on variational methods, (e.g. with a least squares
minimization method (1992) or Lagrangian method
(1996)). However, when simulating high Reynold
number confined flows, the results of the dynamic
procedure are of doubtful reliability in the region
close to the wall including both the viscous sublayer
and the buffer layer as pointed out by Piomelli et. al
(1999). The class of similarity models following
Bardina et. al. (1983), even though it eliminates the
main fundamental inconsistencies of the Smagorinsky
dynamic models, has the drawback of being
insufficiently dissipative. The mixed models do not
sufficiently overcome the common drawbacks. All
these models are not capable of predicting backscatter
due to various numerical and physical reasons.
Nevertheless this problem was overcome by the usage
of one equation SGS models. Some approaches have
already been proposed in the literature by Menon
(1996) and Davidson (1997). These models have
notable merits. The eddy viscosity does not become
negative anywhere. SGS kinetic energy disappears
automatically in non-turbulent region and it becomes
zero on the solid wall due to the boundary condition.
Moreover, wide variety of factors, such as non-
equilibrium properties and additional energy sources
or sinks such as particles or bubbles can be included.
But these models are not able to predict the



anisotropic effects well present in the near-wall
regions.

The main aim of the present work is to develop a
robust and efficient anisotropic one equation model
based on the subgrid scale (SGS) kinetic energy for
the large eddy simulation (LES). It has been shown
recently by Speziale (1997) that the anisotropy exists
at inertial as well as dissipation scales. Although the
existing models well account for backscatter, but they
are not suitable for the representation of anisotropy of
the subgrid-scales due to the local isotropy
assumption made in the eddy viscosity formulation.
Due to this assumption, these models may lead to
wrong prediction of backscatter, and thus of the
production of SGS kinetic energy. The latter strongly
influences the evaluation of the turbulent viscosity,
which plays a dominant role in flow predictions. The
present model considers an anisotropic eddy viscosity
formulation. The production term is then computed
using the local coefficient by wusing dynamic
procedure without any averaging restrictions or
clipping. For the prediction of the correct asymptotic
behavior near wall an additional modification to the
dissipation term is introduced following the RANS
low Reynolds number modelling.

First in the present paper, we apply our anisotropic
one-equation SGS model to a fully developed channel
flow. Results by our model and existing models are
compared with DNS database from AGARD test case
PCHI10 (1998). Second, the realizability of effect of
Coriolis force in the rotating channel is examined.
Especially in the Suction side of rotating channel,
where Smagorinsky model gives SGS turbulence due
to the mean velocity gradient even if GS flow is
almost re-laminarized.

NUMERICAL PROCEDURE

For our computations, the governing equations are
discretised on a block-structured boundary- fitted
collocated grid following the finite-volume approach.
Spatial discretisations are 2™ order with flux blending
technique for the convective terms. The solution is
updated in time using 2™ order accurate implicit
Crank-Nicolson scheme. A SIMPLE type pressure
correction is used for pressure-velocity coupling. The
resulting set of linear equations is solved iteratively.
Details of the method can be found in the paper by
Mengler (2001)

For the incompressible and constant density flows
considered here, the basic governing equations are the
grid filtered continuity and Navier-Stokes equations.
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where the overbar denotes a filtered variable. The
effect of the unresolved subgrid scales is represented
by the SGS stress

Ty = UU Ui
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In the Smagorinsky model, the anisotropic part of
the SGS-turbulent stress, z',;’ , is related to the resolved

strain-rate tensor ij by

w0 =2CA7(25,,5,,) 5, )

where C; represents the Smagorinsky constant.

Following Germano et al (1991), one introduces a
test scale filter represented by a tilde. The purpose of
doing this is to utilize the information between the
grid- and test-scale filters to determine the
characteristics of the SGS motion. The Smagorinsky
constant can be then calculated dynamically using the
following expression (5):
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Different dynamic procedures can be applied to
compute Eq. (5). Among these the Lagrangian
dynamic model from Meneveau (1996) is geometry
independent and hence can be used for the complex
geometries.

In general one equation model is based on the
transport equation of SGS kinetic energy given by

Ok,
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where

(10)

v, = CA\/g

In the Eq. (9) the second and third terms represents
production, dissipation.

In the present approach production term can be
expressed as

Pgs = —r;S,.j (11)
where
(A —(v,.k§,g +ij§k1.) 12)

Here one can observe that we are using tensorial
eddy viscosity instead of scalar eddy viscosity. The
main reason behind this expression is to include the
anisotropic effects in the prediction of the production
of SGS kinetic energy. Tensorial eddy viscosity is
expressed by (Gallerano 2000)
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Vij = CPA\]kSgs L;m
kk

where L is the trace of the modified Leonard term,

(13)

and given by
(14)
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which is based on the assumption that the anisotropy
of the unresolved turbulence-velocity scales is equal
to the anisotropy of the resolved part of the SGS
turbulent stress tensor (that is, the modified Leonard
term): this assumption is somewhat similar to the
similarity hypothesis formulated by Bardina (1983),
according to whom a strict analogy exists between the
smallest resolved and the largest unresolved scales.
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Dissipation term can be expressed as
7
£=C, = (16)
A

Model constant in dissipation term is evaluated by
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An additional modification to the dissipation term
is introduced following the RANS low Reynolds
number modelling
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Model constant in the production term can be
evaluated by using Germano identity from Eq. (7).
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resolved turbulent stress tensor and

o is
Lg represents test filter level term.

RESULTS AND DISCUSSION

Numerical simulations were performed first on a
fully developed turbulent channel flow at Reynolds
number 395, which is based on the friction velocity
and half-width of the channel. The two walls of the
channel are treated as no-slip boundaries. In the
streamwise and spanwise directions the domain is
truncated to a finite size and periodic boundary
conditions are imposed. For the present case the
domain size of 270 x 76 x 26 in the streamwise,
spanwise and wall-normal has been considered.
Simulations are carried out on a coarse grid with cells
64x32x32. An evaluation of the proposed model is
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performed using DNS data of AGARD test case
PCH10 (1998). Results are also compared to that
obtained with the Smagorinsky model and its
Lagrangian dynamic version. Comparison between
obtained normalized mean velocity and normalized
Reynolds stress profiles (normal to the wall) are
shown in the Fig. 1 and Fig. 2. Both one equation and
Lagrangian models predict near wall flow phenomena
very well compared to Smagorinsky model.
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Fig. (1) Comparison between normalized mean
velocity profile <u>
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Fig. (2) Comparison between normalized Reynolds
stress profile <uu™>

Fig. 3 shows the comparison between forward and
backscatter energy, which are evaluated by using
following expression
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where P* and P represents forward and backward
scatter. One can observe the significant contribution
of backscatter. In Fig. (4) one can observe the
variation of the model coefficients normal to the wall.
The variation of the model constants in the diffusion
and production terms of the SGS kinetic energy
equation are similar.
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Fig.3 Comparison between forward and backward
scatter
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Fig. (4) Variation of the model constants

For the second test case fully developed spanwise
rotating channel has been considered. For this case
computational domain of 4,,5x47r% «25 in the

streamwise, spanwise and wall-normal with grid size
of 48x51x64 is considered. Reynolds number and
rotation number are 177 and 0.144 respectively,
which are based on the friction velocity and half-
width of the channel. Results are compared to that
obtained with the DNS results of AGARD test case



PCH21 (1998). Comparison between obtained mean
velocity and Reynolds stress profiles are shown in the
Fig. 5,6 and 7.
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Fig. (5) Comparison between normalized mean
velocity profile <u>
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Fig. (6) Comparison between normalized Reynolds
stress profile <uu™>

Fig. (7) Comparison between normalized Reynolds
stress profile <u'v™>
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This comparison clearly demonstrates the
advantage of the proposed one equation model in the
prediction of the body force.

CONCLUSIONS

New one equation model based on SGS kinetic
energy is developed by introducing tensorial viscosity
in the production term of the SGS Kkinetic energy.
This model is capable of predicting the anisotropic
effects and also predicts backscatter. Due to the
RANS low Reynolds number model type correction
to the dissipation term one can predict flow behaviour
near the wall more accurately.

The test by fully developed channel flow proves
the agreement between proposed model and the DNS
database even for the coarse grid. The test by rotating
channel flow proves the advantage of the proposed
model in the prediction of the body force.

In the present model there is no clipping for the
model constant in the production term.
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