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ABSTRACT

Transient growth of linearly stable disturbances is believed
to play an important role in the subcritical transition of lami-
nar boundary layers and the self-sustained nature of boundary
layer fluctuations in a fully turbulent flow. Prior work on
transient growth has focused on identifying the optimum ini-
tial disturbances that result in maximum transient growth.
This paper addresses the companion issue of receptivity of
those disturbances, the mechanism that determines the actual
magnitudes of transient growth that are realized in a given
physical situation. A synergistic combination of experimental,
computational, and theoretical approaches is used to quantify
the flow receptivity to surface roughness in a Blasius bound-
ary layer. Results reveal the non-optimality of the transient
growth factors involved as well as the sensitive dependence
of flow perturbations to the geometric characteristics of the
roughness distribution. Direct numerical simulations (DNS)
are compared in detail with experimental results, results ob-
tained from linear receptivity theory and optimal disturbance
calculations. DNS shows good agreement with the experimen-
tal results. Differences between the linear theory and DNS are
attributed to nonlinear receptivity mechanisms. Results also
support the proposal by Fransson et al. (2004) that disagree-
ment between optimal disturbances and experiments/DNS
may be attributed to differences involving the wall normal lo-
cation of the streamwise vortex initiating the transient growth.
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INTRODUCTION

The transient growth phenomenon refers to an algebraic
amplification of small-amplitude disturbances prior to an ex-
ponential decay farther downstream. Transient growth has
been proposed as a likely mechanism behind laminar-turbulent
transition scenarios that cannot be explained by the classical
paradigm of hydrodynamic instabilities. Transient growth is
also believed to play an important role in the self-generation of
turbulence in fully turbulent wall shear flows (Butler and Far-
rell 1993; Chernyshenko and Baig 2005). Physically, the occur-
rence of transient growth can be explained by Landahl’s (1980)
“lift-up” mechanism, where a pair of stable, counter-rotating,
streamwise-oriented vortices transfers momentum across the
boundary layer, creating a significantly stronger streamwise
velocity perturbation.

The mathematical foundation of transient growth has been
described by Schmid and Henningson (2001) and Reshotko
(2001). Transient growth arises because the linearized dis-
turbance equations are not self-adjoint and, therefore, have
nonorthogonal eigenmodes. In boundary layers, the correct
representation of disturbances is the superposition of the dis-
crete and continuous eigenmodes of the Orr—Sommerfeld (OS)
equation. In classical linear stability analysis, the most ampli-
fied discrete eigenmode represents the dominant disturbance
observed in an experiment. However, even in the subcritical
region where the TS waves are damped, a suitable mixture
of continuous spectrum modes (each of which has a different



decay rate) can exhibit temporary algebraic growth before the
exponential decay manifests itself.

A particular combination of the modes will form an initial
disturbance that experiences the maximum amount of growth.
Such a disturbance is called the optimal disturbance (Farrell
1988) and many investigators have contributed to the mod-
elling of spatially growing optimal disturbances (Andersson
et al. 1999; Luchini 2000; Tumin and Reshotko 2001). For
a laminar Blasius boundary layer, the optimal initial distur-
bance has been shown to consist of an array of stationary
streamwise vortices with a dimensionless spanwise wavenum-
ber of 0.45. Andersson et al. (1999) also found that the
measured evolution of low-frequency boundary-layer distur-
bances excited via freestream turbulence is in agreement with
the optimal growth theory. On the other hand, there is a
significant mismatch between the optimal growth theory and
measured (i.e. realizable) disturbances due to controlled sur-
face roughness. White (2002) finds that roughness-induced
disturbances show suboptimal behavior. Fransson et al. (2004)
confirm this observation and attribute the mismatch to differ-
ences between the initial disturbance profiles used in optimal
disturbance studies and those induced by surface roughness.
The former corresponds to a streamwise vortex that is not
confined to the boundary layer. Unlike the case of freestream
turbulence, however, disturbances generated by low amplitude
surface roughness are mostly confined to the boundary layer
region.

Transient disturbances are extremely sensitive to initial
disturbance conditions as these determine the spectrum of
modes that make up the disturbance and, hence, its algebraic
growth rate. Since the maximum disturbance energy attained
downstream of the source is mostly specified by the algebraic
growth rate, understanding the receptivity mechanism that
determines the initial disturbance condition is crucial. The
objective of this work is to summarize the recent progress in
experimental, computational and theoretical investigations of
roughness-induced transient growth, with an emphasis on de-
tailed comparisons between the respective findings for specific
roughness configurations. Remaining challenges to assessing
the relevance of the optimal growth theory to roughness effects
on boundary-layer transition are also outlined.

EXPERIMENTS

White and coworkers (White and Ergin 2003; White et al.
2005; Ergin and White 2005) at Case Western Reserve Uni-
versity (Case) have conducted a number of experiments on the
behavior of roughness-induced transient disturbances. Present
efforts are focused on generating disturbance data that is suit-
able for comparison with DNS and theoretical models. A brief
description of the experimental setup and data analysis pro-
cedure is given below.

Measurements are obtained in the boundary layer of a flat
plate with an elliptical leading edge and disturbances are gen-
erated by a spanwise array of cylindrical roughness elements.
Roughness arrays provide considerable flexibility in varying
the controlled disturbance inputs, via variations in the height,
spacing and diameter of the roughness elements. Various av-
eraging techniques, such as spatial phase-locked averaging,
can be utilized to improve the signal-to-noise characteris-
tics during data analysis. Throughout this paper, k& denotes
the roughness height, A\; is the spanwise roughness spacing
(19 mm), zy is the array’s streamwise location relative to the

584

physical leading edge (300 mm), and Rej is the roughness
Reynolds number, U(k)k/v. Hotwire velocity measurements
are performed in planes perpendicular to the streamwise flow.
An illustration of the experimental setup is given in Figure 1.

The main data analysis technique is to decompose the ki-
netic energy associated with the steady disturbance into span-
wise wavelength components by performing a spanwise Fourier
transform, computing the energy of each and examining the
downstream evolution of these energies. The energy is defined
by
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E)x(m) = / PSD(I, m A)dﬂ (1)
0
where PSD is the one-sided power spectral density.

For Rej = 202, the phase-lock averaged steady streamwise
velocity contours obtained 30 mm downstream of the rough-
ness array are shown in Figure 2. In this figure, the flow is into
the page; the abscissa is the spanwise coordinate normalized
by Ak, and the ordinate is the dimensionless wall-normal co-
ordinate, 7. The contour lines indicate 10% increments of the
freestream velocity and the box in the middle approximates
the planform shape of the cylindrical roughness element that
generated this disturbance. The decelerated regions along the
roughness centerline and accelerated regions along the edges
agree well with previous experimental results. The measured
streamwise velocity contours can be compared to DNS results
which are shown in Fig. 3.

White and Ergin (2003) investigated how the steady dis-
turbance energy in spatial wavelengths scales with roughness
amplitude. For Rey = 119 and a diameter of 6.35 mm (which
corresponds to A;/3), Fig. 4 shows the downstream evolution
of the steady disturbance energy contained in Ag, Ar/2, A\i/3,
and A\, /4 components. It was found that the disturbance en-
ergy approximately scales with Rei (i.e., k%), and this scaling
is further verified by White et al. (2005) for Rey, ranging from
16 to 195. Rice (2004) extends the range to 254. Fig. 5 shows
the transient growth of E}y, /3 for selected values of Reg. In
this figure, the solid lines denote the least squares fits to the
data using the model function a(x — zy)exp[—(z — x%)/b].

White et al. (2005) also considered the effect of rough-
ness diameter on disturbance energy and found that even a
small change in roughness diameter had a dramatic effect on
the disturbance spectrum, both quantitatively and qualita-
tively. The effect of roughness diameter on the downstream
evolution of Ej, /3 is shown in Fig. 6, where the solid line
is an interpolation of 6.35-mm diameter for Re, = 177.
this figure, the 6.35- and 7.62-mm-diameter roughness pro-
duce transient growth, 4.76- and 5.08-mm-diameter roughness
produce an initial decay followed by transient growth, and
3.81-mm-diameter roughness produce pure decay. These find-
ings indicate that both height and shape are equally important
in the receptivity of roughness-induced transient disturbances.

Tumin (2003) proposed a multimode decomposition
method that addresses the receptivity problem for spatially
growing realistic perturbations. Quantification of the initial
disturbance profile for comparison with this theory requires
the measurement of all three disturbance velocity compo-
nents. Ergin and White (2005) took the first step in ob-
taining the complete velocity field by measuring the spanwise
and streamwise velocity components. At present, spanwise
velocity measurements are too limited for comparison with
numerical works. Continuing efforts are focused on obtaining
extensive streamwise and spanwise velocity measurements so
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that a definitive comparison can be made. Multicomponent
velocity measurements are crucial to an improved understand-
ing of transient disturbances, because of their relevance to
the streamwise oriented steady vortical structures that initi-
ate transient growth.

DIRECT NUMERICAL SIMULATIONS

Fischer and Choudhari (2004) have carried out numerical
simulations for various roughness configurations that enable
detailed comparisons with the measurements of White and Er-
gin (2003). The unsteady incompressible Navier—Stokes equa-
tions were integrated in time by using the spectral element
discretization in space and a third-order, operator-splitting
formulation in time. After initial simulations with a full wave-
length domain to confirm the spanwise symmetry of the flow
field, the remaining simulations were performed using half the
wavelength along the spanwise direction. Grid convergence of
the computational results was confirmed by varying the order
of the discretization polynomial within each element.

For Rej = 119, Fischer and Choudhari (2004) examined
the downstream evolution of the relevant spanwise harmonics
of the disturbance field. The agreement between the experi-
mentally measured and numerically computed modal energies
can be observed by comparing Fig. 7 with Fig. 4. The initial
rapid decay of the A\; the transient growth of Ag, A\x/3, and
Ak /4; and the monotonic decay of A\ /2 are all captured in the
simulations. In Fig. 7, the numerically determined streamwise
locations where the fundamental mode, Ap reaches a mini-
mum, where Ag /3, and A\, /4 modes reach their respective peak
amplitudes, and where the downstream decay rate of the Ay /2
mode changes are almost exactly equal to their experimentally
measured counterparts. Minor differences are observed in the
far wake region of the fundamental mode. The modal energy
computed using DNS overestimates the corresponding modal
energy measured in the experiments (modal energies can be
obtained from the experimental data by integrating E) over
one unit of inverse wavelength). Numerical results for other
roughness heights are consistent, in general, with the observed
nonlinear scaling of disturbance amplitudes and the approxi-
mate range of Rej over which this scaling has been observed.

Figure 8 compares the downstream evolution of steady
disturbance energy obtained by experiments and DNS for
Rej, = 119. The disturbance energy at each x location is
computed by integrating the spanwise variance of the steady
velocity disturbance from the wall to the freestream. This
figure shows good agreement between the approaches with
both indicating an initial rapid decay region, a slow but clear
growth region and finally a weak decay region in the x direc-
tion.

One of the advantages of DNS is the readily available pres-
sure field, which cannot be easily measured in the experiments.
Figure 9 shows the salient features of the near-wall flow field in
the near vicinity of roughness element for Re;, = 119. The bot-
tom half of the figure displays the surface pressure contours.
One observes peak pressures along the centerline just ahead
of the roughness element, lowest pressure above the roughness
(not shown in the figure), and a monotonic pressure recovery
in the wake region, all in agreement with the previous works.
The upper half depicts the distribution of streamwise veloc-
ity and the streamlines at a small fixed height just above the
surface. The top half of the figure clearly highlights the two
separate regions of flow reversal - a primary region behind the
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roughness element and a smaller region near the centerline
just in front of the element.

THEORETICAL ANALYSIS

A theoretical analysis of perturbations generated by a
roughness element was presented in Tumin and Reshotko
(2004) who considered the linearized Navier—Stokes equations
and linearized boundary conditions. The method was based
on an expansion of the solution into the normal modes of the
continuous spectrum and amplitudes were calculated using the
biorthogonal eigenfunction system (Tumin 2003). The linear
approach is limited to small roughness elements with heights
less than the viscous sublayer thickness. In the present exper-
iments and computations, the roughness height exceeds this
by a significant margin. As follows from the high Reynolds
number asymptotic theory (Smith et al. 1977), the govern-
ing equations are linear in the boundary layer’s main deck,
but nonlinear in the vicinity of the wall. The experimental
and computational data demonstrate that the velocity per-
turbation amplitudes scale with Rey, (i.e., k2), illustrating the
nonlinear character of the receptivity problem.

In order to assess the difference between the linear and
nonlinear receptivity mechanisms, we compare the numerical
results for Re; = 119 based on the linear theory (Tumin and
Reshotko 2004) with DNS results and optimal perturbations.
Figures 10 and 11 show a comparison of the wall-normal and
the spanwise velocity components of the fundamental mode
at * = 335 mm. In both figures, the v and w profiles com-
puted using each approach are normalized by the same factor
such that the near-wall maximum w velocity computed using
each method is unity. One can see that the velocity pertur-
bations computed using linear receptivity theory are localized
closer to the wall than the DNS perturbations, and the DNS
perturbations are closer to the wall in comparison with the
conventional optimal perturbation.

In spite of the nonlinear character of the receptivity phe-
nomenon, the downstream perturbations are small enough,
such that their dynamics in the transient growth region can
be described within the scope of the linearized Navier—Stokes
equations. The observed transient growth effect differs from
the theoretical prediction based on the optimal perturbation
concept. To assess the difference between the optimal velocity
perturbations and the perturbations generated by the rough-
ness array, we have calculated the optimal profiles correspond-
ing to the maximum energy growth for the A, component over
the limited range of x = 335 mm to = 700 mm. Figs. 10 and
11 confirm that the optimal perturbations are spread farther
away from the wall than the DNS profiles for the particular
roughness configuration examined herein.

CONCLUSIONS

The recent developments in transient growth research ob-
tained using experimental, theoretical and computational ap-
proaches are presented. Experimental results show that dis-
turbances generated by surface roughness are non-optimal and
the DNS simulations are in satisfactory agreement with the
measured data. Non-optimality is attributed to the fact that
the disturbance generated by the roughness element involves
a streamwise-oriented vortex that is closer to the surface than
the streamwise vortex predicted by optimal disturbance calcu-
lations. The experiments and simulations also establish that



the disturbance velocity scales approximately with the square
of the roughness height and that the roughness shape also has
an important influence on the receptivity of roughness-induced
disturbances. The dependence on roughness height shows that
the receptivity mechanism is nonlinear, which implies that
linear receptivity models are not appropriate for the rough-
ness amplitudes considered here. Despite the fact that the
receptivity is nonlinear, the downstream perturbations in the
transient growth region are small and, hence, their evolution
should be well approximated by the linearized Navier—Stokes
equations. Consequently, the multimode decomposition tech-
nique (Tumin 2003) can be applied to analyze the DNS and
the experimental data, providing a quantitative description of
the perturbations as a sum of the continuous spectrum normal
modes. This technique requires the measurement of the com-
plete velocity field in the near wake. Current experimental
efforts are focused on supplying this data by measuring the w
and u velocities and estimating the v velocity using continuity.
This data, in conjunction with the biorthogonal decomposi-
tion technique, will lead to receptivity models for non-optimal
initial disturbances which will be useful for predicting transi-
tion in situations with significant roughness-induced transient
growth.
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Figure 1: Schematic view of the flat plate model and roughness
array.
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Figure 2: Experimentally measured streamwise velocity con-
tours for x = 330 mm, Rep = 202.
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Figure 3: Numerically calculated streamwise velocity contours
for x = 330 mm, Rej = 202.
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Figure 4: Streamwise evolution of E) measured by White and
Ergin (2003) for Rep = 119.
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Figure 5: Transient growth of disturbance kinetic energy con-
tained in Ak /3 for various roughness heights. d = 6.35 mm.
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Figure 6: Evolution of disturbance kinetic energy contained
in A\g/3 for various roughness diameters. Rej = 177.
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Figure 7: Streamwise evolution of modal energies computed
by Fischer and Choudhari (2004) for Rej = 119.
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Figure 8: Downstream evolution of steady spanwise rms dis-
turbance energy, Erms = fooo Ulms2dn for Rey, = 119.
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Figure 9: Flow features in the vicinity of a roughness element:
surface pressure distribution (lower half); streamwise shear
stress and streamlines (upper half).
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Figure 10: Comparison of wall-normal velocity profiles for x =
335 mm, Rep = 119.
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Figure 11: Comparison of spanwise velocity profiles for x =
335 mm, Rep = 119.





