A HYBRID LES-RANS FOR NEAR-WALL MODELING
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ABSTRACT

In this paper we propose a zonal hybrid between
large-eddy simulation (LES) and Reynolds-averaged
Navier-Stokes equations (RANS) techniques, the latter
taking over in near-wall regions. Both the LES and
RANS use a one-equation model; the main difference
between the two lies in the specification of the length
scale. To avoid a sudden jump in this length scale, a
transition region between LES and RANS is specified,
in which a smoothly-varying weighted average length
scale between LES and RANS is used. This approach
was applied to a backward-facing step flow with an
expansion ratio of 1.5, at a Reynolds number of 5540
based on inlet bulk velocity and the height of the step.
These conditions match the experimental conditions of
Kasagi and Matsunaga (1995). The backward step flow
is a standard test case of massively separated flow.
Turbulent structures at the inlet are calculated by
channel DNS. The reattachment length is 6.97 step
heights, an error of 7.1% compared with Kasagi and
Matsunaga’s experiment data. The peaks of Reynolds
stresses are somewhat underpredicted near the step, but
farther downstream they agree well. In contrast, mean
stream velocity is well predicted near the step, but far
from the step, the mean flow seems to be flexion down.
The mean wall-normal velocity component was also
agreed well with experimental data.
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1. INTRODUCTION

“Direct Numerical Simulation” (DNS) resolves
essentially all scales of motion in a turbulent flow,
including the small-scale dissipative motions. When
feasible, this technique is considered to reliably
reproduce natural turbulent flow, in a statistical sense.
However, the computational effort required to resolve
the dissipative scales limits the applicability of this
technique to simple flows at low to moderate Reynolds
number. In Large Eddy Simulation, spatially-smoothed
equations of motion are solved, and “stresses” generated
by smaller scale motions are modeled. This filtering
makes LES significantly cheaper than direct numerical
simulation (DNS), even as the energy-containing
unsteady motions are resolved. The latter attribute
makes LES more accurate and reliable than RANS
equations for flows characterized by non-equilibrium,
three-dimensionality, boundary layer re-laminarization
and re-transition, and massive separation.

The main restriction of LES to date appears to be in
the application to high Reynolds-number wall bounded
flows. Away from wall boundaries of a boundary layer,
the requirement that the energy-carrying scales of
motion be resolved results in a grid size proportional to
the integral scale of motion. Since this is usually a weak
function of the Reynolds number, the cost of LES does
not depend strongly on the Reynolds number. But for
the near-wall region, resolution requirements are
qualitatively different, because the important motions
scale with the viscous length scales, then computational



cost is strongly Reynolds-number dependent. Bagett et

al. (1997) considered a fluid volume whose size L’.ois
determined by the geometric scales, such as the channel
half width. In the neighborhood of the wall the integral

length decreases linearly as L, oc y and eddies remain
anisotropic above Ax oc y. The number of anisotropic
slab  of  thickness dy
then dN oc L’.ody/ Ax’ and their total number is given
by the integral

modes in a is

N = J'L”gody/y” oc Lo /yzo
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where y, is some inner wall distance that determines the
number of modes. In the absence of a good model for
anisotropic turbulence, the near-wall motions scale with
viscous length scales, we must choose this limit as a

fixed number of wall units y, =vy*o/u, . Then the
number of anisotropic modes becomes

T80 (2)
which is only slightly lower than the estimate for DNS.
Hence, the cost of LES with near-wall motions resolved
increases with the square of Reynolds number; that is,
the cost increases by a factor of 100 for each decade
increase in Reynolds number.

N =a(u L /V)2 =aRe’.

To circumvent the high cost incurred to represent
accurately the near-wall eddies, one can bypass the wall
layer altogether, and model the effects of these eddies
presenting in this region in a statistical sense. Modeling
the wall layer saves a huge number of grid points.
However, this process introduces empirical parameters,
such as the Karman constant. Moreover, the empiricism
is stable only for well known quantitatively regions, at
least in equilibrium flows, and that fine grid is required
in the region in which the empirical parameters is in
control.

In recent years, an increasing number of hybrid
models are being developed. A detailed overview of
hybrid models making LES applicable can be found in
the second edition of Sagaut’s book (2002, Second
Edition). In general, wall-stress models for LES can be
divided into two types: equilibrium laws and zonal
models. Equilibrium laws are based on the assumption
that the dynamics of the wall-layer are universal and can
be represented by a general law, such as the law-of-the-
wall. The wall stress computed from this general law is
applied as the walls boundary condition, instead of the
usual no-slip condition. Schumann (1975) applied this
kind of wall model in a simulation of a turbulent channel
flow. The mean velocity was determined using the
logarithmic law of the wall while the mean wall shear
stress was determined from the driving pressure gradient.
Later, Grotzbach (1987) used the same framework
except that the mean velocity was calculated over the
plane at a distance from the wall and parallel to the wall
and the mean wall shear stress was determined from the
logarithmic law of the wall. This is now referred to as
the Schumann & Grozbach (“SG”) model. Piomelli er al
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(1989) modified the SG model based on the observation
of inclined coherent structures along the wall, in which
the instantaneous filtered velocity signature is used to
predict the instantaneous shear stress at the wall
somewhat upstream. The equilibrium laws relax the
constraint on the grid size, and have been used with
considerable success in simple, attached flows, but rest
on a very weak physical foundation. For complex
geometries, or in flows without a-priori knowledge of
the mean velocity profile, they cannot be easily applied;
events fail to predict flows satisfactorily. For instance,
For instance, in simulation of a rotating channel flow,
the quasi-relaminarization observed one side of the
channel (Balaras et al, 1996) could not be predicted by
the equilibrium laws. Thus, their value is limited in
engineering applications.

Zonal approaches are hybrid RANS/LES methods
that use unsteady RANS (URANS) in the near wall
region and LES elsewhere, in the so called “outer” flow.
The simulation is extended to the wall, where the no-slip
condition is still used. In zonal approaches, the explicit
solution of a different set of equations in the near-wall
layer supplies boundary conditions for the LES, then it
is more dynamic than using a single friction law
between stress and velocity at the wall-layer edge. A
first technique of this type, known as the two layer
model (TLM) solves two separate set of equations on
two separated grids, while in others a single grids is
used and only the turbulence model changes from one
region to the other. Priori technique was proposed by
Balaras and Benocci (1994) and Balaras et al. (1996),
and has been practiced in both attached flows, and
separated flows with or without knowing priori of
separation point, such as high Reynolds number channel
flows (Balaras et al. 1996), backward step (Cabot, 1996),
and trailing edge of an airfoil (Wang and Moin, 2002),
with favorably accurate results. The wall layer is solved
by the thin boundary layer equations in a fine grid
embedded under the coarser LES mesh and so no
Poisson equation inversion is required. Hence, despite of
the fact that needs to solve the additional equations in a
very fine grid in the normal wall direction, this approach
significantly reduces the computational cost compared
with near-wall resolved LES (LES-NWR). Perhaps the
best-known single-grid approach is Detached Eddy
Simulation (DES) proposed by Spalart e al. (1997) for
massively separated flows. DES combines URANS and
LES solutions in a single grid, in which URANS is used
to simulate the attached boundary layer and LES
computes the remains. The most common URANS
model employed in DES applications is the Spalart-
Allmaras one-equation model (Spalart and Allmaras
1994, or “S-A model”). To switch between the turbulent
eddy model and the subgrid scale model, the length
scale of the S-A destruction term is taken to be the
minimum of the distance to the closest wall and a length
scale proportional to the local grid spacing; this ensures
that URANS treatment is retained within the boundary
layer. In DES, the transition between URANS and LES
is seamless because a common equation is used without
specification the interface between RANS and LES
zones. However, using a simple min cut-off function



leads to a discontinuity in the gradient of the length
scale that enters the destruction term of the turbulence
model.

Based on Dahlstrom and Davidson (2003) work
and an idea to overcome the discontinuity in the gradient
of the length scales, we propose a hybrid LES/RANS
method, which applied a one-equation model to both
LES and RANS. Subgrid scales model is based on one
equation of SGS by Yoshizawa and Horiuti (1985) and
URANS turbulence model is Chien & Patel (1988) one-
equation model. This approach is tested by the
backward-facing step flow of Kasagi and Matsunaga
(1995) for which the expansion ratio of the flow was 1.5,
and the flow had Reynolds number of 5540 based on
inlet bulk velocity and the height of step. Next the
numerical results on the turbulent statistics will be
shown. Finally, some conclusions and recommendations
for future work will be presented.

2. IMPLEMENTATION

The problem used to test our approach is backward-
facing step flow, which is a widely used benchmark
problem to evaluate the performance of turbulence
models in the prediction of separated flows. The

governing equations are filtered equations of
conservation and momentum for incompressible
Newtonian fluid resulted in the forms
ou,
i 3)
Ox,
ou, owu, 8p 1 _,- 01,
— ’=——p+—V2u.-— : “4)
ot ox, Ox, Re ox,

where the overbar denotes filtered variables, and the
extra term 7 ; represents the effect of SGS to resolved

scales. The additional stress are parameterized by using
an eddy-viscosity model

7, —%kéy = _2Vr§,, ©)
5 _Afou o, ©
T2\ 0x, o,

The eddy-viscosity is determined by a one-equation
model which results in following form:

v, =C.1Jk

_ 3/2
a—k+t7 a—k=2VTS‘ S.—C, k )
or 7 ox, v [,
+i (V+V_T)6_k _gm
Ox, o, Ox,

in which the LHS contains the unsteady and convective
terms, and the RHS contains respectively the production,
dissipation, diffusion, and low Reynolds number
correction term which is based on the version of
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k — & model (Jones and Launder, 1972, published in
Wilcox D. C. ‘Turbulence modeling for CFD’, second
edition)

ovk ok

ox. Ox,
J

J
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Equations 7 represent the motion of subgrid scale kinetic
energy in LES, and of turbulent kinetic energy in RANS.
The other closure constants are referred to one-equation
SGS model by Yoshizawa and Horiuti (1985) and the
one-equation model turbulence model by Chen and Patel
(1988). They are summarized in Table 1; in which y is
distance to the nearest wall, and A is filter width.

Table 1: Summary of parameters

Chen & Patel Yoshizawa
C, 1 1.05
C, 0.09 0.07
L, 2.495y(1— V") A
lv 2.495)7(1—6_0'0143'“/;/‘/) A
The length scale in Equation 7 is taken to be a
weight averaged between those of LES and
RANS [ =al,, +(1-a)l,,, O0<a<1. The value

of o is asymptotic to 1 as far from the walls and O as
near to the wall. This ensures that RANS will be used at
the near wall region. As a consequence there is
transition region instead of sharp interface, and the
eddy-viscosity has smaller values than for RANS. At a
distance from the wall which depends on the weight
function, the length scale switches from the RANS value
to that for LES. In the present investigation, the weight

function oo is similar to the Van Driest
u

function, o =1—e"* y*=y ~ , where y is
1%

distance to the nearest walls and #, is friction velocity at
the inlet. The LES length scale A is set to the cube root
of the computational cell volume, A = (A AA, )”3 .

This paper reports results for the backward-facing
step condidered experimentally by Kasagi and
Matsunaga (1985). x, y and z represent streamwise,
normal and spanwise directions respectively. Denoting
step height by &, the computational domain size in
each direction is Li=2.5h Lx=22.5h, Ly=3h, Lz=3h as
shown in Figure 1. The expansion ratio is thus 1.5 and
the Reynolds number, based on the step height and mean
bulk inlet velocity U,, is taken to be 5540. The flow is
assumed to be spanwise periodic, and turbulent
velocities and pressure at the inlet are calculated by
DNS of a fully developed periodic turbulent channel.
Out flow is standard condition.



The set of governing Equations 3 and 4 are
numerically solved by using a second-order accurate
finite-difference method on staggered grids. The spatial
derivatives are approximated by central finite difference
of 2" order of accuracy. The discretized equations are

Figure 1 Geometry of the backward-facing step

advanced in time by the SMAC scheme, using the 2™
order Adams-Bashforth method for prediction step.
Poisson equation is solved by FFT in the periodic
direction and preconditioned Bi-CGSTAB method with
tri-diagonal factorization pre-conditioner in the other
directions. Then velocity is corrected by pressure
gradient to make the field solenoidal. The eddy-viscosity
is determined at the pressure nodes. Spatial
discretizations and time marching of Equations 7 are the
same as those of the governing equations. Non-uniform
grid distributions are used in both the streamwise and
wall-normal directions, and uniform grid distribution in
the spanwise direction. Grids are clustered near the step
edges and the walls using tangent hyperbolic functions.
The number of grid points used is 164x64x32 in the
streamwise, wall-normal and spanwise directions,
respectively. In the wall-normal direction, 44 grids are
used in the range y >h.

3. RESULTS

Figure 2 shows a part of the mean streamlines near
the step.

Figure 2 Mean streamlines

There are two recirculation regions as observed in
Kasagi and Matsunaga’s experiment. The position of the
reattachment point determined by zero-average wall
stress value is 6.97 step heights from the step. This value
gives an error in prediction around 7% compared with
Kasagi and Matsunaga’s experiment results (x/4=6.51).
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The length of the secondary recirculation zone in the
corner of the step is well predicted, too. Figure 3 shows
the mean streamwise and vertical velocity components
profiles and in Figure 4 the Reynolds stresses
distributions at some different distance downstream. In
the separated mixing layer, the Reynolds stresses are
somewhat underpredicted compared with experimental
data. This cause for this may be unsuitable small filter
size for the LES that results from the dense vertical
gridding, and corresponding small computational cell
volume. In contrast, mean stream velocity is better
predicted at near step region. Generally, the mean flow
seems to curve downward.

From the results in Figure 5, the flow upstream of
the step behaves like a channel flow. Lower predicted
Reynolds stress indicated in Figure 6 seems to be cause
by high interface location. This fact was concluded in U.
Piomelli ef al. (2003) simulation. In their calculation of
a turbulent channel flow, lowering the interface did
result in increased resolved stress.

4. CONCLUSION

We have proposed a hybrid LES/RANS calculation
in which the near-wall region is simulated by RANS
technique and the outer flow by LES. The hybrid
approach blends length scales between RANS and LES
regions by weight interpolation, which is slightly
difference from DES method, and smoothly-varying
weights yield a length scale that is continuous to high
order of derivative. The weight function is based on
Van-Driest function for which the location of the
transient region is valuable. Moreover, we can freely
choose the models for LES and RANS. It is simple and
easy to apply to flow with complex geometry, and thus
could be widely applicable. Applying this technique to
backward-facing step has yielded encouraging results.
The length of reattachment point differs by 7.1% from
experimental data. However, this method has not
circumvented an inherent problem of hybrid LES/RANS:
a mismatch of scales between RANS and LES zones. In
the RANS layer, the turbulence model supplies most of
the Reynolds stress, while in the LES region, resolved
eddies dominates. Beside the mismatch in length scales,
the time scales resolved computationally in the RANS
region is larger than those in LES region, in contrast to
the physical turnover times. In the future, a model based
on numerical considerations as well as physical
arguments is needed to circumvent this problem.
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