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ABSTRACT

We perform large-eddy simulations of incompressible fully
developed turbulent flow in a straight open channel with one
flood plain using a dynamic two-parameter model, for depth
ratios Dy (= h/H) equal to 1/2 and 1/4. The Reynolds num-
bers based on the hydraulic radius and bulk mean velocity,
Rep,, are 5470 (for D, = 1/2) and 4670 (for D, = 1/4).
Particular emphasis is placed on a case of low depth ratio;
D, = 1/4, where interaction between the main channel and
the flood plain is significant and is therefore of practical inter-
est. Overall, the computational results agree quite well with
laboratory measurements by Tominaga and Nezu [J. Hydr.
Engrg. ASCE 117(1991) 21] in spite of difference in their
Reynolds numbers and show that the LES code using a so-
phisticated SGS model is a promising tool for natural river
predictions.

INTRODUCTION

Fully developed turbulent flow in compound open channels
is characterized by the interaction between the main channel
and the flood plain, which results in a very complicated flow
field and hence has stimulated many experimental and numer-
ical studies.

A steady RANS approach has been taken in most of the
numerical studies (Krishnappan and Lau, 1986; Kawahara and
Tamai, 1988; Larrsson, 1988; Naot et al, 1993a, 1993b). Large-
eddy simulation can be expected to be more accurate and
reliable for the compound open-channel flows in which hori-
zontal vortices appear due to shear instability at the interface
and therefore large-scale unsteadiness is significant. Never-
theless LES has not been widely applied to prediction of the
flows. Thomas and Williams (1995) performed LES of flow
in a straight compound open channel with one flood plain
for depth ratio D, = 1/2. The Reynolds number based
on the hydraulic radius and bulk mean velocity, Rep,, is
10400, comparable to the one of the corresponding experi-
ment by Tominaga and Nezu (1991), 13600. The standard
Smagorinsky model (Smagorinsky, 1963; Lilly, 1966) was em-
ployed along with a wall function near the wall. Satoh et
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al. (1999) also applied the Smagorinsky model to the flow for
a low Reynolds number, Re,, = 5300, where they resolved the
viscous sublayer instead of introducing wall-function type em-
piricism. Results obtained from these simulations, however,
do not demonstrate the superiority of the unsteady LES over
the RANS methods (e.g., Sofialidis and Prinos, 1998, 1999).
Here we present results from LES of the flow using a more
sophisticated dynamic two-parameter model, for D, equal to
1/4 as well as 1/2. Particular emphasis is placed on the for-
mer case, where interaction between the main channel and the
flood plain is significant and is therefore of practical interest.

PROBLEM FORMULATION

Governing equations and SGS stress model

The governing equations for LES are obtained by apply-
ing a spatial filter to the full Navier-Stokes equations to
separate the effects of the resolved scale from the subgrid-
scale (SGS) eddies. The SGS stress tensor appearing in the
filtered equations has been modeled with a dynamic two-
parameter model (Salvetti and Banerjee, 1995; Salvetti et al.,
1997) defined as:
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The superscript “*” denotes the trace free operator (TZ*]
Tij — %61'3'7—]«19), A is the grid-filter width, Sij = %(8’&1/8%]
0uj/Ox;) is the resolved strain rate tensor, ||

(25:58:;)'/2, and Ly = U;u; — ;i is the modified Leonard
term (Germano, 1986). The two unknown coefficients C' and
K are computed dynamically(Germano et al., 1991; Lilly,
1992) and then averaged in the statistically homogeneous di-
rection. In addition the total viscosity v + v is set to be zero
whenever it becomes negative(clipping) to prevent solutions
from blowing up (Lund et al., 1993). « = S/A, the test to
grid filter widths ratio, is taken to be 2 and A is set to be
(AzyAzoAxz)t/3. We employ Vreman’s formulation for the
modified Leonard term for the test-scale filter (Vreman et al.,
1994). The filtering operations in the dynamic procedure are

i = —20A%|8|S;; + KL
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Table 1: Computational conditions.

h/H b/B B/H L/H Re, Re,n AtU,/H  effective # of grid points  Axz; AzT Azl
‘ 1 2 3

Case 1 1/2 1/2 5 6 600 5470 3.0x 10 * 2.65 x 10° 28.125 1.12-12.5 1.12-12.5

Case2 1/4  1/2 5 6 600 4670 2.5 x 10°* 2.36 x 10° 28.125 1.03-14.6  1.12-12.5
directions points are clustered towards the walls; in particular
the first point close to the wall is placed at x2+ or x; < 1 and
at least 6 points are in the near-wall region (;102+ or x; < 10).

The computational conditions are summarized in Table 1.
After a statistical steady state was reached, data for the
statistics were collected for 6 time units(H/U,). Statistical
quantities are calculated by averaging over time as well as the
homogeneous streamwise direction. Simulations were run at
the maximum Courant number At(;/Ax;),, .. of about 1.0.

Figure 1: Schematic view of the flow configuration.
RESULTS AND DISCUSSION
done in all three directions as Computational results are compared with laboratory mea-
1 surements taken by Tominaga and Nezu (1991) at Re, ~ 1200.
flz) = ﬁ(f(mi_l) +22f(x;) + f(xiq1)) (2) In the following (f) denotes ensemble averaged quantities, and
1 f'" and f’ are defined by f — (f) and f — (f), respectively.
f(zi) = g(f(mi—l) +4f(xs) + f(wig1)) 3)
irrespective of if the grid spacing is uniform or not. Hence Mean velacity

the filtering and differentiation do not commute in inhomo-
geneous directions where the grid spacing[the filter width] is
nonuniform. We choose to neglect errors due to the noncom-
mutation.

Numerical Methods

The system described in the previous subsection is solved
on a Cartesian staggered grid using finite difference methods.
The momentum equations are discretized in time with a semi-
implicit method that uses the second-order Crank-Nicolson
scheme for the viscous diffusion terms and a third-order
Runge-Kutta method (Spalart et al., 1991) for the others. Spa-
tial derivatives are discretized with fully-conservative second-
order central differences for all terms (Kajishima, 1999). The
discretized equations are solved with a fractional step method
and the solution of the Poisson equation is obtained using
a Fourier transform in the streamwise direction and a SOR
method in the other two directions.

Geometry and grid parameters

The filtered Navier-Stokes equations are solved numerically
in the domain sketched in Figure 1. The boundary conditions
are periodic in the streamwise direction, no-slip on walls, and
free slip (zero stress) on the top. The geometry is character-
ized by the depth ratio D,, the width ratio(b/B) and the
overall aspect ratio (B/H), last two of which are set to 1/2
and 5, respectively. The streamwise domain period (L) is cho-
sen to be 6H, which is large enough to contain the longest
structure present in the flow. The simulations are conducted
for a Reynolds number Re, of 600, based on the mean-friction
velocity U, and main-channel flow depth H. It corresponds to
a Reynolds number Re,, of about 5470 in Case 1 and 4670 in
Case 2.The physical domain is discretized using 128 X 96 x 288
grid points in both cases. The dirscretization is uniform in
the streamwise direction, whereas in the spanwise and normal
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The
value of averaged friction velocity obtained from the simula-
tions using the linear law are 1.0047 in Case 1 and 0.9970 in
Case 2, and are within 0.5% of the nominal value. Despite the
difference in their Reynolds numbers, the figure shows that the
simulation results agree closely with the experiments. In Fig-
ure 2(b) a distortion of the contours near the junction edge
is not as pronounced as the one in the experimental data,
however, it is much more comparable than the LES results of
Thomas and Williams (1995) and Satoh et al. (1999), where
the standard Smagorinsky model was employed.

Figure 2 shows mean streamwise velocity contours.

Comparison of the cross-plane velocity vectors is shown in
Figure 3. The maximum magnitudes of the vectors in the
experiments and in the simulations are 0.043U,, and 0.053U,,
in Case 1, and 0.035U, and 0.058U,, in Case 2, respectively.
The strong upflow originating from the junction corner along
with a pair of vortices is accurately predicted in both cases.

Reynolds stresses

Figure 4 shows the distribution of the turbulent kinetic en-
ergy and Reynolds shear stresses which are obtained from Case
2 and normalized by U,. The minimum value of the turbu-
lent kinetic energy predicted appears below the free surface as
can be seen in the experimental data. It appears on the free
surface in the prediction of Sofialidis and Prinos (1998) using
a nonlinear k — ¢ model.

Comparison of the Reynolds shear stresses is also highly
satisfactory. High positive and negative values of —<u’1 u’2>
near the junction edge are accurately reproduced, which is in
accordance with the strong bulging of the velocity contours.

Model coefficients

Figure 5 shows contours of the ensemble-averaged model
constants, (C) and (K), obtained from Case 2. The value
of ;(C) ranges from -0.0037 to 0.0061. (C) is negative only
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Figure 2: Contours of streamwise mean velocity normalized by its maximum. (a) Case 1, experiment (Ua./U, = 23.7). (b) Case 1,
present LES (U,nq./Ur = 22.4). (c) Case 2, experiment (Unq./Ur = 25.4). (d) Case 2, present LES (Uspax /Ur = 23.7).

at about 8% of the effective 8192 grid points in the cross-
stream plane, most of which are seen near the rigid shear free
boundary. The average and maximum numbers of grid points
where the clipping was executed are about 44 points/step and
333 points, respectively. They correspond to about 0.0019%
and 0.0141% of the grid points used. This agrees well with
the findings of Zang et al. (1993), where the dynamic mixed
model was proposed and applied to lid-driven cavity flows.

The value of (K) ranges from 0.92 to 2.50 and is large
near the wall. This indicates that the modeled cross term
contributes to the SGS stress only near the no-slip boundaries,
where it is comparable to LZL

CONCLUSIONS

Large-eddy simulations of fully developed turbulent flows
in a straight compound open channel were performed for two
depth ratios, D, = 1/2 and 1/4. The free surface was approx-
imated by rigid shear-free condition. The SGS stress tensor
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appearing in the filtered Navier-Stokes equations are modeled
by a dynamic two-parameter model.

The results are compared quite well with laboratory mea-
surements by Tominaga and Nezu (1991) in spite of difference
in their Reynolds numbers.
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Figure 4: Contours of Reynolds stresses in Case 2 normalized by the averaged friction velocity. (a) (uju})/2, experiment. (b)
({(afaly 4+ 75)/2, present LES. (c) —{ujus), experiment. (d) —({uju%) + T12), present LES. (e) —(uju}), experiment. (f)

—({uyuf) 4+ 713), present LES. Negative values are shown as dashed lines.
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Figure 5: Contours of emsemble averaged model coefficients in Case 2. (a) (C). (b) (K). Darker [lighter] in gray means lower [higher] in
value. (C) and (K) range from -0.0037 to 0.0061, and from 0.92 to 2.50, respectively.
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