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ABSTRACT

A front tracking method is developed for three dimensional
free surface problems. Triangulated surface meshes are used
to represent the free surface and compute the geometric para-
meters. The volume fraction of fluid and the surface area cut
by the interface in a Cartesian control volume are computed
in terms of boolean operations. The normal stress boundary
conditions are added at the exact location of the interface.
The tangential stress boundary conditions are enhanced with
the least squares technique when the velocity boundary condi-
tions are extrapolated. The Cartesian grid method (or cut-cell
method) is used to discretize the governing equations and treat
the interface as a sharp discontinuity. This method is applied
to implement LES of free surface flows in an open channel with
small amplitude waves. The numerical results are in excellent
agreement with experimental and DNS data.

INTRODUCTION

Turbulence phenomena on the surfaces of rivers, lakes and
seas have been observed and reported for centuries. Examples
include surges on the sea and waves on steep rivers. From an
engineering point of view, an understanding of the dynamics
of free surface turbulence in an open channel flow is of great
importance because it governs the mechanism of the transfer
of mass, heat and momentum across a gas-liquid interface.

Although free surface turbulence has fascinated and at-
tracted many researchers, it has also presented a great chal-
lenge to them. Until recently, very limited knowledge about
the structure of turbulence near the free surface has been
obtained either experimentally or numerically. This can be
attributed to two main reasons: firstly, it is very difficult to
make measurements of velocity and turbulence near a mov-
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ing free surface, and secondly, from a numerical point of view,
the complex moving boundary makes simulations very diffi-
cult to perform with high precision. In spite of this, a great
deal of effort has been undertaken over the last two decades
to develop an understanding of free surface turbulence (Nezu
(1993), Komori (1982), Kumar (1998)).

A review of these references reveals some important findings
about the nature of near free surface turbulence’s coherent
structures and it is worthwhile to mention these here: (1)
near the free surface the turbulent kinetic energy of vertical
velocity fluctuations is redistributed to horizontal motions, (2)
the surface normal vortices deform the free surface, (3) large
eddies with axes nearly parallel to the free surface are flattened
by the free surface, (4) flow structures can be classified as
upwellings, downdrafts, or spiral eddies.

Numerical computations mostly assume a rigid slip sur-
face and ignore the vertical motion of the free surface (Pan
(1995)). This reduces the complexity of the algorithm used
to compute the surface at the cost of losing the physics of
the free surface interaction with respect to energy transfer.
Some researchers (Komori (1982), Nakayama (2002)) use the
body-fitted method to obtain a DNS computation of the free
surface for which the solutions are restricted to situations of
small amplitude deformation. Very recently, Nakayama et al.
(2002) performed a very fine grid DNS (2 million points) for
free surface flows with small amplitude deformation.

The proposed front tracking method is applied here to per-
form large eddy simulation of the free surface flow with small
amplitude surface deformation. With the comparison of the
fine resolution DNS results by Nakayama et al. (2002) and ex-
perimental results by Kumar et al. (1998), it is demonstrated
that this front tracking method can be used to successfully
simulate this complex turbulent flow.



MATHEMATICAL FORMULATION

The Cartesian tensor equations of motion for the spatially
filtered incompressible velocity and pressure fields are given
by
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where the overbar represents the spatial filtering on the scale of
the grid. The gravitational acceleration g; is kept in equation
(2) since the free surface is allowed to move freely. Equation
(2) assumes Boussinesq dynamics to approximate the sub-
grid stresses, where the subgrid viscosity, v¢, is given by the
Smagorinsky closure

vt = CZ2 \/ 2§ij§ij~

In equation (3), the resolved strain rate tensor is defined as
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The Smagorinsky “constant”, C, is calculated locally using
the dynamic procedure of Lilly (1992) with averaging in the
homogeneous directions to avoid the numerical instability as-
sociated with large negative C values.

NUMERICAL METHOD

Tracking the interface

A surface mesh is used to define the interface. The surface
mesh is composed of many connected triangular elements with
the marker points as their vertices, as shown in Fig. 1. If
one views a triangle from outside of the fluid, its edges are
considered in a counter-clockwise direction so that the normal
direction of the interface points outside of the fluid (see Fig.
1, in which n; is the normal direction of the triangle ).

n.

1

Marker points

Figure 1: Three dimensional structure of the interface

Computing the geometric parameters

Boolean operations between Cartesian meshes and the in-
terface are used to compute these parameters. This is a diffi-
cult problem to solve in a robust manner (due to the limited
precision of arithmetic operations in computers). An approach
similar to that presented by Aftosmis et al. (1997), which was
successfully used to handle three dimensional complex solid
geometry problems with the Cartesian grid method, is used to
implement the current Boolean operations. The computation
of the volume and the surface area fraction in a Cartesian cell
is divided into four steps:
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Step 1: For each Cartesian cell, check if any of the 12
triangles is cut by the interface which has already been tri-
angulated. If yes, compute the pierce points, and connect the
two pierce points on the triangle as a cut edge. The cut edges
are stored in a new linked list. The signed volume of the tetra-
hedron Tgpeq in determinant form (5) is used to check if any
two triangles are cut by each other.

0z —dg ay—dy az—d;
6V (Tobeq) =det | by —de by —dy bz—d: |, (5)
cz —dy Ccy—dy cz—d;

where a, b and c are three vertices of a triangle, and d is one
of the vertices of another triangle.This will be the case only if
the three tetrahedra formed by connecting the end points of
edge de with two of the three vertices of the triangle have the
same sign (Aftosmis et al. (1997)), that is:

V(Taabe)
V(Tdabe)

> Oand V(Tdbce) > 0 and V(Tycqe) > 0, or
< 0 and V(Tgbce) <0 and V(Tycae) < 0. (6)

Fig. 2 illustrates this test for the case that the three volumes
are all positive.

b d . b d a b d .
V(Tye) >0 V(Tpe) >0

Figure 2: Boolean test for the pierce of a line segment de
within across the boundary of a triangle Agpe

As we know, a zero-volume tetrahedron represents the case
that the four vertices are co-planar. However, obtaining the
zero-volume value is difficult, since it requires that we distin-
guish round-off error from exactly zero. The adaptive precision
exact arithmetic procedure developed by Schewchuk (1996) is
used to implement the computation. If this result is iden-
tically zero, we then resolve the degeneracy with a general
tie-breaking algorithm based on a virtual perturbation ap-
proach (Edelsbrunner (1990)).

Step 2: Fig. 3 shows a triangle with three intersections.
The segments divide the intersected triangle into polygonal
regions (polygon Pgpaz21 and Pi2s4c in the Fig. 3) which are
either completely inside or outside of the body. In order to
determine the inside or outside parts, we triangulate these
polygonal regions within each intersected triangle.

Figure 3: A triangle with three intersections

Step 3: The ray-casting approach (Aftosmis et al. (1997))
is used to determine if the point is inside or outside part of



a surface relative to another surface in order to compute the
volume or area fraction of the fluid. As indicated in Fig. 4,
one casts a ray r from p and simply counts the number of
intersections of r. If the point lies outside of polygon m, the
number is even, and if the point is contained, this result is
odd.

m

’ \/
Figure 4: Illustration of point-in-polygon with the ray-casting
approach

\/

Step 4: After the boolean operations, the closed triangu-
lated surface will be obtained. Based on the Gauss Theorem,
the volume integral can be transformed to a corresponding
surface integral. The sum of the surface integrals for each
of these triangles is the volume fraction of fluid. The area
fraction cut by the interface can be computed by adding each
triangle’s area.

“Implementation of free surface boundary conditions
The normal and tangential stress boundary conditions on
the free surface can be written as
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where pg is the pressure in the air, o is the surface tension
coefficient, n; is the unit vector normal to the interface, t; is
the vector tangent to the interface, p is the dynamic viscosity.

In order to get the boundary velocity value, it is assumed
that the boundary velocity field varies linearly, i.e.

U=y +buT+CuyY, V= 0y +byT+ oy, W= aw + b+ cwy.

9)
For free surface problems, the velocity fields around the in-
terface also have to satisfy equation (8). To enforce this
condition, we use the least squares technique to determine
the unknown parameters in equation (9) with the constraint
of the tangential stress boundary condition. Thus, we obtain
the expression:

N
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m=1
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N
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where A1 and A2 are Lagrange multipliers; N is the number
of selected points near the interface (five points are usually

(10)
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chosen); (ZTu, Yu, 2u)m, (Tv, Yv, 2v)m and (Tw, Yw, Zw)m are
the position coordinates for the wm, vm and wn, velocity com-
ponents, respectively; t; and l; are two orthogonal tangential
vectors. With the least squares technique, we can use the 14
linear equations to determine 14 unknowns, which are in the
form:

C; = (au, by, Cu, du, Gy, by, vadvya'tmbw,cw,dw,)\l,Aﬂ .

(11)

Numerical discretization with cut-cell method

The u momentum equation is used to exemplify the nu-
merical discretization with the cut-cell method. Fig. 5
shows a three dimensional v momentum control volume cut
by the interface. The center of the cubic finite domain is
at (xi, ¥;, 2x). The boundary velocity (ug, vy, wg) is 0 on
PspreUPpcrarUPpcricUPapceUPapecp UPEFrHIG
and (u, v, w) on the interface HIJ. The u momentum equa-
tion can be discretized as
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Figure 5: A three dimensional v momentum control volume
cut by the interface

Using the symbols shown in Fig 5, the right-hand-side of



equation (12) can be rewritten;
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where, e.g., [Syzu (Szz — uu)]::;,l,;j’k =
[Syzu (Szz — vu)];yq ik [Syzu (Szz — uw)l; ; and
Cy = [ dzdydz is the volume fraction of fluid in the control
volume.

The same least squares technique is applied to compute the
viscous stresses on the centroid of each triangle of the interface.
The surface integrals of the normal stress in equation (13) can
be evaluated by

Spangds = Sxz)cnz As,
/H | Ses S (Sea)ens

where fH” denotes the integration along the piece of the in-
terface contained in the control domain; (Szz)c are the viscous
normal stress on the triangle whose area is As. Other shear
stresses in equation (13) can be expressed similarly to equation
(14).

The surface integral of the pressure along the interface in-
volves the integrals of the normal stress and the surface tension
(see equation (7)). The integral of the normal stress is com-
puted with the same method as that shown in equation (14).
For the computation of the surface tension, we use the same
approach as Tryggvason et al. (2001) in their front tracking
method:

(14)
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where the Stokes theorem is used to convert the area integral
into the line integral along the edges of the triangle.

The normal direction of a triangle is computed directly from
the coordinates of the three vertices. The tangent is simply
computed by subtracting the end points of the edge. The
computation of the normal direction is obtained by averaging
the normals 7; of the N facets incident into the vertex. The
average is weighted by the angle (Thurmer (1998)). As shown
in Fig. 6, the normal direction 7 of the vertex v1 is computed
using

7= Eiv=1 i

iE?’:l g

where a; is the angle under which the it? triangle is incident
to the vertex v1 and is computed as the angle between the two
edges of the i*? triangle incident in the vertex.

PROBLEM DEFINITION

Fig. 7 shows the configuration of open channel flow with a
moving free surface. The mean depth of the free surface flow is
d in the normal direction (z). The streamwise direction z along
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Figure 6: Estimation of the normal direction of a vertex

the channel bed is inclined by angle 6 from the horizontal di-
rection. The computational domain size is 2réx71dx 1.56 along
the streamwise, spanwise and normal directions. There are
two homogeneous directions in the streamwise and spanwise
directions. The Reynolds number based on the shear velocity
at the bed is Re; = ifui = 180. The Froude number based
on the bulk mean velocity is Fr = Um = 0.6. This channel
flow is gravitationally driven; therefore, the gravitational ac-
celeration along the streamwise direction should balance the
gradient of the shear stress on the bed along the normal di-

rection, i.e.,
2

u|.=0
sinf = —% = T 222
gsin 0z

é
If we assume the bulk mean velocity Um = 1, and the mean
flow depth & = 1, the gravitational acceleration component in
the streamwise direction is equal to 0.0042318.

(17)

Figure 7: Configuration of open channel flow with moving free
surface

The periodic conditions are applied to the two homogenous
directions. The non-slip boundary conditions are used on the
two walls along the normal direction although the upper wall
does not participate in the solution domain in the present one-
fluid approach.The computational grids of 64 x 64 x 192 nodes
are discretized with uniform grid spacings in the streamwise,
spanwise and normal direction, respectively.

NUMERICAL RESULTS

Turbulence intensities

The turbulence intensities, (m)lﬂ, normalized by the
wall shear velocity u,, are shown in Fig. 8 together with
the LDV experimental results by Komori et al. (1982). The
present results are in good agreement with the experimental
results. The difference of v’ between the predictions and the
measurements may be due to the measurement error. As the
authors (Komori et al. (1982)) mentioned, it is very difficult
to measure v with good accuracy using two-dimensional LDV
with the scattering mode.

Near the free surface, the intensity of the streamwise and
spanwise fluctuations is increased, and vertical fluctuation is



decreased sharply. This indicates that the turbulent kinetic
energy from the vertical component is transferred to the hor-
izontal components near the free surface. This is because
the constrained vertical motion is changed to parallel motion,
and these motions contribute to the corresponding root-mean-
square (RMS) intensities.

Figure 8: Vertical distributions of turbulence intensities with
the comparison of LDV experimental results by Komori et al.
(1982). present results: —, u/*, — — — o'+, —.. w't; LDV
experimental results: O, u/*, A, v/t, o, w'+,

Turbulent energy budget

In order to further understand the turbulent behavior near
the free surface, we need to investigate the turbulent energy
budget for individual velocity correlations. For an incompress-
ible flow, the governing equation for Reynolds stresses can be
written as

Pl
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Near the free surface region, Fig. 9 shows the terms for the
u/u’ budget. It can be seen that all terms are significant ex-
cept for the viscous diffusion and the production terms which
go to zero near the free surface. It is interesting to note that
the pressure strain term changes sign very close to the surface.
This term contributes to the increase of the streamwise com-
ponent of the turbulent kinetic energy. Fig. 10 shows plots
for the v'v’ budget. It can be seen that the turbulent kinetic
energy in the spanwise direction is gained mainly through the
pressure strain term, and that there is an increase in the pres-
sure strain after z* > 150. In Fig. 11, which shows plots
for the w/w’ term, it can be seen that the pressure diffusion
term now contributes to the energy budget. All terms have the
same relative significance with the pressure strain now being a
large energy absorbing term as the free surface is approached.

Fig. 12 shows plots of the three pressure strain terms near
the free surface. In this figure, it can be seen clearly that the
pressure strain in the w/w’ equation rapidly decreases in the

Viscous diffusion
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Figure 9: Terms in the budget for w/u//(u3/6) in wall units.
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Figure 11: Terms in the budget for w’w’/(u3/8) in wall units.

free surface region and it changes from a positive to a negative
value.

The pressure strain in the v/v’ equation is positive
and it increases in the surface region. The pressure strain
in the /v’ equation becomes slightly positive in the vicinity
of the free surface. Similar observations have been made by
(Komori (1993)). These show that the normal component of

. the turbulence kinetic energy affected by the free surface is

mainly redistributed through the pressure strain terms related
to the spanwise motion much more than to the streamwise
motion. This confirms that the spanwise turbulence intensity
increases more than the streamwise turbulence intensity in the
free surface region (see Fig. 8 ).

Two-point correlation function

The turbulence characteristics near the free surface can
be examined by studying a two-point correlation function at
different distances below the free surface. The streamwise
two-point correlation functions for normal Reynolds stress are
defined as:

‘ll.: (.’E +7r1,y, Z)’U.,IL-(E, Y, Z)
ui(z,y, 2)u; (e, y, 2)

Rii(‘rl,z) = , (19)

where i = 1, 2 or 3 separately, no summation rule. Physically,
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Figure 12: Vertical distribution of the diagonal components of
the normalized pressure strain correlation tensor.

Figure 13: Streamwise two-point correlation function at four
vertical locations near the free surface - Ry

if a two-point correlation decays slower, the eddy size in that
direction is larger. Figs. 13 to 15 show the streamwise two-
point correlation functions at four vertical locations near the
free surface.

As can be seen, these two-point correlation profiles show
that there is a slower decay of Ry and Ry, for increasing r; as
the free surface is approached. On the other hand, the vertical
velocity correlation profile of Ry. shows a faster decay with
increasing rias the free surface is approached. This indicates
that the eddies in the vertical direction are damped by the
free surface and are enlarged in the streamwise direction.
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Figure 14: Streamwise two-point correlation function at four
vertical locations near the free surface - Ryo
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Figure 15: Streamwise two-point correlation function at four
vertical locations near the free surface - Ry

CONCLUSIONS
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A three dimensional front tracking method is developed
and successfully applied to perform LES of free surface flows
with small amplitude waves. The triangulated surface meshes
with marker points as their vertices are used to represent the
free surface and to track its movement. The curved surface
is used to compute the volume fraction of fluid, surface area
in a Cartesian control domain with Boolean operations. The
normal stress boundary conditions are added at the exact loca-
tion of the free surface. The velocity boundary conditions are
computed by the extrapolation method with the least squares
technique, which enhances the tangential stress boundary con-
ditions on the interface. From the numerical results of the
LES, we can see that the vertical component of the Reynolds
stresses is transferred to the horizontal components near the
free surface through the pressure strain term. In addition, the
normal component of the Reynolds stresses is redistributed
to the spanwise motion much more than to the streamwise
motion.
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