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ABSTRACT

When turbulence models are used in the simulation of a
flow for which experimental results do not exist, there is as
yet no reliable procedure for choosing a model or for quanti-
fying the uncertainty of results. The present study develops
an approach based on evidence theory for the resolution of
these issues. The results of turbulence-model validations and
of predictions using those models are fused to determine the
intervals in which a flow quantity is likely to fall and a mea-
sure of confidence for each interval. The approach is tested in
a subsonic flow around the RAE 2822 airfoil.

INTRODUCTION

CFD simulations have become a primary tool for the pre-
diction of complex fluid flows of scientific and engineering
interest. However, to draw meaningful conclusions from re-
sults of such simulations, information about their accuracy
must be available. Only recently (AIAA, 1998) has the need
for a systematic analysis of simulation accuracy received much
attention. The present work is an investigation into the use
of evidence theory as a mathematical foundation for such an
analysis, including quantitative accuracy assessments and pro-
cedures for combining the results of different simulations to
produce the best possible prediction.

Ideally, the assessment of simulation accuracy would in-
volve the identification and quantification of all sources of er-
ror and uncertainty. The results of turbulence simulations are
compromised by the failure of turbulence models to describe
correctly the flow physics, by model parametric uncertainty,
by uncertainties and errors in the code and by numerical er-
rors, including grid discretization and convergence issues. To
identify and quantify all sources of uncertainty is generally im-
possible, to say nothing of quantifying the interaction between
them. As a result, there is presently no standard procedure to
quantify numerically uncertainties in turbulence simulations,
even for flows for which experimental data are known. When
predictions are to be made for flows for which experimental
data are not available, systematic procedures do not exist for
choosing an appropriate model or quantifying the uncertainty
of the results. Evaluation of model performance, even under
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controlled conditions, is thus very subjective.

Developing new turbulence models will not resolve these
issues. Efforts directed towards developing reliable mathe-
matical tools to assess simulation accuracy should be made.
This is the goal of our study. With the current state of art in
this field, we find that a realistic approach to the problem is to
quantify the total uncertainty of simulation results obtained
with a given turbulence model, computational grid and code.
Then, the objectives are i) to find an appropriate measure to
quantify this uncertainty and ii) to develop a procedure that
uses this information to improve predictions made with those
The statistical theory known as evidence
theory (Shafer, 1976) provides a systematic framework within
which these goals become attainable.

simulation tools.

MATHEMATICAL BACKGROUND

Mathematically, two types of uncertainty are recognized:
aleatory and epistemic. Aleatory uncertainty is due to
stochastic influences (e.g., random noise) and cannot be re-
duced. It is well described by probability theory. Epis-
temic uncertainty is subjective and originates from incomplete
knowledge at any stage of modeling and simulation. Increasing
one’s knowledge reduces epistemic uncertainty. Theories mod-
eling epistemic uncertainty include possibility theory, fuzzy-
set theory, and evidence theory. Uncertainty in turbulence
simulations results from both types of uncertainty sources
(Oberkampf et al., 2001). Thus, the statistical method cho-
sen to quantify the simulations’ uncertainty should be able to
handle both.

Among the few statistical theories able to work with both
types of uncertainty, evidence theory (Shafer, 1976) is the
most developed mathematically. Moreover, the theory does
not require separation of the two types’ contributions, which
is often an impossible anyway. It works with the limited
information available for CFD problems and new data can
be incorporated as it becomes available. Therefore, evidence
theory provides the statistical foundation for the present ap-
proach. Notice, though, that engineering applications of evi-
dence theory are few (Oberkampf & Helton, 2002) and differ

considerably from CFD problems. Thus, significant exten-



sions of existing evidence theory tools and concepts are made
in order to benefit fully from evidence theory and maximize
improvement in prediction quality.

Comprehensive expositions of the foundations of evidence
theory and its relation to other uncertainty theories have
been given by Shafer (1976) (also see his later publications;
Oberkampf et al., 2001). Following is a brief review of those
aspects of evidence theory required for the present application.

We wish to find the true value (meaning the value or the
range of values that would be measured in an experiment) of
a flow quantity, in this case, the mean velocity. We denote
this mean velocity by U and the set of its possible values by
U. The fundamental goal of evidence theory is to determine
the degree of confidence, or support, that may be attributed
to a proposition. In the present application, propositions are
of the form ”the true value of U is in AU”, where AU is a
subset of U.

Whenever AU is interpreted as a proposition, its comple-
ment AU (the set of all elements of U not in AU) must
be interpreted as the proposition’s negation. The set of all
subsets of U, the power set, includes the empty set @ (cor-
responding to a necessarily false proposition, since the true
value cannot lie in @) and the entire set U (corresponding to
a necessarily true proposition, since the true value is assumed
to be in U).

In probability theory, evidence supports either a proposi-
tion or its negation. The degree of support of a proposition is
the probability; probabilities of all propositions sum to one. In
evidence theory, evidence does not need to support a proposi-
tion or its negation. For instance, it can support the total set
of propositions without supporting each of them separately.
As in probability theory, the total support is distributed over
all subsets of the power set and is equal to one:

> m@av) =1

AUCU

The quantity m(AU) is the basic probability assignment of a
subset AU. It is the support committed exactly to AU. This
support does not carry over to subsets of AU nor is it the total
support of this subset. The total support of AU includes the
basic probabilities of all proper subsets of AU:

S(AU) = Z m(8U).

sUCAU

That is, the support committed to one proposition is commit-
ted to any subset containing it. A subset AU is called a focal
element of a support function S over U if m(AU) > 0. The
union of all focal elements of a support function is called its
core.

Note that the probability-theory equality

P(AUB) = P(A) + P(B)
for AN B = ( does not hold in evidence theory. Instead,
m(AU B) # m(A) + m(B)

and

S(AU B) > S(A) + S(B).

Also, S(A) + S(A) < 1, in contrast to probability theory. In
general, it can be said that probability theory is a special case
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of evidence theory for which there is no uncertainty in evidence
and evidence is available in unlimited amounts.

The specification of U is epistemic; it is based on our
current, limited knowledge, which results from any type of
information or evidence: experimental data, theoretical re-
sults, expert opinion, etc. It can be changed as new evidence
becomes available.

The main tool of evidence theory is Dempster’s rule for
the combination of support functions (Shafer, 1976). Though
there is a controversy on its use in engineering problems
(Oberkampf et al., 2001), we find it applicable to our case.
Given several support functions over the same set U, a com-
posite support function is computed as their orthogonal sum.
In the simplest case of two support functions S1 and Sz with
basic probability assignments mj and ma, the normalized or-
thogonal sum is

CYL mAgma(By)

1-— Z ml(Ai)mg(Bj)’

i
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m(C) =

where Aj, ..., Ax and Bji, ..., By are focal elements of S1 and
Sa, respectively. The core of the support function given by m
is equal to the intersection of the cores of S; and Ssp.

To be used in Dempster’s rule, support functions should
satisfy some conditions (Shafer, 1976): they do not flatly con-
tradict each other and they are based on separate sources of
evidence. Independence of evidence sources is extremely im-
portant, but its definition is highly subjective (Shafer, 1990).
In the present work, results from simulations obtained with
different turbulence models and at different flow positions are
assumed independent.

QUANTIFICATION OF SIMULATION UNCERTAINTY

The support function introduced above as a tool of evi-
dence theory can be used to quantify the total uncertainty in
turbulent flow simulations. The procedure is illustrated for
the case of an RAE-2822 airfoil for which experimental data
is available.

Test case

As a test flow, the subsonic flow around a RAE-2822 airfoil
is chosen. Flow conditions correspond to those of Case 1 in
AGARD (1979). Rather than attempt to correct explicitly for
wall influences, they will be considered to be an additional
uncertainty in the simulations.

Two standard turbulence models: k — € and k — w, are
used in the present simulations. All calculations were made
with ISAAC (Morrison, 1992), a second-order finite-volume
code for solving the Favre-averaged Navier-Stokes equations.
An upwind scheme based on Roe’s flux-splitting is used for
the convective terms and central differencing is applied to the
viscous terms. Iterations are performed using an implicit di-
agonalized spatially split approximate factorization scheme.
The grid is a nonuniform C-mesh with 257 mesh points in the
wrap-around direction (with 177 points on the airfoil surface)
and 97 points in the wall-normal direction. The grid extends
approximately 18 chords from the airfoil. The same grid was



used in all computations. More details on the code and tur-
bulence models may be found in Morrison (1992).

Measure of result uncertainty

The accuracy with which the simulations reproduce reality
is assessed through comparison with experimental data. This
process is called validation (AIAA, 1998). In the example con-
sidered, velocity profiles calculated with turbulence models are
compared with experimental data available in the y-direction,
normal to the airfoil surface at two positions z/c = 0.75 and
0.95 along the airfoil chord (c). These positions are called val-
idation points. As the metric for judging the quality of the
computed results, the relative error (or deviation) is chosen.
If the error AU, of experimental data is known, the deviation
is defined as Dev = (Ue £ AU — Upn)/Uso, Where the choice
between plus or minus signs depends on which of them returns
the minimum absolute Dev-value. Unfortunately, information
about experimental error is not always offered. In such cases,
the deviation value is defined as Dev = (Ue — Upn)/Uco.

Obviously, the more experimental data we have, the more
confidence we have in the support function we construct. It is
not uncommon, though, that data are sparse. For instance, in
the example we consider there are only 28 experimental values
along the y-direction at x/c = 0.95 and 20 at z/c = 0.75. To
reduce the spreading of limited evidence over a wide range
and, thus, to increase confidence in the results, we will use the
absolute value of the relative error as the measure of simulation
accuracy:

Dev =

Ue — Unm
5=
This introduces additional uncertainty (insensitivity to the
sign of Dev) and will affect prediction quality; this is the price
paid for improving the statistics.

At a validation point z/c, the deviation varies along the
y-coordinate. Let N be the total number of points in the y-
direction at which comparisons of calculated and experimental
data are made. Dividing the deviation space (—oo,+00) into
intervals ADev, one can construct at each validation point a
deviation distribution based on the frequency n with which
Dev-values along the y-coordinate fall in each interval ADev
(3" ADey M(ADev) = N). The deviation distribution so con-
structed is normalized by dividing by the total number of
points N: S(ADev) = (n(ADev))/N. At this point, the total
body of evidence sums to unity:

Z S(ADev) = 1.

ADev

The different number of experimental points available at
different validation points is accounted for by assuming that
a total support of unity corresponds to 28 points and, when
fewer points (20) are available, the total support applied to
specific intervals is 20/28, with the remainder (8/28) commit-
ted to the entire set of supported Dev-intervals as a whole.

The distribution S(ADev) constructed in such a manner is
not a probability density function in the sense of probability
theory, but rather a support function in the sense of evidence
theory. The difference is not only in the way we introduce
uncertainty in the data into the S-distribution, but also in the
way we divide the Dev-space into intervals supported by evi-
dence. This discretization may be nonuniform and deviation
intervals may intersect or may be even nested, resulting in dif-
ferent support functions. When new data becomes available,
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the support function will change further. Support functions
are not unique. Here, we choose a uniform discretization of
the deviation space, with Dev-intervals intersecting only at
boundaries, for the sake of simplicity. The interval size is se-
lected to produce support functions possessing the desirable
properties discussed next.

Properties of the support function

Intuitively, the most favorable support function would be
one focused on the smallest Dev-interval around zero. The
minimum interval size would correspond to the computational
grid size. Such a Dev-distribution would indicate the most
accurate simulations possible with a given code, grid and tur-
bulence model. While simulation accuracy at the validation
points does not guarantee predictive quality, this is clearly
a desirable feature of support functions. The availability of
experimental error ranges is helpful here, because more calcu-
lation data will fall inside the error range and therefore, the
interval including zero deviation will have increased support.
Unfortunately, error ranges are rare in CFD applications and
we do not rely on them here.

Another desirable support-function feature is compactness,
in the sense that all available evidence is located (focused) in-
side a single interval. In reality, Dev-values are scattered due
to errors and uncertainties in both calculated and experimen-
tal data. Compactness of a support function means that the
evidence supports one interval over all others. However, dif-
ferent uncertainty sources can favor different deviation ranges
and there is no reason to believe that some Dev-intervals will
be preferred over others or that focal intervals will be close
to each other. Notice, though, that the number of possible
outcomes from simulations is finite, implying that the range
of deviations is finite as well and so it is always possible to
extract at least a single finite interval, which includes all Dev
values.

One can, consequently, always construct a simple and com-
pact support function completely focused on this interval. The
price to pay for this is the discretization step, A Dev, which for
this support function can be large. The size of the discretiza-
tion step becomes important when support functions are going
to be used to improve results of simulations in a flow for which
experimental data are not available (as will be seen later). If
the influence of different uncertainty sources is not equal and
the Dev-values they produce are not very scattered, a com-
pact support function may be determined without increasing
ADev too much.

It will be required here that support functions have a single
maximum. While desirable, this feature may not be found in
real] cases and the restriction may be weakened in future work.

To summarize: ADev is chosen to be as small as possible
but still yield a support function which is compact and has
only one maximum. For the present example, ADev = 0.04
for support functions for the k — € model at both validation
points and for the k — w model at z/c = 0.75. For the k —w
model at z/c = 0.95, the only way to get a compact support
function is to set ADev be equal to the entire range of Dev-
values (ADev = 0.28).

Finally, two support functions for the k — € model at z/c =
0.75 and 0.95 and two support functions for the kK — w model
at the same points are constructed. They are shown in Fig. 1.
The reason for constructing two support functions for each
turbulence model is that below we will need support functions



for different turbulence models at different 2 /c-positions to be
able to use another tool of evidence theory — Dempster’s rule.

PREDICTION

Support functions corresponding to flow simulations with
different turbulence models, grids and codes can be used by
themselves to describe quantitatively the uncertainty intro-
duced in results of simulations by varying simulation tools.
Here, however, we will focus on exploring perspectives of the
support function application to improve the results of flow
prediction.

Prediction is defined in the AIAA Guide (1998) as the use
of a CFD model to foretell the state of a physical system
under conditions for which the CFD model has not been val:
idated. Usually, it means that experimental data for a flow
(or a part of the flow) are not available. There is as yet no
reliable procedure for choosing a model for such simulations or
for quantifying the uncertainty of the results. The approach
developed here allows one to fuse information from several
experts, such as different turbulence models (or grids, codes
etc.), instead of making a subjective choice between them. It
is expected that the overall credibility of predictions can be
increased in this way (Shafer, 1976; Hemsch, 2002).

In the application to the test case, the goal is to improve
the mean velocity prediction at a prediction point using i) in-
formation from the validation of the turbulence models at two
validation points (z/c = 0.75 and 0.95) and ii) results of cal-
culations by both models at the prediction point (z/c = 0.9).
Experimental data for the velocity profile U(y) are assumed
not to be known at the prediction point. The grid and the
code were the same in all simulations. This is not necessary,
though.

The procedure is the following. At each y, the space of
all possible velocity values (—oo, +00) is divided into intervals
AU to which are assigned the degrees of support obtained at
the validation points. A deviation of zero in a deviation sup-
port function is aligned with a calculated velocity value Uy, at
each y. Because the sign of the deviation is lost when the sup-
port functions are constructed, the deviation support function
is applied symmetrically on both sides of Urm. The resulting
support function is called the velocity support function. It is
emphasized that when sufficient experimental data is available
to allow one to preserve the deviation sign while constructing
a support function, both the deviation and velocity support
functions would coincide. Because for each turbulence model
there are two deviation support functions corresponding to
two different validation points, we obtain two different veloc-
ity support functions for each Up,.

As an example, a result of application of the support func-
tion obtained for the k — € model at the validation point
z/c = 0.75 to the velocity profile calculated with the same
model (black solid line) at z/c = 0.9 is shown in Fig. 2. Ar-
eas inside the band of colors have various non-zero degrees of
support; that is, the true velocity profile is expected to oc-
cur there. Different colors correspond to different degrees of
support.

Supported areas (or areas where the true velocity profile is
expected to be found) obtained for two turbulence models at
the prediction point, may be combined using Dempster’s rule
of evidence theory. There are two velocity support functions at
each y-position for each model; we overcome this ambiguity in
the following manner. To fuse results of simulations with two
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models, Dempster’s rule requires support functions for each
model to be from independent sources. Therefore, we apply
this rule twice. One solution (R1) is obtained by combining
the velocity support function for the k — € model obtained
using the deviation support function from x/c = 0.75 and the
velocity S-function for the k — w model obtained using the
deviation S-function from z/c = 0.95. This solution is shown
in Fig. 3a. Solution R2 uses the deviation support function for
the k — € model from z/c = 0.95 and the deviation S-function
for the k — w model from z/c = 0.75 (Fig. 3b). The bands of
colors in Fig. 3 show the areas of nonzero support. It is not
expected that the true velocity profile will be found outside
these bands.

Statistically, solutions R1 and R2 are equally likely. Then,
they are combined so as to average the information they carry.
Details on the averaging procedure can be found in Poroseva
et al. (2005). Here, we will only present the averaged solution
R12 (Fig. 4).

From the solution R12, one can select at each position y the
single interval with the maximum degree of support. Connect-
ing such intervals along the y-direction, the path of maximum
support can be extracted. This path is the most probable can-
didate to include the true velocity profile. This path should be
smooth, but quite possibly will not be. For instance, the path
obtained in this manner from the R12-solution is not smooth
(Fig. 5a). Also, the true velocity value can only be inside a
single velocity interval at each y, while the averaged solution
can have several extrema (Fig. 4). One of the reasons is again
the fact that the sign of deviation was lost during constructing
the support functions and therefore, resulting velocity support
functions are symmetrical. Both observations suggest apply-
ing additional smoothing procedure (Poroseva et al., 2005) to
the averaged solution prior extracting the path of maximum
support. The smoothed R12-solution (not shown here) was
obtained in two iterations. The path of maximum support
extracted from the smoothed R12-solution is given in Fig. 5b.

This is the final prediction of the approach considered in
this study. In the figure, the path is compared with the veloc-
ity profiles calculated by the k—w model (dashed line) and by
the k — € model (solid line). Also, experimental data (black
squares) are shown in the figure to assess the quality of the
prediction. It is seen that the k — w model result is far from
the experimental values, whereas the k — ¢ model is in very
good agreement with the experiment. Our approach combines
results of both models and yet, its prediction is also in very
good agreement with experiment. It shows a good potential
of the approach to ”weight” correctly differing experts’ opin-
ions. Also, in contrast to the k — & model result, our approach
produces not just a single line, the accuracy of which cannot
be estimated in the absence of experimental data, but zones
with well-defined degrees of support. This is an obvious ad-
vantage of the present method in comparison with a single
model prediction.

CONCLUSIONS

A new approach for quantifying uncertainty of results in
turbulence modeling and for using this information to improve
the quality of prediction in untested conditions is developed.
The approach is an alternative to a subjective choice of a
turbulence model to simulate flows in situations where ex-
perimental validation is not possible. The approach relies on
the mathematical tools of evidence theory, which appear to be



effective in this application. Results in the application of the
approach to a subsonic flow around the RAE 2822 airfoil are
encouraging, but this work should be considered as an initial
step in testing the approach. In the future, we are planning
to apply the approach to other cases of the RAE 2822 flow,
introduce a mathematical description of uncertainty originat-
ing from the distance between validation and prediction points
and consider the prediction of other flow parameters, as well
as predict a flow around an airfoil using results of validation
of turbulence models in flows around other types of airfoils.
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