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ABSTRACT

Turbulent fluctuations in MHD flows become anisotropic
under the action of a sufficiently strong magnetic field. We
consider the case of low magnetic Reynolds number and in-
vestigate this phenomenon in DNS and LES simulations of
forced flows in a periodic box with Rey up to 300 and different
strengths of imposed magnetic field. Our analysis shows that
both the componental (difference in amplitudes of velocity
components) and dimensional (difference in velocity gradients)
anisotropies are predominantly determined by the value of the
magnetic interaction parameter. Degree of flow anisotropy is
not significantly affected by the Reynolds number and details
of large-scale forcing. It is also virtually scale-independent in
a wide range of length scales.

INTRODUCTION

Magnetohydrodynamic (MHD) turbulent flows occur in nu-
merous astrophysical, geophysical, and technological applica-
tions. In the presence of a sufficiently strong magnetic field
the turbulent fluctuations become anisotropic, which implies
important consequences for the properties of the turbulence
and possibly requires modification of subgrid-scale closures.

A fundamentally important parameter for MHD flow is the
magnetic Reynolds number,

Rem = — (1)

n
where ) = (o)~ ! is the magnetic diffusivity, o and uo being
the electric conductivity of the liquid and magnetic perme-
ability of vacuum, and u, L are the typical velocity and length
scales of the flow. The value of the parameter determines the
degree to which the fluid flow perturbs the imposed magnetic
field. We focus on the case of low magnetic Reynolds number,
Rey, < 1. This case corresponds to a majority of techno-
logical processes. Such as continuous casting of steel and alu-
minum, growth of semiconductor crystals, and lithium cooling
blankets for fusion reactors. At low-Ren,, the so-called quasi-
static approximation can be applied (Moreau, 1990, Davidson,
2001). It can be assumed that the fluctuations of magnetic
field b associated with fluid motions adjust instantaneously
to the velocity fluctuations and that their amplitude is negli-
gible in comparison with the amplitude of imposed magnetic
field B. The rotational part of the Lorentz force reduces to

the linear functional of the velocity
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where p and u are the density and velocity of the fluid, A~!
is the reciprocal Laplace operator, and we assumed that the
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imposed magnetic field is uniform and purely vertical B =
Be..

The flow transformation under the impact of force (2) has
been actively studied in analytical (Moffatt, 1967, Sommeria
and Moreau, 1982, Davidson, 1997, Davidson, 1999), experi-
mental (Votsish and Kolesnikov, 1976, Alemany et al., 1979)
and numerical (Schumann, 1976, Zikanov and Thess, 1998,
2004) works. Far from the walls, the action of the mag-
netic field was identified as two-fold. First, the induced elec-
tric currents result in additional dissipation of kinetic energy,
the Joule (magnetic) dissipation. Second, the flow becomes
anisotropic, its structures being elongated along the magnetic
field lines.

The reason for the anisotropy becomes especially transpar-
ent if one assumes that the flow is unbounded and uniform
and uses the Fourier representation. The Fourier transform of
(2) is
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where k is the wavenumber vector and 6 is the angle between
k and B. The rate of Joule dissipation of a Fourier mode with

the wavenumber vector k is

(4)
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so the dissipation is anisotropic. It attains maximum for the
Fourier modes with B || k and zero for modes with B L k;, i.e.,
for modes independent of the z-coordinate. The dissipation
tends to eliminate the velocity gradients in the direction of B
and elongate the flow structures in this direction. The limiting
case is the two-dimensional state completely independent of
the z-coordinate. The Joule dissipation is equal to zero in this
state.

The situation looks more complicated if we take into ac-
count the non-linearity of the Navier-Stokes equations and the
resulting energy transfer between the modes and tendency to
restoration of isotropy. The ratio between the Lorentz force
and the non-linear term of the momentum equation is evalu-
ated by the magnetic interaction parameter (Stuart number)
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It is clear that the linearized picture of the flow development
discussed above is correct only in the limit of N > 1, when
the inertia force is negligible in comparison with the Lorentz
force. At finite N, one can expect a more complex scenario,
probably with scale-dependent anisotropy.

One has to mention the possible analogy with stratified,
rotating, or strained turbulence. The analogy suggests that



smaller scales are more isotropic than large scales. For exam-
ple, there is a general agreement that the Kolmogorov picture
of turbulent fluctuations becoming isotropic at small scales
independently of the details of large-scale forcing is still valid
for rotating flows since the Rossby number becomes negligible
at small scales. One example is the atmospheric turbulence,
completely isotropic at small-scale level.

There is no such general agreement regarding the scale de-
pendence of anisotropy in shear flows. On the one hand, there
are experimental confirmations of the Kolmogorov hypothe-
sis (Saddoughi and Veeravalli, 1994). On the other hand, a
growing number of works point out on persistent small scale
anisotropy of homogeneous shear flows (Pumir and Shraiman,
1995, Biferale et al., 2004).

For the low-Re,, MHD turbulence, the question of
anisotropy at different length scales has recently become par-
ticularly important in the view of attempts to apply tradi-
tional LES models (Knaepen and Moin, 2004). The compari-
son of the results obtained with dynamic Smagorisnky model
(Germano et al., 1991) with DNS results showed good ac-
curacy for decaying turbulence at moderate hydrodynamic
Reynolds number and N < 10. This result was not totally
convincing since, due to inherent limitations of DNS, the hy-
drodynamic Reynolds number was very moderate in the sim-
ulations. With added impact of strong Joule dissipation, the
decaying flows were only weakly turbulent in the interesting
case of strong magnetic field so the subgrid-scale (SGS) model
was responsible only for a small fraction of the energy dissi-
pation One can not guarantee that similarly good agreement
would be obtained at higher Re. Furthermore, the conclusion
of Knaepen and Moin (2004) may seem counter-intuitive since
one may expect LES models developed in assumption of local
isotropy to perform poorly in the case of a strongly anisotropic
flow.

MODEL AND NUMERICAL EXPERIMENTS

Governing equations and forcing

We solve the equations for a forced flow of a viscous, in-
compressible and electrically-conducting fluid in the presence
of a constant uniform vertical magnetic field B = Be,. The
quasi-static approximation is used. The Lorentz force term is
given by (2). After applying V X [V x ...] operation to elim-
inate pressure and taking Fourier transform, the governing
equations (in dimensional form) become
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where v is the kinematic viscosity and q is the Fourier trans-
form of the nonlinear term.

The flow is calculated within a rectangular box with peri-
odical boundary conditions. Since we expect axial anisotropy
of turbulent flow, and elongation of turbulent structures along
the z-axis, the elongated box of dimensions 27 X 27 X 47 is
used. The equation (6) is solved by the standard pseudo-
spectral technique with aliasing errors fully removed by the
method of phase shifting.
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In order to generate a statistically steady flow over a long
period of time, an artificial forcing is applied at large length
scales. The external force with Fourier transform

(k) = a(l)(k) ®)
appears in (6) for Fourier modes with 1.5 < k < 3.1. The time-
dependent coefficients « are determined at each time step so
that the net work by forcing is equal to the prescribed total
(viscous plus magnetic) rate of dissipation €p. After a short
initial development, the flow reaches an equilibrium state at
which the real total dissipation rate oscillates only slightly
around €g.

Two types of forcing mechanism are used. In one, the
forcing is deliberately isotropic in the sense that the work is
equally divided among the forced modes by chosing

— €0
- Nforced(o(k) : ‘A’*(k))

a(k) 9)

where Ngorceq is the number of forced modes and * stands
for complex conjugate. This always keeps the forced modes
three-dimensional even though they can acquire significant
anisotropy due to the action of the magnetic field.

We realize that there is always a question of the impact of
artificial three-dimensional forcing or, in general, behaviour of
large-scale energetic modes on development of anisotropy at
smaller unforced scales. To investigate the issue we perform an
additional series of simulations with a purely two-dimensional
forcing (referred as ‘quasi 2D’ in the discussion below). The
same mechanism (8,9) is used but only the modes with k, = 0
are forced in (8). This forcing imposes its own anisotropy at
large scales.

Large-eddy simulations at higher Reynolds numbers

The method of direct numerical simulations can only be
applied to flows with low to moderate Reynolds numbers. This
presents an inevitable problem of insufficient scale separation
between the forced and viscous dissipation subranges. One
can not discern the inertial subrange of the energy spectrum.

In order to investigate the anisotropy of MHD turbu-
lence within the inertial subrange and to reveal the effect of
Reynolds number, numerical experiments at higher Re are
carried out using the LES approach based on the standard
dynamic Smagorinsky model (Germano et al., 1991, Lilly,
1992). In the model, the subgrid-scale force fs4s is added
to the right-hand-side of (6) in order to account for the effect
of unresolved small-scale turbulent fluctuations. The force is
expressed through the turbulent SGS stresses as fsgsj = 0;Tij,
deviatoric part of which is modeled using the eddy viscosity
formula

Tij = 8ij Tk = —20sA% S| Sy (10)

where S;; = (1/2)(0;u;j + dju;) is the resolved rate of strain
tensor, A = Y3/A;AyA; is the filter width based on the

grid spacing in each direction, and |S| = 4/25;;Sj;. The
Smagorinsky constant Cs is evaluated at each time step based
on the assumption that (10) is universally valid at all inertial
range length scales, which leads to

(M5 Ljs)

Cs =
(M5 M)

(11)



Table 1: Summary of the numerical experiments

Run Ng X Ny X Nz v-10%  Rey(to) line

(DNS) 256 X 256 x 512 2.2 94 _—
(test LES) 32 x 32 x 64 2.2 91 - ==

(LESl) 64 x 64 x 128 2.2 93 -———-

(LES2) 64 x 64 x 128 1.7 100

(LES3) 64 x 64 x 128 1 140 ——

(LES4) 64 x 64 x 128 0.75 170

(LES5) 64 X 64 x 128 0.5 200

(LES6) 64 x 64 x 128 0.25 290

(LEST) 128 x 128 x 256 0.25 290 — =
(LES-2D) 64 X 64 x 128 1 150 — =
where (...) stands for spatial averaging, and tensors M;; and

L;; are obtained as

Lij = iy — guy, My = A?|$| 855 — A%|S]Sy;  (12)

after application of the second sharp Fourier cut-off filtering
T with width A = Y3/A; A A, and Ay = 244, Ay = 27,
A, =2A..

Although the applicability of traditional LES models to
MHD turbulence is not obvious, we can justify the use of such
a model in our study as follows. First, the Reynolds num-
ber is not very high in our simulations, so a larger fraction
of viscous dissipation occurs in the resolved scales and the
effect of SGS-closure should not be significant. Second, the
a-posteriori verification by Knaepen and Moin (2004) shows
that the dynamic model can be quite accurate (at least, as ac-
curate as for ordinary non-magnetic flows) in the simulations
of homogeneous MHD turbulence at moderate Re. At last,
as we discuss in the concluding section of this paper, our re-
sults indicate that the dynamic model, due to its self-adjusting
mechanism relying on the scale similarity within the inertial
range, may be capable of adapting to anisotropic character of
MHD turbulence.

Numerical experiments

Parameters of performed numerical experiments are listed
in table 1. Each experiment is staged as follows (see figure 1 for
an illustration). First, a developed turbulent flow is calculated
starting with a random and isotropic velocity field and contin-
uing simulations without magnetic field for a sufficiently long
period. The completeness of the transitional period is judged
by stabilization of the values of the total kinetic energy, vis-
cous and magnetic dissipation rates defined as

B="Bk). Bk = % (v(k) -
K

e=vY KE(K) _ 5% Z kz E(k)
K

At the end of this period, the DNS flow has the inte-
gral length scale L(tp) = 0.73, which we evaluate as L =
7r/(2u2)f000 k~'E(k)dk, and root-mean-square velocity of
turbulent fluctuations u(to) = 1/2/3E(to) = 0.91. Similar
values are obtained in the LES experiments (see table 1).

v (k)) (13)

(14)
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a) DNS, test LES, LES1 b) LES3, LES-2D
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Figure 1: Evolution of total energy. (a) DNS (——), test LES
(=== ) and LES1 (- -—--). (b) LES3 (- — -) and LES-2D
(== —). For LES simulations, only the resolved part
of energy is depicted. Time unit is approximately one eddy
turnover time 7' = L/u calculated for isotropic flow at ¢ = to.

The flow field computed at the moment tp is used as an
initial condition for three simulations with different strength
of the magnetic field. For one run, the magnetic field is absent.
For the other two runs corresponding to the cases of moderate
and strong magnetic field, the values are chosen so that the
magnetic interaction parameter (5) at this moment is No =
N(to) ~ 1 and Ny ~ 5, respectively.

The rate of total dissipation is ¢p = 0.5 in all experiments,
i.e., the rate of energy injection by forcing is the same for all
runs. As illustrated in table 1, the difference is in the values
of kinematic viscosity coefficient v and corresponding Taylor
microscale Reynolds numbers

1/2
A 150u2
Rey = 22, ,\=<5”“)
v €0

shown for non-magnetic flows at ¢t = ¢g.

The direct numerical simulations are performed with nu-
merical resolution 256 x 256 x 512 and Rej(to) ~ 94. For
LES, we start with the ‘test run’ carried out at the same pa-
rameters as DNS but using only 32 X 32 X 64 Fourier modes.
The purpose of this run is to verify the accuracy of the model
through direct comparison with DNS results. Further verifi-
cation of the convergence of LES results is provided by LES
performed at the same flow parameters as DNS and test LES
but with resolution 64 x 64 x 128 modes (LES1). A series of
LES calculations (LES2-LES6) is performed with gradually
decreasing v in order to reveal the effect of Reynolds number.
To verify the accuracy of the LES run corresponding to the
largest Reynolds number, Re) ~ 290, as well as to examine
convergence of LES simulations, an additional run (LEST7) is
performed at the same parameters as LES6 but with resolu-
tion of 128 x 128 X 256 modes. Finally, to investigate the
influence of the large-scale forcing on the flow characteristics,
the run (LES-2D) with quasi-2D forcing and all other para-
meters identical to (LES3) is performed.

(15)

Flow evolution

The evolution of total energy is shown in figure 1. Time is
measured in dimensional units in all figures. Using the values
of L and u in developed isotropic flow at ¢t = tp, we can evalu-
ate the typical eddy turnover time as T'(to) =~ 1. It can be seen
that the periods of initial flow development and adjustment
after the introduction of magnetic field last several turnover
times, after which the flow becomes statistically steady. In the



a) LES3, LES-2D

b) LES1-LES6
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Figure 2: Spectra of kinetic energy. (a) DNS (——), test LES
(== — ) and LES1 (- — — -). (b) LES1-LES6

flows with magnetic field, the Joule dissipation is responsible
for a major part of the total dissipation rate.

The energy curves for DNS, test LES (figure 1a) and LES1-
LES6 are almost identical, which is expectable since this global
quantity is dominated by large-scale modes of the flow gov-
erned by identical forcing in these experiments. On the con-
trary, the behaviour of energy in LES-2D experiment with
two-dimensional forcing (figure 1b) is completely different. It
is obviously dominated by slow evolution of large-scale quasi-
two-dimensional structures. Similar results were obtained for
the time evolution of rates of viscous and magnetic dissipation
(not shown here).

The spectra of energy and viscous and magnetic dissipa-
tion rates were obtained for the equilibrium stages of each
experiment. Several velocity fields separated by, at least, one
turn-over time were used for averaging. One can see in fig-
ure 2a that the spectra obtained in DNS, test LES and LES1
are very close. This can be considered as an indication of the
accuracy of the dynamic LES model.

The spectra for non-magnetic runs at higher Reynolds num-
ber (see figure 2b) show clear scale separation with about a
decade of k—5/3 scaling. The high-k ends are affected by the
SGS modeling, especially in the runs with largest Re), which
have typical upward facing tails. In the presence of the mag-
netic field, the energy spectra become steeper approaching k=3
slope at Ng = 5.

The internal structure of the flow is illustrated in figure 3,
where we plot snapshots of modified pressure field 117 made
in developed flows at different magnetic fields and different
forcing. The pressure field is calculated using the Poisson
equation,

V21 = pV - [v X W] (16)

Here w = V X v is vorticity, and we assume p = 1.

Figures 3a,b demonstrate that there are no noticeable dif-
ferences between the visual structures of flows obtained in
DNS and LES. The tendency to developing anisotropy under
the action of imposed magnetic field is clearly seen, although
even at Nog = 5 the flow is far from approaching purely two-
dimensional form. On the contrary, the snapshots of modified
pressure in the flows with quasi 2D forcing in figure 3¢ show
almost 2D structures for the run with strong magnetic field
and high degree of anisotropy for moderate and non-magnetic
runs. This clearly demonstrates the dominating role played
by the largest scale modes in determining the visible patterns
often demonstrated in the literature.

ANISOTROPY

Generally, one has to distinguish between two types of
anisotropy, componental and dimensional. = Componental
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(a)

Figure 3: Modified pressure fields in developed flows.
DNS, (b) test LES, (¢) LES-2D

anisotropy is understood as anisotropy of the Reynolds stress
tensor or, in other words, inequality between the components
of the velocity field (Kassinos et al., 2001). Dimensional
anisotropy characterizes the difference in derivatives of a func-
tion taken along different directions (anisotropy of gradients).
The Joule dissipation directly affects only the velocity gradi-
ents along the magnetic field lines, i.e., dimensional anisotropy.
The componental anisotropy is a secondary effect, whose exis-
tence, strength, and relation to the intensity of the magnetic
field are far from being obvious.

Anisotropy at different length scales

We now approach the main question of our paper, that of
dependence of the anisotropy properties of MHD turbulence
on the length scale. A closely related question stems from
the fact that, as demonstrated in our simulations, the integral
anisotropy characteristics are affected by details of large-scale
forcing, i.e., by flow-specific behaviour of energy containing
modes. It is not clear how strong is this effect for small-scale
turbulent fluctuations and whether there is a range of scales,
where anisotropy possesses ‘universal’ properties unaltered by
the large-scale dynamics.

We start with the dimensional anisotropy. The first indica-
tions that it can be scale-independent were obtained in DNS
of Zikanov and Thess (1998). It was found, that the steepen-



a) DNS, test LES, LES1 b) LES1-LES6
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Figure 4: Spectra of anisotropy coefficient (17). (a) DNS (—

—), test LES (— - — - — ) and LES1 (- — - -). (b) LESI-LES6.
(¢) LES6 ( ) and LES7 (—--—-- —). (d) LES3 (- - -)
and LES-2D (— - — - -)

ing of the energy spectrum with growing N is closely followed
by the steepening of the Joule dissipation spectrum. This be-
haviour is confirmed in our simulations for larger Reynolds
numbers and different forcing. The ratio

_3roulk)  3) Ka.ar _ 3Ds3(k)
k) = = E(R) Zkﬁ o 2E (k) (17)

can be considered as a measure of dimensional anisotropy at
the wavelength k. In (17), the sums are over all wavenumber
vectors in the shell k —1/2 < |k| < k + 1/2 and D33 is the
component of the dimensionality tensor considered by Kassi-
nos et al. (2001). The scaling factor is chosen so as to provide
g = 1 in an isotropic flow. In a purely two-dimensional flow
with zero magnetic dissipation, g(k) = 0.

One can see that there is a good agreement between the
results of DNS and test LES in figure 4a. Together with similar
agreement observed for componental anisotropy (see figure 5a)
this serves as another confirmation of accuracy of the LES
model.

Important conclusions can be deduced from figure 4. Most
importantly, in all experiments, there is a significant range
of length scales, where the dimensional anisotropy coefficient
varies only slightly with k. The range starts almost imme-
diately outside the forced region and extends to the smallest
resolved length scales. This behaviour was observed in all our
numerical experiments including DNS and LES with three-
dimensional and two-dimensional forcing. In some LES runs,
g(k) seems to vary faster with k at small length scales when
k approaches the cut-off. This is an artefact caused by im-
perfection of SGS model. We repeated the LES6 run with
four times smaller cut-off scale (LES7). As one can see in
figure 4c, shifting the LES filter to smaller scales results in
corresponding extension of the range where the anisotropy is
scale-independent.

It can also be seen that the anisotropy in this range is al-
most solely determined by the strength of the magnetic field.
Some effect of the Reynolds number is present, with g(k) hav-
ing tendency to increase slightly with Re. This effect, however,

a) DNS, test LES, LES1

b) LES1-LES6

(E+EM(2E )
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Figure 5: Spectra of the ratio (E1 + E2)/2FE3, componental

anisotropy coefficient. (a) DNS (——), test LES (— - —- — )
and LESI (- — —-). (b) LESI-LES6. (c) LES6 ( ) and
LEST7 (—--—-- —). (d) LES3 (- —-) and LES-2D (— - —- - -)

is much weaker than the effect of the magnetic interaction pa-
rameter. Another interesting fact is fast disappearance of the
sensitivity to forcing seen in figure 4d. The 2D forcing ex-
plicitly introduces the dimensional anisotropy into the large
scales. Within the forced region, g(k) for LES-2D run is
about two times smaller than for the corresponding 3D forc-
ing run LES3. When, however, k leaves the region, the two
curves converge quickly and become close for all three values
of Np. The visually different flows obtained with isotropic
and two-dimensional forcing (cf., figures 3a,b and 3c) possess,
at the same strength of the magnetic field, similar degrees of
anisotropy of small-scale turbulent fluctuations.

To analyze the componental anisotropy we calculate the
ratio of typical parallel and perpendicular velocity components
at different length scales. Figure 5 shows

Ei(k) + B2 (k)

c(k) = AT (18)
where
EM=3 Y 0-u), =123
k—1/2<|K|<k+1/2
(19)

Scale-dependence of componental anisotropy can be de-
scribed in terms similar to those used above for dimensional
anisotropy. We see in figure 5 that, outside of the forced region
of the spectrum, the coefficient c(k) varies only slightly with &
for all values of N. As in the case of dimensional anisotropy,
the scale-independence was consistently observed in all our
experiments. Comparison between DNS curves in figure 5a
and curves for LES6 and LES7 in figure 5¢c shows that the
extension of the scale range of the flow leads to corresponding
extension of the subrange, where the anisotropy is constant.

As shown in figure 5b, the Reynolds number does not se-
riously affect the componental anisotropy. It is interesting to
see in figure 5d that the anisotropy of energy containing scales
does not cascade down the spectrum or otherwise noticeably
affects the smaller scales. Even though there is some differ-
ence between LES and LES-2D curves in figure 5d, especially
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at No =0 and Ng = 1, the strength of the magnetic field still
remains the dominant factor determining the value of c¢(k) at
non-forced scales.

CONCLUSIONS

e In the presence of a sufficiently strong magnetic field, the
flow develops dimensional and componental anisotropies

e Both types of anisotropy only slightly depend on the
length-scale outside the range of large-scale energy con-
taining modes, where the forcing is performed

e Our simulations do not show any variations in the degree
of flow anisotropy at length scales approaching the small-
est resolved scales of the flow. We can not, however, ex-
clude the possibility that different behaviour can be ob-
served at much higher Reynolds numbers. On the other
hand, the extent of the range of constant anisotropy was
found to be quite significant in our simulations (about 2
orders of magnitude). The scale-invariance seems to be
a persistent feature of low-Re,, MHD turbulence

e Both types of anisotropy are only slightly affected by the
Reynolds number

e Dimensional and componental anisotropies caused by
forcing are essential only at the length scales close to
the forced scales. At smaller scales, the effect of the
large-scale dynamics on turbulent fluctuations quickly
subsides.

To summarize, our simulations clearly demonstrate that
the anisotropy of low-Rey,, MHD turbulence at length scales
outside the energy-containing range is a robust function of
the magnetic interaction parameter unaffected by the scale,
hydrodynamic Reynolds number, and details of the large-scale
dynamics.

The work also confirms that dynamic Smagorinsky eddy-
viscosity model provides a good approach to simulations of
anisotropic MHD turbulent flows. Indeed, a-posteriori verifi-
cation of the model using comparison between DNS and test
LES runs has consistently shown a good agreement for flow
characteristics such as the spectra of energy, viscous and mag-
netic dissipation, and the anisotropy of resolved scales.

In fact, in view of our conclusion about scale-invariance of
anisotropy, good performance of the dynamic model is not at
all surprising. In the model, we determine the coefficient CS
based on the assumption that (10) holds universally within a
certain scale range, so the same coefficient Cs can be applied
at grid and test filter widths. If the anisotropy is scale-
independent, the MHD correction to (10), whatever it may
be, is the same for both filters so the adjustment mechanism
should work with the same accuracy as in the non-magnetic
isotropic case.

An extended version of this paper is currently being pre-
pared for submission to the Journal of Fluid Mechanics. Part
of this work was performed during the 2004 Summer Program
at the Center for Turbulence Research with financial support
from Stanford University and NASA Ames Research Center.
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