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ABSTRACT

Simulations of single and multiple spherical particles
settling under gravity in the presence of a vertical wall are
performed. In this study, the Reynolds number based on a
characteristic velocity set to unity and the diameter of the
sphere is varied in the range from 1 to 1000 and the density
ratio in the range from 1.5 to 8. Interaction between
particles as well as with the wall is investigated. The
particles are modeled by using the Volume of Solid (VOS)
approach, a method based on the Volume of Fluid (VOF)
approach.

The simulations showed that the motion of both single and
dual spheres falling side by side is affected by the wall.
Also, a dominant frequency for the oscillatory movements
perpendicular to the wall was detected.

INTRODUCTION

For a wide range of applications, both industrial and
environmental, it is of interest to be able to accurately
predict the transport of particles to improve the
understanding of particle dynamics. In order to achieve
this, it is therefore important to have good models for the
transport of the particulate phase, including the interaction
between particles as well as with solid boundaries.

The stability of the flow past spheres as well as the wake
formation behind spheres has thoroughly been investigated
in previous studies, mostly for single sphere cases. For
multiple sphere arrangements; side-by-side and tandem
arrangements have been the most frequently investigated
formations (Kim et. al (1993), Liang et. al (1996), Olsson
& Fuchs (1998), Chen & Wu (2000), Zhu et. al (2001),
Tsuji et. al (2003)). These studies all conclude that the
distance between spheres plays an important roll on the
drag force for spheres held fixed in a uniform flow. In
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general, when two identical spheres are held fixed in a side-
by-side arrangement, the drag force increases with a
decreasing separation distance between the spheres and
with increasing Reynolds number. Also, at very small
separation distances, with the spheres almost in contact, the
spheres can from a flow point of view be considered as a
single body (Olsson & Fuchs (1998), Folkersma et al.
(2000)). For a tandem arrangement, small separation
distances leads to decreased drag forces. As the spheres are
moved apart, the drag force gradually levels off to the value
of an isolated spherical particle (Liang et al. (1996), Olsson
& Fuchs (1998)).

The two parameters that experimentally have been
observed to influence the dynamics of the motion of a solid
sphere falling under gravity are the Reynolds number and
the particle density. Solid spheres settling due to gravity
were studied by Mordant & Pinton (2000). Their results
showed that at Reynolds numbers close to the onset of
vortex shedding, approximately 400, the particles with
lower density showed velocity oscillations, implying that
the velocity is no longer a monotonous function of time.

In studies carried out by Jayaweera & Manson (1964) and
Wu & Manasseh (1998), the behaviour of dual particles
falling under gravity was experimentally investigated. In
both studies it was concluded that dual particles settle faster
than a single particle for lower Reynolds numbers.
However, Wu & Manasseh (1998) reported that due to
particle separation, this is no longer valid as the Reynolds
number is increased. When two spherical particles are
released in a side-by-side arrangement, each sphere will
rotate inwards and the particles will separate until a final
separation distance is reached. The rate of rotation is
amplified with increasing Reynolds number, enhancing the
separation distance, which in turn causes the rotational rate
to decrease. Also, as the fluid-particle density ratio is
increased, so is the particle separation distance. However, it
should be mentioned that for Re < 0.1, no particle



separation has been reported to occur. For a tandem particle
case with two equally sized spheres, the rear particle is
accelerated into the wake of the leading particle, rotates
around and places itself in the same horizontal plane as the
leading particle and, finally, the spheres separates from
each other in a similar way as in the side-by-side
arrangement. Considering a case with a smaller trailing
particle, the sphere will roll around the leading larger
sphere instead of rotating around it, observed by Jayaweera
& Manson (1964) and Zhao & Davis (2001).

The purpose of this work is to study single and dual
spherical particles settling under gravity. The focus is on
investigating how the motion of falling spheres is affected
by the presence of a vertical plane wall. Validation is
performed for Stokes flow around a sphere. Both single and
a dual sphere formation are considered; spheres falling side
by side. These results include cases with different density
ratios and Reynolds numbers, and, for the dual-sphere
cases, the space between the two particles is taken as a free
parameter.

NUMERICAL METHOD

The governing equations of mass and momentum for an
unsteady, viscous, incompressible Newtonian fluid may be
expressed as;
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Equations (1) and (2) are discretized on a Cartesian
staggered grid using second order central differences for all
spatial derivatives except for the convective terms where a
first order upwind scheme is used. A defect correction is
used to improve the accuracy of the spatial discretizations
of the momentum equations without loss of numerical
stability to third order for convective terms and to forth
order to the remaining terms. A multi-grid method is used
to iteratively solve the system of equations in each time
step to improve the convergence rate of the solution.

Volume of Solid (VOS)

The Volume of Solid (VOS) method (Lorstad & Fuchs,
2001) is used to represent the spherical particles. VOS is
based on the Volume of Fluid (VOF) method. However, in
VOS, the "second fluid" is a solid body that is assumed to
have an infinite viscosity. With the shear stresses being
nearly constant due to the fact that viscous forces at
dominating close to the surface and the assumed infinite
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viscosity of the solid phase, the averaged viscosity can be
represented by the following equation;

p=pu,/o 3)

o. being the phase variable representing the amount of fluid
in each cell, 0 <o < 1. Since there is no flow inside the
solid body (a = 0), cells containing the solid phase will be
blocked and no computations will be carried out for these
cells. With a constant density, equation (3) can be written
as;

v=v,/a @

Using the relation above, the viscosity ratio term, dv can be
defined as;
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It should be noted that in most computational cells, the
viscosity ratio will have the value of unity. With the
definition of the viscosity ratio, dv, as stated in equation
(5), the continuity and momentum equations governing an
isothermal, incompressible flow of a Newtonian fluid are as
follows;

ou,

2 7 ©)
Oup ., O __Op 1 0 [ 0u gy
a7 ox, ox;, Re ox, ox,

By integrating the steady Navier-Stokes equations over a
control volume and transforming this volume integral into a
surface integral by using Gauss theorem, the following
equation is obtained;
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where I' is the surface of a control volume and n is the unit
vector normal to the surface. By using equation (8), the
forces acting on an object are computed. This
hydrodynamic force, F;, is then used together with the



gravitational force, G, to solve for the particle velocity
using equation (9).

FoG=m U ©)
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SET-UP

The dimensions of the computational domain are 16 x 16
x 32 D with a wall present normal to the x-direction, using
a coordinate system as shown in Figure 1. The spheres have
a diameter D and a grid resolution of h = D / 16 is used by
locally refining a Cartesian grid. The amount of node
points is approximately 1000000. A temporal resolution
with a CFL number of 0.2 is used for all cases. On all
domain boundaries, no slip condition will be applied.

Simulations for a single sphere are performed for different
density ratios, viscosities of the fluid and initial position of
the sphere. The density ration used are 1.43, 1.5, 2.6, 5, 6.5
and 8. The fluid viscosity is set using a Reynolds number
based on the sphere diameter and characteristic velocity set
to unity. This Reynolds number is set to 1, 10, 100, 500 and
1000 in the simulations. The sphere is released at four
different wall normal distances: 1.5, 3, 4.5 and 6 D.

In dual sphere side-by-side arrangement, one sphere is
placed 3 D from the wall with the distance to the centre of
the second sphere varying between 1.5, 3, 4.5 and 6 D.

RESULTS AND DISCUSSION

The main focus has been to study particle-wall interaction
as well as particle-particle interactions. For all simulations,
a grid resolution of 16 cells per sphere diameter was used.
The computation of Stokes flow by VOS shows good
agreement with the analytical solution and simulations
performed by Revstedt (2004).

4.1 Single Sphere

The main forces differentiating a particle falling close to a
wall compared to in the middle of a domain are the
Saffman force and the Magnus effect. The former are
forces due to velocity gradients induced by the wall forcing
the sphere to move upward and the latter is due to rotation
forcing the particle to move towards the wall. Both these
effects induce a lift force. Figure 3 shows the velocity
vector field, displaying the non-stationary wake behind the
sphere, as a sphere with the density ratio 6.5 is falling three
diameters from the wall at Re = 100.

Figures 4 — 6 show the wall normal position of the sphere
as a function of time varying the density ratio (Figure 4),
the initial position (Figure 5 and 6). For a highly viscous
fluid the sphere will tend monotonically towards the wall,
but as the Reynolds number is increased the sphere will
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start to oscillate. The same effect in seen in Figure 4. a low
density ratio leads to a low local Reynolds number

(ReL =U (t)D/ V) and a stable path of the sphere.

However, as the density ratio is increased so is Re; and one
again observes an oscillatory motion. The effect of the
initial distance to the walls is clearly seen in Figure 5 and 6.
For low Re (Re = 10), the effect of the wall is decreased
with increasing initial wall distance. For Re = 500, one sees
no real difference in the oscillation amplitude caused by the
presence of the wall. Note though, that at x, = 1.5 D, the
sphere is initially repelled by the wall while in the other
cases the wall attracts the sphere, hence the phase shift in
oscillations seen in Figure 6.

Figures 7 and 8 show the solid particle path projected on
the x- y plane for density ratio of 6.5 at 3 diameters from
the wall for Reynolds numbers 10 and 100, respectively. In
the low Reynolds number case the sphere moves in a spiral
path as it falls, whereas for Re = 100, the movement is no
longer symmetric and the oscillation amplitude is less
direction dependent.

Figure 9 depicts the terminal velocity for a Reynolds
number of 10 for all density ratios considered. As the
Reynolds number is increased and the wake looses its
symmetry and becomes unsteady, the terminal velocity is
oscillating and the sphere is accelerating faster, this was
also observed by Mordant & Pinton (2000). However, the
terminal velocity does not appear to be influenced by the
distance to the wall.

The oscillations frequency is similar for both velocity
components perpendicular to the main direction of motion,
and does not seem to be affected by density ratios or
Reynolds number. It should be mentioned that for low-
density and low Reynolds numbers the velocity
components perpendicular to the main flow direction are
insignificant and it is therefore difficult to detect any
oscillations in these velocity components.

Figure 10 shows the Strouhal number based on the
terminal velocity versus the density ratio for Reynolds
numbers 10, 100 and 500 for a sphere initially placed three
diameters from the wall. For low-density ratios there is a
stronger influence on the Strouhal number. The lift force
shows similar behavior as the velocity displayed.
Independently of distance to the wall, density and the
Reynolds number, there is a dominant frequency for the
variations of lift force. However, it should be mentioned
that the amplitudes of the lift is on the other hand
depending on the Reynolds number, density ratio and
distance to wall. Close to the wall, an increase in Reynolds
number will increase the lift force. Increasing the initial
wall distance or decreasing the density ratio results in a
decrease of the amplitude of the lift.

4.2 Dual Spheres

Dual spheres falling side by side where the first sphere is
placed three diameters from the wall and the second sphere
placed 1.5 — 6 diameters from the first sphere was
investigated for density ratios 1.5 and 5 at a Reynolds
number of 10. Figure 11 displays the velocity field for two
spheres with a density ratio of 5 placed 1.5 diameters apart.



For this case, the spheres fall at the same speed, and due to
rotation, the spheres first repel each other increasing the
separation distance, and then changes direction and move
back towards each other again. This periodic motion
continues while the spheres settle with an increasing mean
separation distance. As the distance between the spheres is
increased, the level of interaction between the two particles
decreases.

Considering spheres with a density ratio of 5 and placed
1.5 diameters apart, one can observe that dual spheres
settling side by side, close to a wall, fall at a lower velocity
compared to a single sphere placed at the same distance
from the wall. However, Jayaweera et a/ (1963) and Wu &
Manasseh (1998) observed experimentally that decreasing
the initial distance between the spheres enhanced the
falling velocity compared to a single sphere case. This
implies that the wall has a strong decelerating effect. This
is probably due to a stronger repelling motion in the
presence of the wall leading to a larger sphere distance than
in the non-wall case, reported by Wu & Manasseh (1998)

The effect of the wall is also visible when studying the
motion perpendicular to the wall, Figure 12. The particle
closest to the wall seems to be moved out from the wall for
a higher density ratio and dragged closer to the wall if the
density ratio is low. And, similar to the single sphere case,
the motion for the higher density particles is oscillatory.
However, the two particles move in opposite direction in
relation to each other due to an inward rotation, also
detected by Jayaweera et. al (1963) and Wu & Manasseh
(1998). Considering Figure 13, the movement of dual
particles differs significantly from that of a single falling
particle. Compared to the dual spheres, a single sphere
deviates less from the initial position in the wall normal
direction, as is expected.

In the case of a single sphere, the dominant frequency of
the motion in the x — and y-directions was detected.
Similarly, a frequency was found for the dual sphere cases
at higher density ratios. The corresponding Strouhal
number is 0.091 for both particles when placed 1.5
diameters apart, and 0.085 when increasing the distance
between the particles for a density ratio of 5 and Reynolds
number of 10. This can be compared to a Strouhal number
of 0.087 obtained for a single particle placed 3 diameters
from the wall with the same density ratio and Reynolds
number.

CONCLUSIONS

The flow around single and dual spheres falling side by
side due to gravity close to a wall have been considered.
The presence of the wall will affect the path of the sphere,
either attracting or repelling it. The results also showed that
the path for a single sphere is highly dependent on the
density ratio, Reynolds number and the distance to the wall.
In the case of two spherical particles falling side-by-side
close to the wall, the effects of interaction between the
spheres is stronger than the influence from the wall.
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Figure 1. Computational domain

Figure 3. Velocity vector field
for a sphere with density ratio of
6.4 at Re = 100 initially placed 3
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Figure 11. Velocity vector field for dual
spheres falling side by side with density

apart.
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Figure 2. Computation of Stokes flow by VOS compared to
the analytical solution and simulations performed by
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Figure 5. Position in x-direction for different initial
positions for a single sphere with density ratio of 8 at Re =
10. The x-axis shows the relative position around the initial
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Figure 6. Position in x-direction for different initial
positions for a single sphere with density ratio of 8 at Re =
500. The x-axis shows the relative position around the

initial position.
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Figure 4. Position in x-direction for different density ratios
for a single sphere at Re = 100, wall at — 3D
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Figure 7. The path of a solid particle projected on the x- y
plane for density ratio of 6.5 at 3 diameters from the wall

for Reynolds numbers 10.
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Figure 9. The terminal velocity for a Reynolds number of

10 for all density ratios
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Figure 12. Position of dual spheres falling side by side for
an initial separation distance of 1.5 D at Re = 10. On the
L.H.S., the position of the second sphere is projected to the
path of the first sphere. Wall is at located at “0”.
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Figure 8. The path of a solid particle projected on the x- y
plane for density ratio of 6.5 at 3 diameters from the wall
for Reynolds numbers 100.
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Figure 10. The Strouhal number based on the terminal
velocity versus the density ratio for Reynolds numbers 10,
100 and 500 for a sphere initially placed 3 diameters from

the wall
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Figure 13. Position of dual spheres falling side by side for
an initial separation distance of 1.5 D at Re = 10. On the
L.H.S., the position of the second sphere is projected to the
path of the first sphere. Wall is at located at “0”. Also, the
path of a single sphere placed at 3 D and 4.5 D from the
wall are displayed.





