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ABSTRACT

In the present study, we develop a method for controlling
absolute instability based on variational calculus. In parallel
wake exhibiting absolutely unstable nature, it is shown that
the positive and negative velocity perturbations in basic flow,
respectively, along the centerline and the separating shear lay-
ers suppress absolute instability. Using this method, we show
that a secondary cylinder located at appropriate positions in
the wake behind a main circular cylinder effectively suppress
absolute instability in the near wake. It is also shown that the
most effective position of the secondary cylinder suppressing
absolute instability is along the separating shear layer.

INTRODUCTION

Understanding and controlling vortex shedding is very im-
portant in engineering applications because vortex shedding
has significant effects in aerodynamic characteristics around
vehicles and structures. Since Roshko (1955) has studied the
periodic features of vortex shedding, many efforts have been
devoted to understand and control vortex shedding. There
have been many passive and active open-loop methods for the
control of vortex shedding. Examples are base bleed (Wood,
1964), splitter plate (Roshko, 1955; Kwon and Choi, 1996),
secondary cylinder (Strykowski and Sreenivasan, 1990), pe-
riodic rotation of cylinder (Tokumaru and Dimotakis, 1991;
Choi et al., 2002), transverse oscillation of cylinder (Schumm
et al., 1994), distributed forcing (i.e. active forcing whose
magnitude varies in the spanwise direction.) (Kim and Choi,
2005), wake disrupter (small passive device disturbing wake in
the spanwise direction) (Park et al., 2005) and so on.

Recently, a few active closed-loop ways of controlling vor-
tex shedding have been investigated in the cylinder wake.
Roussopoulos (1993) conducted proportional feedback control
using a speaker based on the velocity phase information. A
similar approach was also conducted by Park et al. (1994)
using a pair of blowing/suction slots on the cylinder. How-
ever, those control strategies based on proportional feedback
law could not achieve complete suppression of vortex shed-
ding at relatively high Reynolds number since the control law
destabilizes secondary linear global mode. A more system-
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atic control method based on suboptimal feedback law (i.e.
optimal control with infinitesimal time horizon objective func-
tion) was conducted by Min and Choi (1999). In this study,
vortex shedding was completely suppressed up to Re = 160
by active forcing on the entire surface of the cylinder. More
recently, a linear robust control strategy (i.e. optimal and ro-
bust control theory based on linearized equation) was applied
to Ginzburg-Landau model which has similar bifurcation sce-
nario to circular cylinder wake using a pair of actuator and
sensor (Lauga and Bewley, 2004). They achieved complete
suppression of self-sustained oscillation at low Reynolds num-
bers but the practical decay of stabilizability was discovered
as the Reynolds number increases (Lauga and Bewley, 2003).

In general, closed-loop controls are more efficient and ef-
fective than open-loop controls, but they are quite difficult to
implement in real applications. Therefore, in the final stage of
controller development, one may require an open-loop control
device rather than a closed-loop control device. The purpose
of this paper is to develop a consistent open-loop control strat-
egy in two-dimensional wake at low Reynolds number.

The dynamic behavior of open shear flow including wake
has been commonly understood in the context of linear
and nonlinear stability theory (Huerre and Monkewitz, 1990;
Chomaz, 2005). In open shear flow, the Galilean invariance is
broken by imposing boundary conditions (i.e. no-slip condi-
tion at solid wall). Therefore, one has to take account of the
propagation of instability wave as well as its growth. In such a
viewpoint the concept of absolute and convective instability is
naturally introduced and their rigorous definition is originated
from plasma physics (Briggs, 1964). If wave packet of infinites-
imal amplitude spreads upstream and downstream and grows
in time, the basic state is called linearly absolutely unstable.
On the other hand, if wave pocket with the growing energy is
swept away from the source, the basic state is called linearly
convectively unstable. This concept was successfully applied
to primary linear instability of parallel shear flow (Huerre and
Monkewitz, 1985) and extended to weakly nonparallel shear
flow (Huerre and Monkewitz, 1990 and references therein).
Linear analyses in weakly nonparallel media revealed that lin-
early absolutely unstable regions are necessary for the onset of
unstable linear global mode (i.e. temporally unstable eigenso-



lution in entire nonparallel flow). Linear analyses successfully
predicted local and global bifurcation scenario of cylinder wake
(Monkewitz, 1988), but some questions mainly related to the
effect of nonlinearity remained. Recently, those questions were
solved by full nonlinear analyses (Chomaz, 2005 and references
therein). In the same manner as the linear case, it was shown
that linearly absolutely unstable regions are necessary for the
existence of nonlinear global mode (e.g. vortex shedding in
bluff body wake) in weakly nonparallel flow.

In view of flow control, local linear absolute instability dy-
namics has given critical information about the control mech-
anism of vortex shedding. For example, base bleed eliminates
or weakens local absolute instability in near wake, and vortex
shedding is suppressed (Schumm et al., 1994). Base suction of
sufficiently large amplitude increases nonparallelism around
dominant turning point in WKBJ approxmation, so vortex
shedding is suppressed (Leu and Ho, 2001). Suppression of
vortex shedding in the presence of small control cylinder has
also been thought such that the mechanism is related to the
change of local absolute instability in near wake (Strykowski
and Sreenivasan, 1990).

As mentioned above, absolute instability plays critical roles
in wake dynamics and control. Therefore, developing a sys-
tematic method for controlling absolute instability should help
the development of open-loop control methods. In the present
study, we formulate the control problem using calculus of vari-
ation and show that the suppression of vortex shedding from
previous open-loop control methods such as base bleed and
positioning small control cylinder is explained by the control
of absolute instability.

PROBLEM FORMULATION IN PARALLEL WAKE

Variational calculus of absolute frequency
Linear impulse response in parallel media is dominated by
absolute frequency (Huerre and Monkewitz, 1985). To cal-
culate the first variation (i.e. Frechét derivative) of absolute
frequency in the direction of basic-flow change, we consider
the Orr-Sommerfeld equation:
—iwM + Lostp = 0, (1)
where
M =a? - D?, (2)

1
Los = ialU(a? — D?) +iaD?U + R—(a2 —-DHZ  (3)
e

and the boundary conditions are

w‘GQ:Dw‘HQ:O' (4)
Here, v is the streamfunction of the velocity disturbance or
transverse component of velocity disturbance, « is the stream-
wise wave number, w is the temporal frequency, D = d/dy, y
is the transverse direction, Q2 is the flow domain in the trans-
verse direction, and 992 denotes the boundary of the domain
Q. Re is the Reynolds number. Let us introduce the following
inner product:

<u,v>= / u(y)v(y)dy, (5)
Q
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where an overbar denotes the complex conjugate. Then the
adjoint equation corresponding to (1) is given by
—iwt Mt + L0 =0, (6)

where
MT = (a® - D?), (7

1
ial(@? — D?) 4 2:@DUD + R—(a2 —D?)2,  (8)
e

Lt =

os -

and the boundary conditions are

¢‘6Q:D¢‘8Q:0' ©)
The superscript * denotes the adjoint operator and ¢ is the ad-
joint variable. In order to derive the first variation of complex
absolute frequency, let us introduce the Frechét differential
(Luenberger, 1969):

L wU) +SUE) ~wUE)

e—0 €

Dw

— U = (10)
DU

Under the assumption that the complex absolute frequency
denoted by wq is one of the discrete eigenspectrum, the first
variation of discrete temporal frequency can be written as fol-
lows:

ow

da

D
b v SE80+ SEOU =< Loath, @ > + < Lovtb @ >, (1)

where
2 2 2 Ao, 2
L, :6a[U(3a —D*)+D U72wa72R—(a -D )], (12)
e

Lsy = adU(a? — D?) + aD?(8U). (13)

Applying (11) around the absolute frequency wo eliminates the
contribution of streamwise wavenumber variation since the ab-
solute frequency wy is selected by the pinching point condition:
0w — (gt o = ap, where aq is the absolute wave number.

ie. 3=
Integration of (11) by part leads the following relation:

Ja

D
B ~ =228U = /Q Ko(y)8U (y)dy, (14)
where
Ko(y) = aolagtody + 2DvoDdy + hoD* ¢l (15)

Here, 1o and ¢ are the regular and adjoint eigenfunctions
at the pinching point, respectively, and Ko(y) is the Frechét
derivative of absolute frequency and its physical meaning is
the sensitivity of absolute frequency due to the change of ba-
sic flow. Similar formula based on classical linear stability
problem was also obtained in Bottaro et al. (2003).

As known by Reddy et al. (1993), the eigenvalues of
Orr-Sommerfeld operator are extremely sensitive to the per-
turbation of operator because the Orr-Sommerfeld operator
is non-normal. Thus, (14) may appear to be unmeaningful
for the control problem, because the small change of basic
flow may make the other eigenvalues more destabilized than
the absolute frequency. However, the non-normality of Orr-
Sommerfeld operator at low Reynolds number is sufficiently
moderate since the effects of self-adjoint viscous term are
significant. This fact is also investigated based on € pseu-
dospectrum (not shown here). Therefore, Ko;(y) plays critical



roles in controlling absolute instability. Using Ko;(y) one can
determine 6U(y) in the stabilizing or destabilizing direction.

Optimal change of the parallel basic flow for stabilizing absolute
instability

Using (14) we obtain the optimal modification of paral-
lel basic flow. The growth rate of absolute frequency is the
critical parameter for controlling absolute instability and its
bifurcation characteristics. Therefore, one can construct the
following optimization problem:

min dwp; subject to /(SUQ(y)dy:c7 (16)
U Q
where
5w0i=/K0i(y)6U(y)dy‘ (17
Q

Here, c is reasonably smaller than 1. In the optimization
problem (16), the equality constraint in (16) represents the
condition of fixed energy input. Using the Lagrange multi-
plier, the optimally stabilizing solution U can be obtained as

follows:
Koi(y)

\/ fQ Kgi(y)dy.

Application to parallel model wake at low Reynolds number

oU(y) = —c (18)

In this section, the formula derived in the previous sec-
tions is applied to model parallel wake at low Reynolds
number. Regular and adjoint Orr-Sommerfeld equations
are solved using the standard Chebyshev collocation tech-
nique with N=100 to ensure good resolution of all significant
eigenvalues in the context of temporal setting. Velocities
are non-dimensionalized with the average basic flow velocity
U = (UF 4+ UZ,)/2 where the superscript * denotes dimen-
sional quantity, U = U*|y—o is the centerline velocity, and
Ui, = U*|y=co is the free stream velocity. Length is made
non-dimensional with the local half-width b of the wake, which
is defined by U*|,—p, = U*. The Reynolds number is defined

as Rep = U*b/v. The profile of basic flow is as follows:

U(y) =1—A+2AF(y), (19)

where
A= Uz —UL)/(US+UL), (20)
F(y) = [1 4 sinh?N {ysinh =1 (1)}] L. (21)

Here, we choose A = —1.105, N = 1.34. The corresponding
velocity profile is shown in Fig. 1(a). Computation is per-
formed at Rep, = 12.5. Absolute wave number is obtained as
ap = 0.8075 — i0.4890 and absolute frequency of regular and
adjoint eigenvalue problems are wp = 0.9577 4 i0.0628 and
wg = —0.9572 4 §0.0627.

As shown in Fig. 1(b), Ko;(y) is positive in the separat-
ing shear layer and negative near y = 0. It is interesting to
note that the presence of small control cylinder (Strykowski
and Sreenivasan, 1990) results in 6U < 0 and the flow be-
comes stabilized when the control cylinder is located where
Koi(y) > 0 (i.e., along the shear layer) (see (17)). On the
other hand, the base bleed increases U along the centerline
(i.e. 6U > 0), and it suppresses local absolute instability at

(a) 107 (b) 10F
st st
y of < y of
sk st
A0S TS s A3 o5
U(y) Kor(y), Koi(y)
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Figure 1: (a) Profile of the typical parallel basic flow (A =
—1.105, N = 1.34); (b) Frechét derivative of absolute fre-
quency (Rep =12.5). In (b) = = = =, Kor(y); —, Koi(y)-

the location where Ky;(y) < 0 (i.e. along the center line). The
base bleed was also known as suppressing absolute instability
by previous parametric study in Monkewitz (1988), agreeing
with the present result.

ROLE OF A SMALL CONTROL CYLINDER IN CIRCULAR
CYLINDER WAKE

Experimental results of Strykowski and Sreenivasan (1990)
showed that vortex shedding is suppressed by a small control
cylinder in the near wake of circular cylinder. Recently, Gian-
netti and Luchini (2003) showed by solving global eigenvalue
problem numerically that the region of receptivity to global
basic flow (i.e. entire nonparallel basic flow) modification is
similar to the region where a small control cylinder effectively
suppresses vortex shedding. However, it is still ambiguous
about the role of the control cylinder in a local viewpoint (i.e.
the dynamics of local absolute instability). Therefore, we in-
vestigate the role of the control cylinder on the local instability
dynamics in this section.

Problem formulation in circular cylinder wake

The effect of a small control cylinder is modelled here as
a pointwise supply of momentum equal in magnitude and op-
posite in direction to the drag on the control cylinder. Hence,
the governing equation can be written as follows:

ou Ov
Qu 2y, (22)
Jr Oy
ou ou ou op 1
- - - - T A A F 9 7t7 El 23
ot ox oy 8x+ReD ut Py tu), (23)
2] e} o 0, 1
S e Av, (24)
ot ox oy dy  Rep
where
Cr
F(z,y,t;u) = e—ud(x — 20)d(y — yo)h(zo,y0),  (25)
Red
-1 if U(zo,y0) > 0,
h(zo,y0) =4 0 if U(zo,y0) =0, (26)
1 if U(zo,y0) < 0.

Here, the position of momentum supply is (o, y0), € = d/D <
1, where D and d are the diameters of main and control cylin-
ders, respectively. U is the streamwise velocity of basic flow
without the forcing term. Velocities are non-dimensionlized
based on the free-stream velocity Uss and length is non-
dimensionlized based on the diameter of main cylinder, Rep =
UsxD/v and Req = Usod/v. The forcing term F is considered
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Figure 2: (a) Cr vs Reg; (b) Cr/Req vs Reg.

only in the streamwise direction to be included in local insta-
bility equation through the parallelization and linearization
of governing equation. Therefore, the effect of the control in
this study may not be exactly the same as that in the exper-
iment of Strykowski and Sreenivasan (1990), especially where
the transverse velocity of basic flow is relatively large or the
streamwise velocity of basic flow is nearly zero. In (25), F' sets
to be proportional to u, since the portion of viscous drag in
total drag of the control cylinder is dominant. Therefore, the
resistance coefficient Cr = drag/uUsc L which scales drag of
the control cylinder and viscous force, is introduced in (25)
rather than the drag coefficient Cy = 2drag/pU2,dL, where L
is the spanwise length of cylinder. To strictly model the effect
of the control cylinder, C'r should be treated as a function of
its position. In this study, however, Cr sets to be constant
for the simplicity. The variation of C'r with Reg is shown in
Fig. 2(a).

Let the diameter of the control cylinder be so small that
its wake effect can be negligible. Then the change of local
instability is dominated at z xo. Therefore we can as-
sume U ~ U + eU(xg,y), where U is the modified basic
flow. For modelling §U, it is also noteworthy that the ve-
locity should be zero at the location of control cylinder by
no-slip condition. Thus we can reasonably assume 6U (20, y) ~
—T(e(y — y0))U(xo,y) /€, where T(ey) ~ 1 at —€/2 <y < €/2
and II(ey) ~ O elsewhere. It is also assumed that II(ey) is at
least twice continuously differentiable to avoid loosing regular-
ity. Then, using a procedure similar to that described in the
previous section, the first variation of local absolute frequency
at x = xq is obtained as follows:

dwo(yo; xo) ~ dwor (Yo; xo) + dwou (yo; zo), (27)

where

. C —
dwor (Yo; z0) —lﬁh(xmyo)Dtbo(yo;wo)D%(yo;mo),
d

dwou (Yo; zo) = —U(yo; 0) Ko (yo; o).

Here, %0(y0; o), #o(yo; o) and Ko(yo; o) are, respectively,
regular and adjoint eigenfunctions and the Frechét derivative
defined in (15) at the pinching point, based on the streamwise
velocity of unforced local basic flow at © = xzg. dwor(yo; o) is
the change of local absolute frequency due to the momentum
forcing and dwou (yo;zo) is its change related to basic-flow
modification due to the momentum forcing. It is noteworthy
that Cr/Req in (27) is the important parameter in determin-
ing the portion of dwor in dwp. Fig. 2(b) shows the behavior
of Cr/Req vs Regy. As shown in this figure, Cr/Req increases
as Rey decreases. Therefore, we can conclude that as the di-
ameter of control cylinder becomes small, the portion of dwop
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Figure 3: (a) Contours of the streamwise velocity of basic
flow at Rep = 48 (thick solid line, U=0); (b) imaginary part
of local absolute frequency wo;; (¢) real part of local absolute
frequency wor.

is dominant in dwg. However, this divergence of Cr/Rey at
very small Reg in dwgr does not mean the divergence of mod-
ified absolute frequency Wy ~ wg + €dwg because € (= d/D)
also decreases as Reg decreases.

Position of control cylinder suppressing local absolute instability
in circular cylinder wake at Rep = 48

The equations are discretized on a Cartesian grid and the
no-slip condition of a main circular cylinder is satisfied us-
ing an immersed boundary method developed by Kim et al.
(2001). The center of the circular cylinder is located at
(z,y) = (0,0). The number of grid points are 641 x 2048
in the streamwise and transverse directions, respectively. The
excessive use of grid points in the transverse direction is to get
high accuracy because the streamwise velocity is used to solve
the Orr-Sommerfeld equation based on the Chebyshev collo-
cation method. To obtain steady solution, upper half domain
(i.e. y > 0) is considered and symmetric boundary conditions
(i.e. v =0 and du/dy = 0) are imposed along y = 0. Uniform
inflow conditions (i.e. u = Us and v = 0) are imposed at
the inlet boundary and u = Us and dv/0y = 0 are imposed
at the far-field boundary. The convective outflow condition is
imposed at the exit. More numerical details are described in
Kim et al. (2001).

The contours of streamwise velocity of basic flow at Rep =
48 are shown in Fig. 3(a). The length of recirculation bubble
is about 3.3D from the cylinder center and the drag coefficient
is about 1.41, which show good agreements with the results
in Fornberg (1985). To calculate local absolute frequency, the
same numerical methods for solving regular and adjoint Orr-
Sommerfeld equations are used. The streamwise velocity and
its derivatives of basic flow for solving regular and adjoint
Orr-Sommerfeld equations are obtained from the velocity field
shown in Fig. 3(a) using a second-order linear interpolation.
The complex local absolute frequency wo(x) is shown in Figs.
3(b) and 3(c) and the locally absolutely unstable region (wo; >
0) is the nearly same as the reverse flow region.

Figures 4(a)-(c) show €edwo;(yo;xo0), €dwor;(yo;xo) and
edwoui(yo; o). They are negative along the separating shear
layer. Therefore, the presence of control cylinder located at



Figure 4:

(a)
edworri(Yo; o). Here e = 1/12.

€dwoi(Yo;0);  (b) edwori(yo;xo); (c)

the separating shear layer weakens or removes absolutely un-
stable regions in the near wake. In the reversal flow region,
values of dwp;, dwor; and dwor; are also negative. Thus, the
presence of control cylinder and its wake along the center line
suppresses absolute growth rate in the region of absolute insta-
bility and vortex shedding can be suppressed. However, one
should note that the magnitudes of dwo;, dwor; and dwor; in-
side the reversal flow region are relatively smaller than those
along the shear layer. Therefore, the control cylinder located
at the shear layer is more effective than that located inside
the reversal flow region.

Figure 5 shows the result from Strykowsky and Sreenivasan
(1990), representing the region where the addition of control
cylinder completely restabilizes the cylinder wake at different
Reynolds numbers. The region of stabilizing wake by the con-
trol cylinder obtained by Strykowski and Sreenivasan (1990)
is quite similar to the negative regions of dwp; shown in Fig.
4(a).

CONCLUDING REMARKS

The concept of absolute and convective instability has
played important roles in interpreting the dynamics and con-
trol mechanism in open shear flows such as wake, jet, mixing
layer and boundary layer and so on. These critical roles of
absolute and convective instability motivate us to develop a
consistent strategy for controlling absolute instability based on
variational calculus. Using the present methodology, in par-
allel wake exhibiting absolutely unstable nature, it is shown
that positive and negative velocity perturbations, respectively,
along the centerline and the separating shear layers suppress
absolute instabilities. The present result shows a good agree-
ment with previous one based on the parametric study in
Monkewitz (1988). Finally, the suppression mechanism of vor-
tex shedding by a small control cylinder located in the wake
behind a main cylinder is investigated from the viewpoint of
local instability. It is shown that the role of control cylinder
is mainly related to the suppression of absolute instability in
the near wake. The most effective position of control cylinder
suppressing absolute instability is along the separating shear
layers and these results are consistent with the experimental
ones in Strykowsky and Sreenivasan (1990).
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Figure 5: Regions where the presence of small control cylin-
der (e = 1/10) completely restabilizes cylinder wake: -==+------ ,
Rep = 46.2; s
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