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ABSTRACT

The present work investigates the influence of compress-
ibility on the fluctuating gradient of a passive scalar, its
alignment with the principal directions of strain and the topol-
ogy of the scalar gradient field. Two flows are considered:
forced isotropic turbulence and supersonic channel flow. The
turbulent Mach numbers of the isotropic field are between
M = 0.05 and M 0.63. The Taylor Reynolds number
is Rey ~ 50. A mean scalar gradient is prescribed. The
turbulent supersonic channel flow data result from four simu-
lations with Reynolds numbers based on the friction velocity
of Re; = 180 up to Rer = 1030 and bulk Mach numbers
ranging from M = 0.3 up to M = 3.5. It is shown that the
scalar gradient alignment is hardly changed by compressibility,
even in the vicinity of a wall, where variable property effects
are important. The production of the absolute value of the
scalar gradient is slightly reduced, along with the production
of enstrophy due to vortex stretching.

INTRODUCTION

The microstructure of a passive scalar field, especially the
alignment of the scalar gradient with the principal directions of
strain, has been investigated in detail in incompressible homo-
geneous, turbulent flow (e.g. Ashurst et al. (1987), Brethouwer
et al. (2003)). There it was found, that the scalar gradient
tends to align with the eigenvector of the strain rate tensor
corresponding to the compressive principal axis. The topol-
ogy of the scalar field was shown to be mostly sheet like, which
can be seen by conditioning the scalar gradient on the invari-
ants of the velocity gradient tensor. Large values of the scalar
gradient, conditioned on the second and third invariants, were
seen in the fourth quadrant corresponding to one compressive
and two extensional directions (Brethouwer et al. (2003)). On
the other hand it was seen, that the scalar gradient was small
in vorticity dominated regions. It is well known that the vor-
ticity vector in incompressible flow is generally aligned with
the eigenvector of the strain tensor associated to the interme-
diate eigenvalue (Vincent and Meneguzzi (1991), Dresselhaus
and Tabor (1991)). Recent results of compressible decaying
isotropic turbulence (Erlebacher and Sarkar (1993), Pirozzoli
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Fall M Re) —_"_‘- N; L]/va'.’ g

M1 0.05 51 0.01 128 0.46 1.0
M2 0.1 55 0.01 128 0.47 1.0
M3 0.15 56 0.01 128 0.48 1.0
M4 0.22 58 0.01 128 0.49 1.0
M5 0.34 49 0.01 256 0.43 1.0
M6 0.63 47 0.01 256 0.39 1.0

Table 1: Parameters of the DNS of forced isotropic turbulence.

and Grasso (2004)) report similar findings, with a small de-
crease of the eigenvalues resulting in a decreased production
of the enstrophy due to vortex stretching.

In the present work we raise the questions: What is the
influence of compressibility on the microstructure of a scalar
field in homogeneous and inhomogeneous flows? How is the
scalar gradient alignment influenced by strong temperature
and density gradients or by intrinsic compressibility effects?
The present paper is organized as follows. First a short
overview of the direct numerical simulations is given. Based
on the incompressible analysis of Brethouwer et al. (2003),
transport equations for the absolute value of the fluctuating
scalar gradient and its alignment with the principle directions
of strain are reported. To assess the influence of the different
terms in these transport equations, conditional expectations
and probability density functions have been calculated. Some
of these quantities, obtained from the direct numerical simu-
lations, are discussed in the last section .

NUMERICAL METHOD

Direct numerical simulations of forced compressible
isotropic turbulence and supersonic channel flow have been
performed. The Navier-Stokes equations and a passive scalar
transport equation were discretized using 6th order compact
central schemes for the spatial derivatives and a third order
low-storage Runge-Kutta scheme for time integration. The
primitive variables were filtered after each timestep using a
sixth order compact filter to prevent spurious accumulation of
energy in the highest wavenumbers.

Forced compressible isotropic turbulence was simulated at
a Taylor microscale Reynolds number of approximately 50 and



Case M Re, L% L% L% Nxi1  Nxz N3
M0.3 0.3 181 9.6h 6h 2h 192 160 129
M1.5 1.5 221 4mh 4ﬂ'h 2h 192 128 151
M3.0 3.0 560 4wh 477 h 2h 512 256 221
M3.5 3.5 1030 6mh 27rh 2h 512 256 301

Table 2: Parameters of supersonic channel DNS.

turbulence Mach numbers ranging from M; = 0.05 up to M; =

0.6 (where M; \u? +uZ+u3/e). Table 1 contains the

simulation parameters.

The isotropic turbulence simulations were forced in phys-
ical space to avoid any dependence on the initial conditions,
using a combination of sine and cosine functions with random
phases, such that only the solenoidal part of the velocity is
forced. Since, in compressible isotropic turbulence, the en-
ergy injection through the forcing is converted via viscous
dissipation into internal energy and therefore causes the in-
stantaneous temperature and pressure to increase in time, a
heat sink term was added to the pressure and entropy equa-
tion, to guarantee statistically steady values for the pressure
and temperature and as a consequence for the Reynolds and
Mach numbers. A mean scalar gradient g in the x3-direction
was prescribed and the scalar was injected after the turbulence
reached a statistically steady state.

The main advantage of the forcing mechanism used here
compared to that of other authors (e.g. Kida and Orszag
(1990), Lou and Miller (2001)) is the ability to take long time
averages at constant Mach and Reynolds numbers and to be
independent of the initial conditions.

DNS of supersonic channel flow at Re; = 221 had been
done previously by Coleman et al. (1995) and Lechner (2001).
Foysi et al. (2004) simulated Reynolds numbers up to Re, =
1030. Here, we use the DNS database of Foysi et al. (2004)
to investigate variable property effects on the scalar gradient
and its alignment.

Some important parameters of the supersonic channel flow
can be seen in table 2. The bulk Mach numbers range from
M = 0.3 to M = 3.5 and the friction Reynolds numbers go
up to Rer = 1030. The simulations are performed to predict
turbulent, supersonic channel flow between isothermal walls
and transport of a passive scalar introduced from one side
and removed from the other. The bulk density and velocity
pm, Um and wall temperature T3, are held constant. These
quantities and the channel half-width h are used to define
the Mach number M = wupm,/cyw and the Reynolds number
Re = pmumh/pw. Rer = pwurh/py is the Reynolds number
based on the friction velocity u, = (Tw/pw)l/? It is a result
of the computation. To enforce streamwise periodic bound-
ary conditions in the simulation, the mean pressure gradient
—0p/dx has been replaced by a body force of type f.
the course of the simulation the body force f is controlled to
achieve constant mass flux.

In

At time level n it is therefore
calculated as

A mean scalar gradient is imposed on the flow, using an initial
profile of the form (Johansson and Wikstrom (1999))

i1

and the boundary conditions 6(z1/h,0,z3/h,t)
0(x1/h,2,23/h,t) = —1.

yo+1
Yo —1

Yo + X2
Yo — T2

0(@1@2@3):;0910{ } Yo=1.007 (2)

1 and
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RESULTS

Transport equations

To investigate the influence of compressibility on the scalar
gradient and its alignment, following the procedure of Dres-
selhaus and Tabor (1991) and Brethouwer et al. (2003) for
incompressible flow, equations for the magnitude g of the fluc-
tuating scalar gradient g and the alignment A\; = (n, e;) of the
fluctuating unit vector n = g/g with the principal directions
of strain e; (the it" eigenvector of the rate-of-strain tensor S)
have been derived. These equations read (for details refer to
Foysi (2005))

éj—“t]: - Sz‘/\?—g%m,sg)—%gmxw)
+ 35 2(DAg —2DVg: Vg)
- (&) (ven.§)
S ({5 >W’>}>
+ %<§2,<V(p > <g VD> (V.,g)
+ (v iw.may) - EX G ve0), @

and (terms containing |g|/g are small and have been ne-
glected)

Sa 0 0
A 0 sg 0 |Xx+ (si)\fl))\—f—(g —-Q)x A
dt 2
0 0 sy
+ E[Ifn®n]<D—> EI-n®n] (4)
with
=~ Y(v(n),e) + (&, V) V(D) + - (V (D). Vg
+ (VD)(V.8) = ~L(V.pD5) + ~ (6. V) V(D). (5)

D is the diffusivity of the scalar, s; are the eigenvalues of the
strain rate tensor and F is a matrix with the orthonormalized
eigenvectors as rows. gdenotes the prescribed mean scalar gra-
dient in isotropic turbulence and the mean wall normal scalar
gradient in supersonic channel flow (the other components are
zero due to homogeneity). (-, -) denotes the scalar product. In
incompressible flow the incompressibility constraint guaran-
tees that one eigenvalue is always negative, corresponding to
the most compressive strain direction, one is always positive
whereas the intermediate one is mostly positive (Dresselhaus
and Tabor (1991)). In the following, the eigenvalues are or-
dered in the form s; < s < s3. The terms in the first line
of equation (3) represent production terms due to the rate of
strain, the mean scalar gradient and the vorticity. The sec-
ond term in the second row is a molecular destruction term
whereas the terms in the remaining four lines indicate the ex-
plicit influence of compressiblity due to density and diffusivity
gradients. An order of magnitude analysis shows that the first
term on the rhs is probably the most important one and de-
pends explicitly on the orientation of the scalar gradient with
respect to the principle axes of strain. If, as in the incompress-
ible case, the scalar gradient aligns mostly with e, this term



gives a positive contribution and tends to increase the scalar
gradient. The compressibility terms can, on the other hand,
be important if large mean property variations occur, as in the
vicinity of cooled walls or in combustion problems. Equation
(4) shows how the alignment of the scalar gradient is affected
by strain (first two terms on the rhs), vorticity and rotation
of the eigenvectors (third term), molecular diffusion (penulti-
mative term) and compressibility (last term). In Brethouwer
et al. (2003) and Foysi (2005) it is discussed in detail how
strain and vorticity influence the alignment of the scalar gra-
dient. However it is interesting to assess the influence of the
last term on the alignment of g, especially in supersonic chan-
nel flow where large density and viscosity gradients occur near
the wall. Since the wall normal gradients in the vicinity of the
wall are dominant, we have o2 > 01,03 and n2 > ni,n3
with ng 1 near the wall. Thus, E(I — n ® n)o can be
approximated by (1 —n2)((e1)2, (e2)2, (e3)z2), which is small
for :r;r < 70. The scalar gradient alignment should therefore
be nearly independent of the mean property variation in the
supersonic channel.

~
~

A further investigation of the above equations shows (Foysi
(2005)), that the angle formed by the scalar gradient and e
should be 45 degrees near the wall and approach a perfect
alignment with e; in the channel core, where the turbulence
is nearly isotropic. Since the wall normal gradients outweight
the gradients in the homogeneous directions, there should be a
similiar dependence of the scalar gradient on the vorticity, as
is generally observed with respect to the strain rate, contrary
to isotropic flow.

Isotropic turbulence

Figures 1a and 1b show the scalar gradient, conditioned on
the solenoidal (s’) and compressible part (s©) of the strain
rate s = \/m, obtained after performing a Helmholtz de-
composition of the velocity field (the superscript ’C’ hereafter
indicates the compressible part, the index ’I’ the incompress-
ible part). As in the incompressible case, (Brethouwer et al.
(2003)) there is a high probability for large scalar gradients to
occur in regions with a high strain rate s!. Conditioned on
the compressible part s€, on the other hand, there is no de-
pendency of g on s€ visible for case M6. For the compressible
part, instead of being aligned with the direction associated
with the compressive strain (Figure 2a shows that there is a
high probabilty for g to be aligned with the eigenvector e{ ), &
tends to be aligned with e3c, the eigenvector corresponding to
the largest positive eigenvalue. This results in a negative con-
tribution to the production term, 78?()\0)2, rendering the
scalar gradient independent of the compressible part of the
strain rate.

Figure 3a shows the scalar gradient conditioned on the vor-
ticity. As is clearly seen, we have strong scalar gradients in
regions only, where the vorticity is small. The alignment of
the vorticity vector itself is found to be in the direction of
ey as seen, too, by Pirozzoli and Grasso (2004) (Figure 3b).
Compressibility, therefore, does not alter the findings, made in
the incompressible case (Brethouwer et al. (2003)). Figures 4a
and 4b give an impression of the direct effect of compressibil-
ity on the magnitude of the scalar gradient. Here, the scalar
gradient conditioned on the density and viscosity gradient is
shown. One clearly observes a direct influence of the density
and viscosity on g, leading to strong scalar gradients in regions
with strong density and viscosity gradients.
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Overall it was observed (Foysi (2005)), that the effect of
compressibility on the alignment of g with the principle axes
was small. Differences showed up only in the tails of the pdf,
increasing the probability of an alignment of g with es.
agreement with the simulations of Pirozzoli and Grasso (2004),
a slight decrease of the mean of the rate of strain eigenvalues
is observed, with increasing M;. As a consequence, the pro-
duction term fsi)\f and the production term due to vortex
stretching in the enstrophy budget, which can be written as
—s;{w, e;)?, decrease. This leads to decreased scalar gradients
and enstrophy in compressible flow.

In

Supersonic channel flow

If the channel flow is assumed to behave like a simple shear
flow in the vicinity of the wall, a short analysis of equations
(3) and (4) leads to an angle of 45 degrees between e, es and
g. In the channel core, a similar behavior like for the isotropic
turbulence can be expected. Figures 5a and 5b show the align-
ment of g with ey at :r;r = 6 and at the channel centre. As

expected we find values of :I:g for the cosine of (n,e;) (the
same is also true with respect to es, not shown here). As
shown above, there is nearly no influence of the strong vari-
able property effect on the alignment. Although these results
imply, that compressiblity effects on the alignment of g in wall
bounded flows of this type have not to be considered. Mod-
els which are based on the assumption of an alignment of the
scalar gradient in the direction of e (e.g. Peters and Trouillet
(2002)) have to account for the change of the alignment of g
when approaching the wall.

Figures 6 and 7 show the scalar gradient conditioned on the
strain rate and the vorticity, respectively, at x; =~ 6 and at the
channel centre. In the channel core, a similiar behaviour as in
isotropic turbulence is observed (figures 6b and 6c¢), namely
large scalar gradients in regions of high strain and low vortic-
ity. Because of the dominance of the wall normal gradients,
contrary to the isotropic turbulence, the vorticity is dominated
by gradients of the form g;‘; and influences g in a similar way
as the strain rate in the near wall region. For the conditional
expectations of the scalar gradient it was found, that the dif-
ferences in the curves, occuring for different Mach numbers,
are caused through variable property effects. Normalizing the
conditional expectations with semi-local scalings in the near
wall region (see Foysi et al. (2004)) leads to a collapse of
the curves for different Mach and Reynolds numbers. This
is clearly shown in figures 6a and 7a.

Topology of the passive scalar field in isotropic turbulence

In order to investigate the connection between the scalar
gradient and the flow topology, the procedure and classifica-
tion developed by Chong et al. (1990) was adopted for the case
of isotropic turbulence. It is interesting to see whether the
sheet like structure of the scalar field, which was observed in
incompressible flow (e.g. Brethouwer et al. (2003)), is changed
with increasing Mach number. The flow topology is described
by analyzing the eigenvalues of the velocity gradient tensor
Ay = 277: together with its invariants

D = -Au
1 1 1
Q = *EAijAji = Jwiki = 58ijSij
1
R = 7§AijAjkAki~ (6)



Compared to incompressible flow, the first invariant is not
zero, but sufficiently small here, to allow for a similiar classi-
fication. In figures 8a and 8b, the scalar gradient conditioned
on @Q and R for D=0 is shown, for cases M1 and M6, respec-
tively. The results usually change with increasing magnitude
of the dilatation, showing conditional expectations which get
focused stronger around P = =0. In the plots, the curved
line indicates the discriminant of A, which separates complex
from real solutions. If R <0 the structures are often described
as ’cigar’-like, whereas if R > 0 the structures are 'pancake’-
like. The scalar gradient conditioned on @ and R shows the
typical *teardrop shape’ as observed before (Brethouwer et al.
(2003), Pirozzoli and Grasso (2004)), with the highest values
found in the fourth quadrant, corresponding to one direction
of compression and two extensional directions. With increas-
ing M however, an increased probability is observed, to find
large values of the scalar gradient in the second quadrant (two
directions of compression and one extensional direction, i.e.
a stable focus stretching topology). With increasing Mach
number the ramp cliff structure, which is typically observed
in scalar fields, seems therefore to be slightly smoothed. This
was indeed observed (Foysi (2005)) in contour plots of the
passive scalar field.

CONCLUSIONS

To assess the incluence of compressiblity on the microstruc-
ture of the passive scalar field, the dependence of the scalar
gradient on strain, vorticity and variable property gradients
has been investigated. This was done through a derivation
of transport equations for the magnitude of the fluctuating
scalar gradient and its alignment with the principle directions
of strain. Based on two reference flows, conditional expec-
tations and probability density functions were calculated to
analyse the importance of the various terms in the transport
equations.

Supersonic channel flow at various Mach numbers was con-
sidered, to investigate the effect of a wall boundary condition
and the strong variable property effects on the scalar gradient.
It can be seen from the transport equation for A, that the in-
fluence of compressibility near the wall on the scalar gradient
alignment is negligible, which is confirmed by the DNS re-
sults. Differences between the conditional expectations of the
scalar gradient are due to variable property effects, because
the curves collapse when normalized with a semi-local scaling.

In addition to the channel flow, forced isotropic turbu-
lence at various turbulent Mach numbers is condidered to
study intrinsic compressibility effects on the passive scalar mi-
crostructure. Larger changes were only observed for the case
with the highest Mach number (M; = 0.63). It is seen, that
the scalar gradient is aligned with the eigenvector associated
to the compressive strain direction, if the solenoidal part of the
strain rate tensor is taken and g is aligned with the eigenvec-
tor associated to the largest positive eigenvalue, if the rotation
free part of S;; is taken. This gives a negative contribution to
the dominant production term in the transport equation for
g. A slight reduction of the eigenvalues with increasing Mach
number is observed (as in Pirozzoli and Grasso (2004)), which
causes a decrease of the scalar gradient production and the
production of the enstrophy due to vortex stretching.

Furthermore it was observed, that with higher Mach num-
ber the preference for scalar gradients to occur in regions with
a stable focus stretching topology, increases.

1216

REFERENCES

Ashurst, W., Kerstein, A., Kerr, R., and Gibson, C. (1987).
Alignment of vorticity and scalar gradient with strain rate in
simulated Navier-Stokes turbulence. Phys. Fluids, 30:2343—
2353.

Brethouwer, G., Hunt, J., and Nieuwstadt, F. (2003). Micro-
structure and Lagrangian statistics of the scalar field with
a mean gradient in isotropic turbulence. Journal of Flud.
Mech., 474:193-225.

Chong, S., Perry, A. E., and Cantwell, B. (1990). A general
classification of threedimensional flow fields. Phys. Fluids
A, 2:765-.

Coleman, G., Kim, J., and Moser, R. (1995). Turbulent
supersonic isothermal-wall channel flow. J. Fluid Mech.,
305:159-183.

Dresselhaus, E. and Tabor, M. (1991). The kinematics of
stretching and alignment of material elements in general
flow fields. Journal of Flud. Mech., 236:415-444.

Erlebacher, G. and Sarkar, S. (1993). Statistical Analysis of
the rate of strain tensor in compressible Homogeneous Tur-
bulence. Phys. Fluids A, 5:3240-3254.

Foysi, H. (2005). Transport passiver Skalare in wandgebun-
dener und isotroper kompressibler Turbulenz. Dissertation,
TU Miinchen.

Foysi, H., Sarkar, S., and Friedrich, R. (2004). Compressibil-
ity Effects and Turbulence Scalings in Supersonic Channel
Flow. J. Fluid Mech., 509:207—-216.

Johansson, A. V. and Wikstrom, P. M. (1999). DNS and
Modelling of Passive Scalar Transport in Turbulent Channel
Flow with a Focus on Scalar Dissipation Rate Modelling.
Flow, Turbulence and Combustion, 63:223-245.

Kida, S. and Orszag, S. (1990). Energy and Spectral Dynamics
in Forced Compressible Turbulence. J. of Scientific Comp.,
5:85-125.

Lechner, R. B. (2001).
stromungen. VDI Verlag.

Kompressible turbulente Kanal-

Lou, H. and Miller, R. S. (2001). On the scalar probability
density function transport equation for binary mixing in
isotropic turbulence. Phys. Fluids, 13(11):3386-3399.

Peters, N. and Trouillet, P. (2002). On the Role of Quasi-one-
dimensional Dissipation Layers in Turbulent Scalar Mixing.
Center of Turbulence Research, Stanford.

Pirozzoli, S. and Grasso, F. (2004).
ulations of isotropic compressible turbulence: Influence of
compressibility on dynamics and structures. Phys. Fluids,
16(12):4386—.

Direct numerical sim-

Vincent, A. and Meneguzzi, M. (1991). The spatial structure
and statistical properties of homogeneous turbulence. J.
Fluid Mech., 225:1-20.



0.5

0 2 4 & .8 10 12 4 -08 06 04 -02 0 02 04 06 08 1
s“/s
(w, e2)/|wlez]
Figure 3: (a): g conditioned on w = /w;w; (b): Pdf of the
cosine of the angle between w and es.

Figure 1: Scalar gradient conditioned on the incompressible
(a) and compressible part (b) of the strain rate.
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