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ABSTRACT

The influence of compressibility on the rapid pressure-
strain rate correlation is investigated using the Green’s func-
tion for the wave equation governing pressure fluctuations in
compressible homogeneous shear flow. The solution for the
Green’s function is obtained as a combination of parabolic
cylinder functions; it is oscillatory with monotonically in-
creasing frequency and decreasing amplitude at large times,
and anisotropic in wave-vector space. This Green’s func-
tion, which depends explicitly on turbulent Mach number M;
and gradient Mach number My, provides a means for ana-
lyzing the influence of these two compressibility parameters
on the rapid pressure term. Assuming a form for the tempo-
ral decorrelation of velocity fluctuations brought about by the
turbulence, the rapid pressure-strain rate tensor is expressed
exactly in terms of the energy spectrum tensor and the time
integral of the Green’s function times a decaying exponential.
A model for the energy spectrum tensor, linear in Reynolds
stress anisotropies and in mean shear, is assumed for closure.
The expression for the rapid pressure-strain correlation is eval-
uated using parameters applicable to a mixing layer and a
boundary layer. It is found that, for the same range of M,
there is a large reduction of the pressure-strain correlation in
the mixing layer but not in the boundary layer. This result is
linked with the observation that Mg/M; is considerably larger
for the mixing layer than for the boundary layer.

INTRODUCTION

The influence of compressibility on turbulence is an impor-
tant issue for supersonic and hypersonic flight. One of the
most pronounced effects of compressibility is the suppression
of the growth rate and turbulence levels in a supersonic shear
layer that have been traced to a reduced turbulence production
and ultimately to a reduced pressure-strain correlation(Sarkar
1996; Vreman, Sandam, and Luo 1996; Simone, Coleman, and
Cambon 1997; Freund, Lele, and Moin 2000; Pantano and
Sarkar 2002). On the other hand, in a boundary layer with
similar mean Mach number, such intrinsic compressibility ef-
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fects are found to be weak. T'wo local Mach numbers are the
turbulent Mach number M; = u’/c, and the gradient Mach
number My = S*I}/c*. Here, u} is the rms velocity fluctua-
tion, §* is the mean velocity gradient and [} is the transverse
integral length scale. In a turbulent boundary layer, M, is
approximately half Mg, while in a shear layer M, is signif-
icantly greater than M:. It has been argued (Sarkar 1995)
that the difference in My may be responsible for the enhanced
compressibility effects observed in free shear layers relative to
boundary layers. The objectives of this work are to quantify
the influence of the parameters M; and Mgy on the pressure-
strain rate correlation, Il;;, using an analysis of the equation
governing pressure fluctuations, and to explore potential dif-
ferences between the shear layer and the boundary layer.

FLUCTUATING PRESSURE FIELD

In a compressible flow, the pressure is governed by a wave
equation and fluctuations propagate at the speed of sound.
The fluctuating pressure at each point P of a compressible
flow is influenced only by the backwards sonic cone of P, con-
sisting of all points in the past of P which can reach P by
a signal propagating at the speed of sound. With increasing
Mach number, the properties of this cone are altered and so
must be the pressure-strain correlation. The shear-induced
distortion of the path of pressure waves in high-speed flow
is best understood within the context of geometric acous-
tics. For short wavelengths, the moving wave-vector IC can be
used to construct rays (Landau and Lifshitz 1987) along which
the pressure fluctuations propagate. The governing equations
(Landau and Lifshitz 1987) for these rays are then

dzs

dat (1)

Since the rays are everywhere normal to the wavefronts, the
tangent at any point along these rays is in the same direction
as the direction of propagation. Figure 1(b) is a schematic
in physical space of such rays emanating from a source in a
homogeneous shear flow (K3 = x3 = 0) with My = 1. In
this moving medium, the propagation is in the direction of
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Figure 1: Sketch of: (a) homogeneous shear mean velocity
profile; (b) ray trajectories in homogeneous shear flow (Mg =
1). Rays emanating from source at initial angular spacings of
/4.

the moving wave-vector times the speed of sound plus the ve-
locity of the mean flow (As;x;). The figure clearly illustrates
the significant effect the mean shear has on the propagation
of pressure fluctuations; a distortion that increases with in-
creasing My. The distortion is similar to that obtained by
Papamoschou (1993) who applied ray theory to the mixing
layer with hyperbolic tangent mean profile. It has been shown
by Papamoschou (1993) and Papamoschou and Lele (1993)
that communication of pressure signals in a mixing layer is hin-
dered in the streamwise direction. Although ray theory gives
this important qualitative implication, it is not sufficient to
make analytical progress in linking M, to the pressure-strain
correlation. Further progress is provided by the Green’s func-
tion approach as explained below.

Pressure fluctuations in uniform shear flow satisfy the fol-
lowing (nondimensional) wave equation,

5]
M
[( Yot

where, only terms involving the mean shear are retained in
f' given our interest in the rapid II;;. Equation (2) shows
that both M; and M, influence p’. After the introduction of a
Green’s function, the formal solution of Eq. (2) is then given
in wave-vector space by

0 \?
My )
J

)

t o~ ~
Bk, 1) =/0 Gk, t— )k, ) . 3)
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The first step in the derivation of the Green’s function is
to consider a moving wave-vector transform of G(k, t), that is

1
(2m)3

G(x,t) = / PkeCEDXG(K, 1) . (4)
The moving wave-vector KC(k,t) given in Eq. (4), defined in
terms of the (fixed) wave-vector k as

M
K1, K2, K3] = [kl, ko — —Zkit, ks] , (5)
M,
corresponds to a coordinate transformation from the fixed
frame to one moving with the mean shear flow. Equation (5)
allows the wave equation for G(k,t) to be written as

e+ (5 ()
ot2 M, k1 M,
(k2 + k3) ]é(k, t) =6(t), (6)
where

M M, 2
K2 = (k% + k3 +k3) — 2k (—gk t) (—gk t) 7
(k1 + k3 + k3) 2\ 3, ™ +Mt1 (7)

has been used. The limiting case of shear-free flow (M
0, K;K; = k;k;) has been studied previously by Pantano and
Sarkar (2002), who determined the corresponding shear-free
Green’s function ésf(k, t) which, in the notation used here,

can be written as

H(t)
Mk

Gsyp(k,t) = sin (kt/My) (8)
where k? = k;k;, and H(t) is the Heaviside function. Fortu-
nately, as shown below, it is also possible to obtain the solution
to Eq. (6) for G(k, t) in the homogeneous shear case.

For ¢ # 0, Eq. (6) can be transformed into an equation
having the form

&2G /&2 ~
o (S a)a= 9
() a0 ©

where 1/
gk, t) = (—QMQL]M) <t - @%) (10a)
M: k1 M,

k2 + k2
—_ (g) ‘ (10b)

2Mg‘k:1‘

The solution of this equation can be written in terms of

parabolic cylinder functions (see Sec. 19.17, p. 692 of
Abramowitz and Stegun (1970)) as follows,
G(6) = aaW1(a.€) + c2W2(a,€) , (11a)
where
Wi(a,8) =W(a,§) and Wz(a,§) =W(a,—§)  (11b)

are two linear independent solutions of Eq. (9) with Wronskian
equal to unity and W (a, £) defined by Abramowitz and Stegun
(1970). Since a < 0, the function W (a, €) is oscillatory for all £
and the factor y/£2/4 — a plays the role of a (local) frequency.
The coefficients ¢1 and ¢2 are determined from the conditions
imposed on the solution at ¢ = 0, and then the result in the



moving wave-vector form is transformed to the required fixed-
wave number Green’s function G(k,t). After some algebra,
the final expression for the Green’s function is

H(t)

Gk,t) = ————————[W Wal(a,
(k,t) Mt(2Mg\k1|)1/2[ 1(a, no)W2(a, n)
—Wa(a,m0)Wi(a, n)] (12)
with no and 7n defined by
20k |\ /2 ko
ki,ko,k3) = —= 13
no(k1, k2, k3) (Mg> o (13a)
(2My|ki|)/2 ( ko Mt)

ki,ko,k3;t) = ——— | t+ —— ) . 13b
n(k1, k2, ks; t) M, M, (13b)

Figure 2, an example of the time evolution of the Green’s
function, shows four cases with different wave number orien-
tation but the same magnitude, £ = 2.2. The orientation
is given by the azimuthal angle, ¢, and the polar angle, 6,
so that the streamwise ki, cross-stream ko, and spanwise ks
wavenumbers are given by k1 = ksinf cos ¢, ko = ksin@sin ¢,
and k3 = kcosf. Note that 6 = 7/2 corresponds to the
k1 — k2 plane which is the plane of shear. For § = 0 and
for ¢ = w/2,3w/2, k1 = 0 and the Green’s function G for
the homogeneous shear case reduces to the shear-free Green’s
function; otherwise the angle ¢ applies over the range (0, 27).
For this example, the compressibility related parameters take
the values My = 0.2 and My = 1.0. The four cases in Fig.
2 corresponding to ¢ = w/12, w/2, 7r/12, and 27w /3 and in
the shear plane, § = 7/2 (ks = 0), characterize four different
types of evolution. In all cases, except ¢ = 7/2, the damped
oscillations of G vanish at sufficiently long times (¢ > 20). If
the function n has no zero points (¢ = m/12), the temporal
evolution of G is simply a damped oscillation with increasing
frequency and decaying amplitude as shown in Figure 2(a).

The shear-free Green’s function G, # is shown in Fig. 2(b).
This corresponds to the anisotropic Green’s function G at k1 =
0 (¢ = m/2). A comparison with Figs. 2(a), (c) and (d) clearly
shows the strong anisotropic behavior of @, and suggests that
only the early transient behavior of G at these other locations
is similar to the shear-free function @sf.

Figure 2(c) shows the effect on the evolution of G when the
function n has a zero at some time ¢t. At these locations, the
frequency is a minimum and is given by \/W. For example,
at ¢ = Tw/12, n = 0 when t = (My/My) cot (w/12)= 0.746,
the figure shows the effect on both the amplitude and local
frequency (1/kcos (57/12)/(2Mg)) of the G oscillation. In
this example, G < 0 in the vicinity of the critical point. The
amplitude increases in magnitude to make G more negative,
and the frequency decreases significantly. As time continues
to increase, the behavior of the Green’s function oscillation
returns to a more regular form characterized by a decrease in
amplitude with an increase in frequency.

An increase in the angle ¢ further highlights the highly
anisotropic character of the Green’s function. Figure 2(d)
shows the temporal evolution at ¢ = 27/3. At this location,
the 7 = 0 condition occurs nearer to the initial state at ¢ =
(M¢/Myg)cot (m/6) = 0.346. In this example G > 0 in the
vicinity of the critical point, and the amplitude increases in
magnitude to make G more positive. In contrast with Fig.
2(c), the frequency decrease at ¢ = 27w/3 is not as significant
as the decrease at ¢ = Tn/12. Note that initial amplitude
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variations at different angles ¢ are related to the fact that the
anisotropic Green’s function Gk, t) is proportional to |k1|~1/2
(see Eq. (12)) where k1 = kcos ¢ in the (k1, k2) plane.

THE RAPID PRESSURE-STRAIN CORRELATION

The rapid part of II;; can be related to the correlation,

(s(k, )iy (<k, 1)) = e~ /T3 (0) By (k, 1), (14)
where FEj;; is the energy spectrum tensor that is modeled
by an expression linear in the Reynolds stress anisotropies
(Shih, Reynolds, and Mansour 1990). An exponential tempo-
ral decorrelation (¢ < t), with decorrelation time 77, has been
assumed (Pantano and Sarkar 2002). The pressure-strain rate
correlation can then be expressed exactly in terms of the en-
ergy spectrum tensor and the Green’s function as the following
integral in wave-vector space,

(o o] ™
w = () o

XkiAin [Eni(k, 0, 9)k; + Enj(k,0,6)k;]

27
sin 6d6 doR(k, 0, ¢; 1)
0

(15a)

where A\j, (= 8;10n2 here) is the nondimensionalized velocity
gradient tensor, and
o ~
R(k797¢;n)=k2/ Gk, m)e ™/ dr . (15b)
0

For incompressible flows, the factor R(k, 6, ¢) is not present in
Eq. (15a), and for shear-free compressible flows it is given by

) -1
where Eq. (8) has been used. In order to complete the mod-
eling of the pressure-strain rate correlation, a suitable repre-
sentation for the energy spectrum tensor E;; is needed.
Current incompressible models for the pressure-strain rate
correlation, such as the Launder Reece and Rodi (LRR) model
(Launder, Reece, and Rodi 1975), are based on E;; represen-

tations that are parameterized by terms linear in the second
velocity moment anisotropy,

M?
T2k?

R(k,0,¢;71) = (1 + (16)

s
() s,
byj = ~——~L 2, 17
Y 2K 3 an)
where K = (u//u/') /2. Such a (linear) representation for

E;j(k;b) can be expressed in terms of the basis set d;, Eikj,
bij, and (binknk; 4 kiknby;), with k; = k;/k. When applied
against the conditions that the trace of the second-moment
spectrum tensor FE;; is proportional to the (isotropic) en-
ergy spectral density F(k) (E;; = E(k)/2mk?) and continuity
k; E;; = 0, this four-term representation can be written as

Eiyeb) = T (5 k)
B i) (o4
ijrg? [b43 = (binkak + Filenbng )| (18)

where the expansion coefficient E, (k) is the anisotropic energy
spectral density.
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Figure 2: Time evolution of fixed wave-vector Green’s func-
tions G at M = 0.2 and My = 1.0 with wave-vector at various
values of the azimuthal angle ¢ on a circle of radius k = 2.2 in
the shear plane 6§ = 7/2 (k3 = 0): (a) ¢ = /12, (b) ¢ = /2,
(¢) p=Tr/12, (d) ¢ = 27/3
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Shih, Reynolds, and Mansour (1990) used an expression
similar to Eq. (18) and an incompressible form of Eq. (15a)
to obtain a closure model for the pressure-strain rate corre-
lation that corresponded to the linear LRR model. In the
incompressible case where the factor R(k, 0, ¢) is not present
in Eq. (15a), exact forms for both E(k) and Eq(k) are not
required in order to obtain a solution of Eq. (15a). Rather
they are obtained from the conditions imposed by the integral
relation between the Reynolds stress energy spectrum and the
Reynolds stress anisotropy tensor

/ d®kE;; = 2K <bij + %) , (192)
0

that is,

(e o] o0

/ BE(k)dk = K and / Fa(k)dk = 5K . (19b)
0 0

In the compressible case, where the factor R(k, 0, ¢) is present

in Eq. (15a), modeled forms for both FE(k) and Eq(k) are

required in order to evaluate the integral in Eq. (15a).

To summarize, Eq. (15a) is the final expression for the rapid
pressure-strain correlation which, after assuming models for
the isotropic and anisotropic spectra that are calibrated with
inputs from DNS; is used in the next section to compute its
components for various values of Mach numbers M and M.

COMPRESSIBILITY EFFECTS ON THE PRESSURE-STRAIN
CORRELATION

In order to assess the influence of compressibility, M; and
My, on the rapid part of the pressure-strain rate correlation in
shear flows, consistent spectral models for both the isotropic,
E(k), and anisotropic, Eq4(k), energy spectral densities are re-
quired. The rapid part II;; given in Eq. (15a) requires the
energy spectrum tensor E;; given in Eq. (18) which is com-
posed of the isotropic, E(k), and anisotropic, F,(k), energy
spectral densities. For the isotropic energy spectral density,
the Von Karman spectrum is chosen and is given by, for ex-
ample, by Pope (2000),

kL

(e R

17/3
E(k) = Ce*/3~5/3 [ ]
where C' = 1.5 is the Kolmogorov constant, ¢ is the isotropic

dissipation rate associated with K, L is the length scale de-
fined as K3/2 /¢, and

3
cr = [57”5)“ (21)

1y 3
—3-C| ~3.72,
55 T(2)

is a low wavenumber scaling coefficient extracted from the
condition on the isotropic energy spectral density given in
Eq. (19b) (I'(n) is the Gamma function). Here the low
wavenumber behavior E(k) o k* is assumed. A model for
the anisotropic energy spectral density Eq(k) can be devel-
oped from an inertial range model proposed by (Lumley 1967)
for the one-dimensional shear stress spectrum based on sim-
ilarity considerations for pure shear flow (A12 = 1). As
with the isotropic energy spectral density distribution E(k),
a two-range model is also assumed for the anisotropic energy
spectral density Fq(k). It is assumed here that the isotropic
and anisotropic energy spectral densities have the same low-
wavenumber behavior. This leads to a two-range model for



T,

Flow 7 S Lt b2 b12
ML 2.5 0.6 5.89 0.6 0.15 -0.10 -0.13
BL 0.55 0.14 5.56 1.5 0.18 -0.14 -0.14

Table 1: Parameters held constant in the mixing layer (ML)
and boundary layer (BL) cases of the pressure-strain rate
computations. Here Ly is the transverse integral scale, L =
K3/2 /¢ with K the turbulent kinetic energy and e the turbu-
lent dissipation rate, u = \/(2k) is the velocity fluctuation, 71
is the decorrelation time scale, and b;; denotes the Reynolds
stress anisotropy tensor.

Eq (k) given by

kL 19/3

(kL)% + Cqr]/? '

(22)
where the coefficients C, and C, ;, are determined as discussed
below.

M,
Eo(k) = Cq (ﬁ) el /3=7/3 {

The implications of the analytical solution, Eq. (15a), for
the rapid II;; are now explored for two prototypical flows,
the shear layer and the boundary layer, choosing a separate
set of parameters to typify each flow. For each flow, the re-
quired parameters are as follows. My, and M; govern the
Green’s function response in spectral space, Eq. (12). The
Von Karman spectrum, Eq. (20), used here as a model for
E(k), is parameterized by the length scale ratio, La/L. The
anisotropic energy spectral density, Eq(k), modeled by the
two-range spectrum, Eq. (22), requires knowledge of the nor-
mal stress anisotropies b1; and b22, the length scale ratio
Ly/L, and the time scale ratio T, (= S*K*/e*). The decor-
relation time scale, 77 in Eq. (14) is also required.

The parameters summarized in Table 1 are held constant
and the pressure-strain correlation is calculated for the range
0 < M; < 0.4 for the mixing layer and the boundary layer.
The upper value of M; corresponds to a mixing layer with
convective Mach number M. ~ 1 and to a boundary layer
with free stream Mach number, M, =~ 4.5, so that this study
covers a wide range of speeds of interest. The mixing layer
entries correspond to centerline values collected from the M.
0.7 DNS database of Pantano and Sarkar (2002). Implicit is
the assumption, supported by DNS, that the parameters in
Table 1 do not change substantially with Mach number. For
the boundary layer, values from the log-layer (y =~ 94) in the
M = 2.25 database of Pirozzoli, Grasso, and Gatski (2004)
are used to obtain the entries in Table 1. Both these flows are
two-dimensional in the mean with the mean velocity gradient
tensor A;p, = A;pd110n2. In these flows, the ratio of My/M; is
found from DNS results to be 2.5 for the mixing layer (Pantano
and Sarkar 2002) and 0.55 for the boundary layer (Pirozzoli,
Grasso, and Gatski 2004), a difference that will be seen to have
remarkable consequence. From the DNS data for the mixing
layer, the centerline mean density p ~ 1, and from the DNS
data for the boundary layer, the log-layer (y* ~ 94) mean
density p = 0.71,

The behavior of the streamwise component, II;1, in the
boundary layer is shown in Fig. 3(a). Clearly, Fig. 3(a) shows
that there is large reduction in the magnitude of 111, a factor
of 3 at My = 0.4 (convective Mach number, M, ~ 1). This
value is of the same order as the factor of 3.3 reduction at
M. = 1 inferred from the ‘Langley experimental data’ and
the factor of 2.5 reduction observed in the M. = 1.1 data
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Figure 3: Variation of the streamwise component of the
pressure-strain rate term as a function of turbulent Mach num-
ber: (a) Mixing layer, (b) Boundary layer.

of Pantano and Sarkar (2002). Clearly, there is only a small
reduction in magnitude (less than 10%) of I111 in the boundary
layer for the same range of M; (free stream Mach number up
to 4.5), in accord with expectations. Compressibility effects
on the other components of II;; have also been examined. The
magnitude of all normal components decrease substantially in
the shear layer but show little change in the boundary layer.

CONCLUSIONS

A systematic construction of the rapid pressure-strain rate
correlation for compressible flow has been carried out starting
from a convective wave equation that governs the behavior of
the turbulent pressure fluctuations in homogeneous turbulence
with a uniform velocity gradient. The formal solution of the
fluctuating pressure equation in terms of the Green’s function
for the convective wave operator allows for the construction
of the pressure-strain rate correlation in terms of the energy
spectrum tensor. Unlike the incompressible case where details
of the spectrum are not required, it is necessary here to in-
troduce both the isotropic energy spectral density as well as a
form for the anisotropic energy spectrum to explicitly obtain
the pressure-strain correlation. Thus, functional forms derived
for the rapid pressure-strain in the case of compressible flow
are significantly altered relative to their incompressible coun-
terparts where pressure fluctuations are assumed to satisfy a
Poisson equation instead of a convective wave equation.

The case of homogeneous shear that is considered here has
required the determination of the applicable Green’s function,



found here to be a combination of parabolic cylinder functions.
The Green’s function is oscillatory in time with variable fre-
quency and amplitude. Owing to mean shear, its behavior
in wave-vector space is highly anisotropic; for instance, the
amplitude and frequency of downstream propagating waves
exhibit monotone decrease while, depending on the specifics,
upstream propagating waves may exhibit strongly nonmono-
tone variation of frequency and amplitude. Once the Green’s
function is derived, closure of the rapid pressure-strain cor-
relation is achieved through a spectral model that assumes
Kolmogorov scaling of the isotropic energy spectrum in the
inertial range and an anisotropic spectral density that is lin-
ear in the Reynolds stress anisotropies and in the mean shear.

The final expression for the rapid pressure-strain rate cor-
relation in uniform shear flow involves two different measures
of compressibility: the gradient Mach number, My, and the
turbulent Mach number, M. It has been argued before that a
reason for the much larger influence of compressibility on the
pressure-strain correlation in a mixing layer compared to that
in a boundary layer is that My is larger in the former flow.
In order to assess this claim, the pressure-strain correlation is
evaluated for the mixing layer and the boundary layer using
DNS data specific to each flow for fixing auxiliary quantities
required in the calculation. It is found that when the turbulent
Mach number varies in the range 0 < M; < 0.4 (equivalently,
the convective Mach number varies as 0 < M. < 1) in the
mixing layer calculations, the streamwise component of the
pressure-strain rate correlation decreases substantially, almost
a factor of three, in good agreement with the observed trend
in DNS data and that inferred from experimental data on the
thickness growth rate. For the same range of M, there is little
change of the pressure-strain rate correlation in the boundary
layer. Thus, the analysis performed here supports the im-
portant role of the gradient Mach number in determining the
stabilizing effect of compressibility in shear flows.

Although the uniform shear flow solution is able to identify
the essence of My and M; effects in turbulent shear flows,
it is recognized that the details would depend on specifics
of each flow, for example, the flow-specific Green’s function.
The derivation of such Green’s functions in future work would
be useful. Furthermore, development of the analysis into a
pressure-strain model for compressible flow applications and
the testing of such a model could also be a topic for future
work.
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