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ABSTRACT

A hybrid approach connecting large eddy simulation (LES)
with the Reynolds-averaged Navier-Stokes (RANS) modeling
in the near-wall region is studied. In contrast to most of
the previous studies that have employed linear eddy-viscosity
models, in this study, an advanced non-linear eddy-viscosity
model is introduced to resolve the near-wall stress anisotropy
more correctly. The proposed model is applied to a periodic
hill flow with massive separation, as well as fundamental fully-
developed plane channel flows. In the calculations, various
grid resolutions are used to investigate the model performance
in detail. The present model provides encouraging results for
further development of this kind of hybrid LES/RANS model.

INTRODUCTION

Large eddy simulation (LES) is well known as a promis-
ing way to predict complex turbulence and turbulent scalar
transfer. Although LES needs far fewer grid nodes compared
to direct numerical simulation (DNS), there still remains a
serious difficulty in its application to high Reynolds-number
(Re) flows. For instance, reasonable LES for a channel flow
needs a grid resolution such as Azt ~ 100 (z: the stream-
wise direction) and Azt ~ 20 (z: the spanwise direction) in
the near-wall region, as well as Ayt ~ 1 in the wall-normal
direction, where the no-slip condition is specified at the wall
surface. Note that ( )T denotes a value normalized by the
friction velocity u,. When LES is applied to the channel
flow at Re, 10%, where Re; (= u,H/v) is the Reynolds
number based on the half channel height (H) and the friction
velocity, the aforementioned grid resolution Azt = 20 means
Az =2 x 1073H (i.e., 500 grid points per H in z-direction),
which is unrealistic for a practical LES. Such being the case,
the requirement of the grid resolution for high Re LES is sig-
nificant.

To overcome this difficulty, a great deal of effort has gone
into the development and improvement of the LES model. The
key factor is how we can reduce the computational cost in the
near-wall region for high Re turbulent flows. One promis-
ing approach may be, what is called, the “hybrid LES/RANS
model.” It is originally based on the concept of a hybrid
model connecting LES with Reynolds-averaged Navier-Stokes
(RANS) modeling in the near-wall region. So far, a number
of research groups have tackled this challenging problem (see
for example, Balaras et al. 1996; Nikitin et al. 2000; Hamba
2001; Piomelli et al. 2003; Davidson and Peng 2003; Batten
et al. 2004; Hanjalic et al. 2004; Temmerman et al. 2005).
Every approach has provided encouraging results and useful
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knowledge for the development of such a hybrid model.

On the other hand, very few studies have been reported re-
garding detailed discussion on the near-wall turbulence when
hybrid LES/RANS models are applied to flow predictions.
The main reason is that most of the previous LES/RANS
models have adopted linear eddy-viscosity models (LEVMs),
which can never predict the near-wall anisotropy correctly.
However, this issue is becoming more important because the
RANS model always covers the near-wall region in a hybrid
LES/RANS model. This is, naturally, of particular concern in
relation to scalar (heat and mass) transfer at walls, in which
the turbulence property of the near-wall layer plays a crit-
ical role. When an LEVM is used in the near-wall region,
any advanced scalar-transfer model based on the generalized
gradient-diffusion hypothesis (GGDH, Daly and Harlow 1970)
or its higher-order extension (Suga and Abe 2000; Abe and
Suga 2001) can never be applied because it needs the correct
near-wall limiting behavior of the Reynolds-stress anisotropy.
As the first attempt for this purpose, Abe (2005) proposed
a hybrid LES/RANS approach with an advanced non-linear
eddy-viscosity model (NLEVM) to resolve the near-wall stress
anisotropy more correctly.

The present paper is a contribution to the ongoing search
for a better hybrid LES/RANS approach applicable to high
Re complex turbulence. In this study, the hybrid model by
Abe (2005) is applied to a periodic hill flow with massive
separation, as well as fundamental fully-developed plane chan-
nel flows, with various grid resolutions. By processing the
computational results, the present study discusses the model
performance in detail.

TURBULENCE MODELS
Governing Equations

The filtered (or Reynolds-averaged) governing equations for
an incompressible turbulent flow may be written as

8,U; =0 (1)

2

where ( ) denotes a filtered value in the LES region or a
Reynolds-averaged value in the RANS region, respectively.
In Eq. (2), p, P, U; and v respectively denote density, fil-
tered static pressure, filtered velocity and kinematic viscosity.
The sub-grid scale (SGS) stress 7;; is originally expressed as
Tij = TUJ — Uin, Note that 7;; coincides with the general
expression for the Reynolds-stress tensor in the RANS region,
Tij = Usuj, where u; is defined as u; = U; — U;.

DtUi =—(1/p) 8,?+8j {I/ (ajUi + ain) - Tij}



NLEVM in the RANS Region

In order to improve the prediction accuracy in the near-wall
region, an anisotropy-resolving algebraic turbulence model is
introduced in this study. The Reynolds stress u;u; in the
RANS region is modeled as follows (Abe et al. 2003; Abe
2005):

ugu; = 2]6(52'7‘/3—2]{}7'03 [1 + {1 — fw (26)} fsl} Sz'j
+4kT2CpCh {1 — fu (26)} { = (Sik%; — QuikSk;)

®3)

where k(= Wu;u;/2) is the turbulence energy. In Eq. (3), Sy
and §2;; respectively denote the strain-rate tensor and the vor-
ticity tensor as

+ (1= fo2) (SinSk; — S%6:;/3) } + 2k “bi

Sij = (0,Us +0:U;) /2, Quy = (0,U; —0:U;) /2 (4)

The model function fy, is modeled as follows (Abe et al. 1997):

fu (&) = exp {— (n*/)*} (5)
where £ is a prescribed constant. In Eq. (5), n* (= (ve)/4n/v)
is the non-dimensional wall distance with Kolmogorov scale
(Abe et al. 1994), where ¢ is the dissipation rate of k and n is
uniquely determined as the shortest distance from all the wall
surfaces. In the model, the characteristic time scale 7 and the
model coefficients are as follows (Abe et al. 2003):

T=uw/k, wvi=Cufuk?/e

fu

{1 + (35/35’/4) exp {~ (Rt/30)3/4}} {1 = fu (26)}

1
1+ 2 (CpT)202+ 2 (Cpr)? (2 - 5?) fp

Cp

fs1 = fr1fr2Cs1 (CpT)? (92 — SZ)
fs2 = frifra {14 Cs2Cp7 (2= S)}

QQ_SZ
Q2 + 52’

52
Q%+ 82

SZ = SmnSmn, QZ = QnnQmn, S=V 521 Q=vQ?

fBZl"FCnCDT(Q_S), fr1i= fra =

Cp =08, C,=012, C,=100

Cs1 =0.15C,, Cs2 = 0.07C, (6)

where Ry(= k?/ve) is the turbulent Reynolds number.

In Eq. (3), “bs; is introduced to improve the predictive
performance of the near-wall stress anisotropy as follows (Abe
et al. 2003):

1 ;4
“bi; = fu (26) |:_aw§ (didj - %dkdk)

1+ Curg2VS202

+ (1 - fr12) 4° {

(Sikaj - Qikskj)

’chw ( 672]' 2) }:|
——— | S;xSk; — —S 7
1+ CwTd252 ik kyj 3 ( )
where
d; = Ni/\/NpNg, N;=0in

T4 = {1 = fu (15)} (k/) + fu (15) buw/v/e (8)
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In this study, the following combined model is used to repre-
sent the near-wall fragment:

Ybij = fr “Tbij + (1= fr) “bis

fr =exp [-3{1— fu (26)} (k/2) VS?]
Wb = Bq. (7) with (0w =1, Buw =1/4, 7w = 1.5,
6w =10, Cy=0.5)
w2, — Bq. (7) with (aw =0, Bw = 13/30, 7w = 0.6,

6w =3.0, Cy=10) (9)

Turbulence energy and its dissipation rate are determined
from the usual form of the transport equations:
Dik =05 {(v+vi/o) Ok} + P — ¢ (10)
Die = 8 {(v + vi/0c) Dje} + Ce1 (e/k) P — Cea f- (% /k)
(11)

where P, = —uinc')jUi is the production term of k£ and
Ce1 =145, C.2 =1.83,

O = 1~2/ft7 Oz = 15/ft

ft =145.0fu (5)

fo=[1-03exp {~(R/6.5° }] {1 - fu (3.3)}  (12)

SGS Model in the LES Region

In this study, the model expressions in Egs. (3) — (8) are
also adopted for modeling 7;; in the LES region (Abe 2005).
The turbulence energy k and the dissipation rate ¢ in the
model expressions are replaced for the SGS values, kg and
€g, respectively. In the present model, following the previous
studies (Inagaki et al. 2002; Bardina et al. 1980; Horiuti
1993), ks and £g are modeled as follows:

~

2
ks = (Ck/2) (ﬁi —Uz') , es=ks¥?/A + 2wks/n?,

—

where () denotes the filtering operator, for which the Simp-
son rule is used.

The time scale 7 in Eq. (6) is modeled as follows (Abe and
Suga 2001):

T=Cs{l— fu(26)}A/\/ks, Cs=012  (14)

As for ¥b;; in Eq. (7), the following model constants are
adopted:

Ybi; = Eq. (7) with (o =0, Bw =13/30, ~w = 0.6,
0w =6.0, Cw =1.0) (15)
In calculating 74 in Eq. (8), k and ¢ are simply replaced by

ks and eg, respectively.

The Present Hybrid Approach
In this study, 7;; in Eq. (2) is modeled as follows:

Tij = (1= fnb) Wl gans) + frb Tij L ps) (16)
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Figure 1: Hill-flow geometry.

where fp,; is the model function to connect the LES and RANS
regions smoothly. In Eq. (16), fp is close to 1 in the region
away from the wall, where full LES is adopted. On the other
hand, the RANS calculation is performed in the near-wall re-
gion, where f; must become close to 0. In this study, the
following expression is used for fpy:

Jrp =1—exp {— {n/ (Cro &) }6]

A” = \/max (AwAy, AyAz, AzAx): Chb =4.0 (17)

TEST CASES AND COMPUTATIONAL CONDITIONS

To investigate the model performance, the aforementioned
hybrid LES/RANS model was applied to two flow configura-
tions. The first was a fully-developed plane-channel flow. The
Reynolds numbers tested were Re, = 395 and 10000, based on
friction velocity (ur) and the half channel height (H). For the
former case, DNS data were reported by Morser et al. (1990).
In the calculations, the grid number was 31 () x 61 (y) x 31
(z) for both Reynolds numbers. In particular, several grid res-
olutions (A} =0.1, 0.2, 0.4) were employed at Re; = 10000 by
changing the domain size (6 H x 1.5H, 12H x 3H, 24H X 6 H).
Note that the grid resolutions were respectively A”Jr =1000,
2000 and 4000 in wall unit, while yIal ; ~ 1 in the wall-normal
direction.

The second test case was a periodic-hill flow illustrated in
Fig. 1. The presence of massive separation between consec-
utive hills allows the model to be investigated for conditions
representative of complex separated flows. The Reynolds num-
ber was 21200, based on mean velocity (Up) and channel height
(3.036H, H: hill height). In the calculations, the spanwise
(z) width was 4H, while the grid resolution was controlled
by changing the grid numbers (61 (z) x 61 (y) x 31 (z), 61
x 61 x 16, 61 x 61 x 9). Note that the grid resolutions
in z-direction were Az =0.13H, 0.27H and 0.5H, respectively.
For this geometry, highly-resolved LES data were reported by
Temmerman et al. (2003).

Calculations were performed with the finite-volume proce-
dure STREAM of Lien and Leschziner (1994a), followed by
several improvements and substantially upgraded by Apsley
and Leschziner (1999). This method uses collocated storage
on a grid. The second-order central difference scheme was used
for the discretization of each term, except for the convection
terms of k (Eq. (10)) and € (Eq. (11)) which were discretized by
the UMIST scheme (Lien and Leschziner, 1994b), a TVD im-
plementation of the QUICK scheme. The solution algorithm
is based on the SIMPLE scheme. As for the time integration,
the second-order Crank-Nicolson scheme was employed.
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Figure 2: Computational results of channel flow (Re, = 395,
31 x 61 x 31, 6H x 1.5H, A = 0.1H).

RESULTS AND DISCUSSION

Channel-Flow Case

Figure 2 compares the results at Rer = 395 for the grid res-
olution of A} = 0.1, corresponding to the flow domain of 6H
X 1.5H. As seen in the figures, the predicted profiles of mean
velocity and Reynolds-shear stress are smooth and acceptable.
Concerning the Reynolds normal stresses, all the components
are generally predicted well, though some overestimations are
seen for streamwise turbulence. Good performance is obtained
in the near-wall (RANS) region, while some suppression of the
energy redistribution from the streamwise to the wall-normal
and spanwise components is seen in the switching region, re-
sulting in a little stronger stress-anisotropy prediction.

Figures 3 and 4 give the calculated results at Rer = 10000.
First, the results of the full LES are shown in Fig. 3 with
the grid resolution of A =0.05 (61 x 61 x 61, 6H x 1.5H).
The predictions give considerable errors. Although a finer grid
resolution is used, typical features of LES with a coarse grid
resolution are seen in Fig. 3. This is caused by a very high
Reynolds-number condition for the grid resolution used. The
mean-velocity profile shows a considerable shift up from the
well-known log-law profile. This also means serious underes-
timation in values of the skin friction coefficient.

On the other hand, as seen in Fig. 4, the present hybrid
model provides encouraging results for both the mean veloc-
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Figure 3: Computational results of full LES (Re, = 10000, 61
x 61 x 61, 6H x 1.5H, A|;+ = 500).
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Figure 4: Computational results of channel flow (Re, =
10000, 31 x 61 x 31).

ity and the Reynolds shear stress, though slight differences are
still seen among the velocity profiles with different grid reso-
lutions. In all cases, the mean-velocity profiles are connected
smoothly between the LES and RANS regions. It is also
understood that the profiles of the total (resolved+modeled)
Reynolds shear stress are reasonable and show no conflict with
known results.

Hill-Flow Case

Figure 5 gives overall views, in the form of model-predicted
streamfunction plots. In the figure, the results of the present
hybrid model with different grid resolutions are compared to
those by the highly-resolved LES data by Temmerman et al.
(2003). Note that the lines indicating fz, = 0.5 are also shown
in Figs. 5 (b)—(d) for reference. The reattachment length for
the highly-resolved LES data is 4.72H (Temmerman et al.
2003), while the hybrid model returns 4.94H (Az = 0.13H),
5.25H (Az = 0.27H) and 5.92H (Az = 0.5H), respectively.
Although the present hybrid model generally returns a reason-
able separation bubble, some overprediction is seen especially
for the case with the grid resolution of Az = 0.5H. However,
having considered that 0.5H is in fact the half hill height (very
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Figure 5: Streamlines of hill flow.

coarse grid resolution), it is thought that the present model
performance is encouraging for practical engineering applica-
tions.

Figure 6 shows mean-velocity distributions at four stream-
wise positions, ©/H = 2, 4, 6 and 8. The first and second
positions are in the recirculation zone, x/H = 6 is a short
distance behind the reattachment point, while z/H = 8 cuts
across the windward side of the hill where the flow is subjected
to strong acceleration. These four locations may be claimed
to represent regions in which several distinctly different types
of flow conditions are encountered in the present configura-
tion. As seen in the figure, the present hybrid model generally
gives reasonable predictions of the mean velocity. First, in
case of Az = 0.13H, fairly good agreement is obtained at ev-
ery location. In case of Az = 0.27H, some overestimation is
seen in the recirculation region (z/H = 4), though the present
model still gives reasonable agreement at the other locations.
On the other hand, considerable differences are seen in case of
Az = 0.5H, corresponding to the overestimation of the reat-
tachment length, as was described before.

Figure 7 compares distributions of the predicted total (re-
solved+modeled) Reynolds shear stress. Although the present
hybrid model generally gives reasonable predictions, a consid-
erable underprediction is seen at z/H = 2 in case of Az =
0.5H. On the other hand, at ©/H = 4 in case of Az = 0.13H,
the predicted maximum shear stress is higher than that of
the LES by Temmerman et al. (2003), though mean-velocity



xH 2
3 - &JOOOOO -
2 L a
£
1 a
0 " 1 " 1
0 LES(Ref) o Present
UM,
(a) Hybrid (61 x 61 x 31, Az = 0.13H)
xH 2 4 6 8
3 &:ooooo d'nocoo J:nooo ,,,,,, oz -
o
2 s ]
il
£
1 u
0 " 1 " 1
0 1.2 LES(Ref) o Present
UM,

(b) Hybrid (61 x 61 x 16, Az = 0.27H)

8

!DOO -:m

LES(Ref) o Present

UMJ,
(c) Hybrid (61 x 61 x 9, Az = 0.5H)

Figure 6: Mean-velocity profiles of hill flow.

profile shows good agreement. Generally, the Reynolds shear
stress would be expected to go hand-in-hand with the pre-
diction accuracy of shear strain (i.e., mean-velocity profile).
However, this link ignores the influence of the pressure gra-
dient in the momentum balance, and thus it is not always
possible to uniquely relate the two, except for a special case
such as a fully-developed channel flow. As seen in the figure,
it may be possible that the present results tend to give some
overestimations of the Reynolds shear stress compared to the
LES by Temmerman et al. (2003), mainly caused by far fewer
grid nodes used in the calculations.

The streamwise and wall-normal components of the
Reynolds normal stresses are compared with the highly-
resolved LES data in Fig. 8. The present model returns
reasonable trend of the stress anisotropy, though quantitative
agreement is insufficient even for the finest grid-resolution case
(Az =0.13H). As mentioned before, however, the present cal-
culation used far fewer grid nodes. For example, the number
of grid nodes for the case of Az = 0.13H was about 1.2 x 10°,
while 4.6 x 108 nodes were used for the LES by Temmerman
et al. (2003)). Having considered this fact, it is said that
the present hybrid model is promising from the engineering
viewpoint.
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Figure 7: Reynolds shear stress profiles of hill flow.

CONCLUDING REMARKS

A hybrid approach connecting LES with the RANS mod-
eling in the near-wall region was studied. In contrast to most
of the previous studies that employed linear eddy-viscosity
models, the present model adopts an advanced non-linear
eddy-viscosity model (NLEVM) to resolve the near-wall stress
anisotropy more correctly. The model was applied to a peri-
odic hill flow with massive separation, as well as fundamental
fully-developed plane channel flows, with various grid resolu-
tions. The main conclusions derived from this study are as
follows:

e It has been confirmed that the introduction of an
anisotropy-resolving NLEVM is very effective in improv-
ing the accuracy of the total (resolved+modeled) Reynolds
stresses predicted in the near-wall region.

e The present hybrid LES/RANS model gives reasonable
mean-velocity profiles and skin-friction coefficients for a
high Re channel-flow case at Re, = 10* (Rep, ~ 5 x 10°).

e The present hybrid LES/RANS model generally performs
well in a periodic hill low with massive separation, though
some errors are still seen in cases with coarser grid resolu-
tions.
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