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ABSTRACT

Pattern formation in a rotating Rayleigh-Bénard convec-
tion configuration is investigated for moderate and rapid rota-
tion in moderate aspect-ratio cavities. While the existence
of Kiippers-Lortz rolls is predicted by theory at the onset
of convection (Kiippers and Lortz, 1969; Busse and Clever,
1979), square patterns have been observed in physical (Ba-
jaj et al., 1998) and numerical experiments (Sanchez-Alvarez
et al., 2005) at relatively high rotation rates. Direct numer-
ical simulation (DNS) of the Boussinesq equations becomes
progressively more difficult as the rotation rate is increased
due the presence of increasingly thin Ekman boundary layers
and fast inertial waves. In addition to presenting numerical
results produced from DNS of the full Boussinesq equations,
we derive a reduced system of nonlinear PDEs valid for con-
vection in a cylinder in the rapidly rotating limit. Reduced
equations have been of great utility in the investigation of
rapidly rotating convection on the infinite plane (Julien et al.,
1998, 2005; Sprague et al., 2005)

INTRODUCTION

Rotating Rayleigh-Bénard (RB) convection has impor-
tant applications in geophysical and astrophysical flows as
well as industrial applications (Boubnov and Golitsyn, 1995;
Knobloch, 1998; Bodenschatz et al., 2000). In this paper, we
consider Rayleigh-Bénard convection in a closed cylinder with
radius R and height H that is under uniform rotation (with an-
gular velocity ) about the vertical axis and has a temperature
difference AT imposed between the top an bottom surfaces.
We focus on pattern formation near the onset of convection
and under rapid rotation for ¢ = (AT/AT. — 1) << 1 where
AT, is the temperature difference at which convective motion
sets in. We are primarily interested in the formation of square
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patterns and Kiippers-Lortz (KL) rolls (Kiippers and Lortz,
1969; Ecke and Liu, 1998; Ning and Ecke, 1993). KL rolls is a
time-dependent state where rolls lose stability to rolls of an-
other orientation. While the existence of KL rolls is predicted
by theory (Kiippers and Lortz, 1969; Busse and Clever, 1979),
precessing square patterns have been observed in physical (Ba-
jaj et al., 1998) and numerical experiments (Sanchez-Alvarez
et al., 2005) carried out for cavities with moderate rotation
rates and aspect ratios; the formation mechanism is not well
understood.

Flow in this configuration is well described by the Boussi-
nesq equations ((Chandrasekhar, 1961)) in a cylindrical coor-
dinate system (r, 0, z):

__ R
Diu+E Zxu PVp+2-2T + V2u+ C
g

V-u 1¢9r(7’u)—‘f-lagv—i-@zwzo (1)
r r

DT o~ Iv2T

where u = (u,v, w)T7 Dy =09; +u-V, pis pressure, P is the
Euler number, ¢ = v/ is the Prandtl number, E = v/(QH?)
is the Ekman number, where v is the kinematic viscosity, s
is the thermal diffusivity, Ra = gaATH?3/(vk), where g is
gravity and « is the coefficient of thermal expansion, 7" is the
temperature anomaly,
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We restrict our investigation to the case where the sidewalls
are insulated, and no-slip conditions are employed on all
boundaries.

Direct numerical simulation (DNS) of the above system
becomes progressively more difficult as the rotation rate is
increased:

e Boundary layers on the top and bottom surfaces become
increasingly thin as the rotation rate is increased, viz.
Ay ~ O (El/z); these must be spatially resolved,

e fast inertial waves exist; these reduce the allowable size
of time steps, viz. Qf ~ O (E71).

It is for these reasons that, even with modern computers, DNS
of the Boussinesq equations for very large rotation rates (F —
0) is prohibitive if not impossible.

In this paper we discuss recent results (Serre et al., 2003;
Sénchez-Alvarez et al., 2005), for slightly supercritical pattern
formation in Rayleigh-Bénard convection in a cylinder pro-
duced with direct numerical simulation and somewhat large
finite rotation rates. In an effort to promote study in the
rapidly rotating regime, we introduce a set of equations for
RB convection in a cylinder, but derived asymptotically in the
limit of rapid rotation. Reduced equations developed in the
rapidly rotating limit for RB convection on a plane infinite in
the horizontal have shown much success (Julien and Knobloch,
1998; Julien et al., 2005; Sprague et al., 2005) in capturing
the important characteristics expected for convection in the
rapidly rotating regime. In the rapidly rotating limit, Ekman
boundary layers are passive (Julien and Knobloch, 1998), and
do not affect the leading-order characteristics of the flow. Fur-
ther, for A < O(E1/3), the reduced equations filter the fast
inertial-gravity waves. It is for these reasons that accurate
numerical simulation of the reduced equations can readily be
achieved. It is hoped that solutions to the reduced model dis-
cussed here, will yield insight into the physics of convection in
a rapidly rotating closed cylinder.

DNS FOR FINITE ROTATION RATES

Direct numerical simulation of the full Boussinesq equations
(2) in a cylinder is achieved with a Fourier-Galerkin method in
the azimuthal direction, which involves one Helmholtz equa-
tion for each dependent variable and each Fourier mode.
These equations are solved with a pseudo-spectral Collocation-
Chebyshev discretization in both the radial and axial direc-
tions. Velocity-pressure coupling is achieved with an improved
projection scheme; time integration is semi-implicit second-
order accurate (Serre and Pulicani, 2001). Initial studies
(Sénchez-Alvarez et al., 2005) have found good agreement with
experimental results for both bulk (Bajaj et al., 1998) and
sidewall modes of convection (Ecke and Liu, 1998; Ning and
Ecke, 1993).

Figure 1 shows the sequence of patterns in the “steady”
regime for increasing Rayleigh numbers and for E~! = 548,
I'=R/H =5, 0 = 6.4. The first transition to a convective
state is through a sidewall mode (figure 1(a)). The sidewall
mode consists of a traveling wave, which is rotating in the

1090

Table 1: Characteristics parameters of sidewall convection.

Ra I E1  wy k
Ecke & Liu (1998),
Experiments 21380 5 548 —3.5 ~
Ning & Ecke (1993),
Experiments 21600 2.5 542 —3.6 4.39
Mercader & Net
(2001), lin. ana. 22000 2.5 540 —3.5 3.6
Sanchez et al.,
(2005), DNS 21380 5 548 —3.8 4.2

retrograde direction. The onset of bulk convection occurs at
Ra = 32870, which is not the Kiippers-Lortz state. Indeed,
the bulk convection starts from the cavity center (r = 0) and
extends filling the bulk as Ra is increased. There exists a
range of parameters where this cellular pattern “crystallizes”
and forms a square lattice that is rotating in the prograde
direction and much slower than the wall mode. These results
agree with experiments performed in moderate aspect-ratio
cavities (Bajaj et al., 1998). At higher Rayleigh numbers the
flow in the cavity becomes turbulent.

a)

Figure 1: Temperature at mid-height for E—! = 548, I' = 5,
o = 6.4. Dark regions are warm up flows and bright regions are
cold down flows. (a) Ra = 21380: sidewall convection mode,
(b) Ra = 33500: rotating square pattern convection mode
reminiscent of the Kiippers-Lortz instability, (¢) Ra = 40000:
spatially disordered pattern.

The main characteristics of sidewall convection are in agree-
ment with experiments (Hermann and Busse, 1993; Ecke and
Liu, 1998) and linear stability analysis (Tu and Cross, 1992;
Goldstein et al., 1993; Net and Mercader, 2001). In Table 1,
the results of the literature are summarized together with the
present ones; good agreement is found.

The patterns found in the bulk has similar characteristics
to those found by Bajaj et al. (1998). In Table 2 we give
the characteristic parameters of the pattern on the bulk. The



angular velocity of the square lattice 254 tends to zero with e
going to zero. This indicates that the first bifurcation of the
system is not a Hopf bifurcation. It was also found that Qsq
decreases for larger cylinder aspect ratios.

Thus, two modes of convection coexist simultaneously in
the cavity. Both are clearly distinguishable in space: the wall
mode remains confined near the sidewall, while the square pat-
tern fills the bulk of the cavity. Moreover, their characteristic
time scales are vastly different as shown Fig. 2 by the tempo-
ral evolution of the temperature; the time behavior is chaotic
in the bulk, while it is oscillatory close to the sidewall.

Table 2: Characteristics parameters of bulk convection.

r 1! o Rac Ra Qsq(d®/v)~1 k&
33000 0.4 x 10~3 8.4
5 548 6.4 32870 33500 0.5x 1073 8.5
34320 ~ 8.0
33000 0.2x 10~2 8.4
3 548 6.4 32468 33500 0.5 x 10~2 8.6
34320 0.8 x 10~2 8.9
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Figure 2: Temporal evolution of the temperature at mid-
height for E~1 = 548, I' = 5, and ¢ = 6.4 and at a point
close to the sidewall (top) and a point in the bulk (bottom).

REDUCED MODEL FOR RAPID ROTATION

As discussed in the Introduction, reduced sets of equa-
tions for Rayleigh-Bénard convection in an infinite plane have
been developed asymptotically in the limit of rapid rotation
(E — 0) (Julien et al., 1998, 2005; Sprague et al., 2005).
These reduced equations are appealing for numerical simu-
lation as they filter fast inertial waves and remove the need to
resolve Ekman boundary layers, which are passive (Julien and
Knobloch, 1998). Direct numerical simulation of the reduced
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equations have been performed for an infinite plane (Julien
et al., 2005; Sprague et al., 2005). For the infinite plane, DNS
of the reduced equations is accomplished with a Chebyshev-
Tau discretization in the vertical and periodic Fourier modes
in the horizontal. Time integration is achieved with a third-
order semi-implicit Runge-Kutta algorithm. Figure 2 shows
an example simulation result for rapidly rotating convection
in an infinite plane.

In this section, we follow the asymptotic derivation of
(Sprague et al., 2005), but for Rayleigh-Bénard convection in
a closed cylinder with insulated boundary conditions; a more
thorough discussion of this derivation may be found in (Julien
and Sprague, 2005). For our derivation, we begin with the
Boussinesq equations (2), but we use the horizontal length-
scale of convection L as our length for nondimensionalization
(rather than the cell height H). The resulting momentum
equations are

Dtu+A22E_1/z\><u:ﬁVp+Agaprm+vzu+0 (2)
where Ay = H/L; the form of the temperature and continu-
ity equations are unchanged. Following (Julien et al., 2005;
Sprague et al., 2005), we employ a multiple-scales expansion
in space and time. We introduce a large scale Z = A}lz, over
which the columns are modulated (cell height; 0 < Z < 1),
and 7 = A7, is a slow time (Az, Ar > 1). We therefore

employ the substitutions

1
O — Ot + A—ar

-

1
0y — 02 + A_ZaZ»
to yield

1 _
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By taking the average of the continuity equation (3c) over fast-
time and small-spatial scales, we find 97w = 0, which implies
w = 0 due to impenetrable boundary conditions, and where
the overbar defines the averaging operation

_ 1

Z, lim =
1z P imeo 1227 R

t
/t_,é

Applying the average operation to the temperature equation
(3b), we find

27 R
/ / f(r,0,2,Z,t,7)rdrd0dzdt (4)
0 0

A9 T + A, 97 (Tw) = ProtA,%0%T (5)

where we have utilized 0,T|p = 0 (insulated sidewalls). As-
suming T = T(r, Z) + T'(x, Z,t, ) in (3), where T’ = 0, and
subtracting the mean-temperature equation (5), we find the



fluctuating-temperature governing equation
1 ’ w el ’ —1lg 777N
(Dt + —67—)T + —8z(T+T ) — AZ 82(Tw) = (6)
Ar Az
prl (VQT’ +Ag2a§T’) (7)
Averaging the vertical-momentum equation in (3) yields

— _ Ra —
-1 _ -1 _
AZ asz—fAZ Pazp+WT+’7 (8)

where

27
R Orw|p dodzdt

7,7) = _lim =
V(2= i R 25 Jo

We subtract (8) from the vertical-momentum equation in (3)
to yield

1 w 1 —
Dy + — L Ogw— —dzw? =
( t+AT>“’+Az 20,07
P (~0.p— 450200 7))
Ra
A%P’r

+ T'+V2w+A§28%w77 9)
where we have utilized w = 0.

Following (Julien et al., 2005; Sprague et al., 2005), we
expand dependent variables v = (u, p, T,T")T in terms of the
small parameter ¢ = E1/3

v =vo 4 evi + 2va + O(e), (10)
and, without loss of generality, choose the scalings
Az=¢', A,=c2 Ra=¢"Ra (11)

where the scaled Rayleigh number Ra is an O(1) quantity.
Note that this is the scaling selected by linear theory Chan-
drasekhar (1961). From the mean-temperature equation (5),
we find at O(1)

97 (Towo) =0 (12)
where we have utilized w = 0. As with the upright, infinite-
domain case (Sprague et al., 2005), we take T = 0 because
the choice of wg = wy = 0 would preclude the convective flow

dynamics that we are interested in. At O(e), we find from the
mean-temperature equation

8-,—?0 + 9z (Tllu)o) = PT‘&%TQ

where we have utilized T§ = 0, and the fluctuating-
temperature equation at O(e) is

DOT{ + wodzTo = Pr=1v2Ty (13)

From the average-vertical-momentum equation (8) we find

that P = O(e~2) for leading-order hydrostatic balance. Fur-
ther, we take P = e~2Ra/Pr to yield

920 =To (14)

If we consider the momentum equation (3a), we find at O(e~2)

Vpo =0

and at O(e~ 1) we obtain the geostrophic balance

Z X =—-——V
z X uo Pr P
Finally, at O(e®) we find
_ Ra _ Ra_
D?u0+z>< u = _EVPQ—’_ [—82 (p1 —pl)Tl'] EZ
+  V?uo+ Co — 70z
In summary, the resulting closed system is
V- ug
V-ui +0zwo =
Ra
zZ X = ——V
z X ug Pr p1
DIT| + wodzTo = Pr-v2Ty (15)
8:-To + 8zT1/w0 = P?“_laéfo
8ZI_J() = TO

Dfug+Zxu; =
Ra .
+ [0z (p1—Py) +17] B E + Co

It can readily be shown from (15a,c) that all dependent vari-
ables obey the Taylor-Proudman theorem (Proudman, 1916;
Taylor, 1923) in that they are invariant in the small-scale ver-
tical direction, i.e., 9, = 0. From (15a) the flow is horizontally
non-divergent. However, wo remains O(1).

Following Sprague et al. (2005), we incorporate a stream-
function formulation where the leading-order velocity is given
by

1 T
o = (—;f‘w, o, vi¢)

where V| = (ar,r—lag, O)T. Under this formulation,

Pr
P1 = =
Ra

Similar to quasigeostrophic flows (Salmon, 1998) pressure is

the geostrophic stream-function. It is this constraint that is
responsible for filtering the fast inertial waves discussed above.

By applying z- to the (15g), we find

HVio+J (6.V16) +0z (v-¥) =
Ra
ET{JFVi‘i’*’YO (16)
where J (f,g) = %arfagg — %89f8rg is the Jacobian. Finally,
applying z-V x to the momentum equation, we find after some
algebra

WViY+J (0, Vi) —9zV3ie=Viy (17)

where Viz/] is the leading-order vertical vorticity. It is in-
teresting to note that the terms in Cg collapse into the the
Jacobian term or the Laplacian (appendix E in (Petersen,



2004)). Finally, the temperature equations are

nT{ +J (¥, T{) +V3¢8,T = Pro'viTy
0:To+0zT{V2¢ = Pr'o3To (18)
Equations (16-18) constitute a closed system. Note that

vertical diffusion in (16-18) does not appear because it is
sub-dominant. It is this property that relaxes the need to
resolve the Ekman boundary layers at the horizontal plates.
However, Stewartson layers (A ~ O(E'/4); Pedlosky (1987))
at the vertical sidewalls are contained within this reduction
which resolves all motions greater than O(E1/3).

It is interesting to note that the form of the system (16-18)
is very similar to that for an infinite plane (Sprague et al.,
2005), where there is no vp and u is composed only of fluctu-
ating quantities. A further discussion of the above derivation
and numerical solution may be found in a future publication
(Julien and Sprague, 2005).

In summary, we believe that the reduced equation set re-
ported in (16-18) are advantageous over the Boussinesq equa-
tions (2), which have prohibitive spatio-temporal resolution
requirements as £ — 0.
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Figure 3: Representative results for temperature at the mid-
plane of an infinite plane with e 0.03 and Pr 6.4.
Dark regions are warm upflows and bright regions are cold
downflows. Results were produced with DNS of the reduced
equations derived for £ — 0 (Sprague et al., 2005; Julien et al.,
1998). The spatial grid is composed of 33 Chebyshev modes
in the vertical and 1282 Fourier modes in the horizontal.
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