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ABSTRACT

This paper reports the development of a refined wall-
function strategy for the modelling of turbulent forced convec-
tion heat transfer over smooth and rough surfaces. In order to
include the effects of fine-grain surface roughness, the present
study extends a more fundamental work on the development of
advanced wall functions of general applicability. The presently
proposed model is validated through comparisons with data
available for internal flows through channels and for external
flows over flat and curved plates with both smooth and rough
surfaces. The validation results suggest that the presently pro-
posed form can be successfully applied to a wide range of heat
transfer problems over smooth and fine-grain rough surfaces.

INTRODUCTION

Although many recent low-Reynolds-number (LRN) turbu-
lence models perform satisfactorily, industrial engineers still
routinely make use of classical wall-function approaches for
representing near-wall turbulence and heat transfer. One rea-
son for this is that, despite advances in computing power,
their near-wall resolution requirements make LRN models pro-
hibitively expensive in complex three-dimensional industrial
heat and fluid flows. This is particularly true for flows over
rough surfaces, which are common in industrial applications.
Since one cannot hope to resolve the details of small wall-
roughness elements, the wall-function approach is the only
practical strategy for such industrial applications.

Despite the above comments, in contrast to many other
modelling issues, wall-functions have received little attention
over the last few decades. Consequently, the strategies in use
have, for the most part, been those proposed in the 1970’s
that assume semi-logarithmic variations of the near-wall ve-
locity and temperature, and either a constant, or at most a
linearly varying, total shear stress between the wall and the
near-wall node (e.g. Launder and Spalding, 1974). However,
it is well known that such conditions do not apply in flows with
strong pressure gradients and separation. Moreover, since a
universal scale for turbulent buoyant thermal boundary layers
has not been established yet, it is difficult to use empirical
wall-functions for such phenomena (Hanjali¢, 2002).

For rough wall turbulence, there have been several attempts
to replace the wall-function approach, e.g. Aupoix and Spalart
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(2003), etc. Although these extensions overcome some of the
defects of the classical wall-function, they still require a fine
grid resolution near the walls. Moreover, there are very few
references to alternative approaches for computing rough wall
heat transfer in the literature.

In order to address industrial requirements, the UMIST
group recently proposed an alternative wall-function strategy
for flow over smooth walls which, while still semi-empirical
in nature, makes assumptions at a deeper, more general level
than the log-law based schemes. The approach is called the an-
alytical wall-function (AWF) and integrates simplified mean
flow and energy equations analytically over the control vol-
umes adjacent to the wall, assuming a near-wall variation of
the turbulent viscosity (Craft et al., 2002). The resulting an-
alytical expresions then produce the value of the wall shear
stress and other quantities which are required over the near
wall cell. Following this strategy, the present authors extended
the AWF to include the effects of fine-grain surface roughness
on the flow field, and successfully validated the approach in
several rough-wall turbulent flows involving separation and
reattachment (Suga et al., 2005).

This subsequent study focuses on extending and validating
the AWF for forced convection rough wall heat transfer. The
presently proposed model is validated through comparisons
with data available for internal flows through channels and for
external flows over flat and curved plates with both smooth
and rough surfaces.

WALL-FUNCTION APPROACH

Although the wall-function approach is well known, it may
be useful to recall the main features of its implementation.
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Figure 1: Near-wall grid arrangement.



A simplified transport equation for ¢ near walls:
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can be integrated using the finite volume method over the cells
illustrated in Fig.1 giving
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where S_d> is the averaged source term over the cell P. Note
that z is the wall parallel coordinate while y is the wall nor-
mal coordinate. (Although two-dimensional forms are written
here, extending them to three-dimensions is straightforward.)

When the wall parallel component of the momentum equa-
tion is considered (¢ U) the term (I'd¢/dy)s in Eq.(3)
corresponds to the wall shear stress 7., (= péU/8y|w ), while
in the energy equation it corresponds to the wall heat flux gu.
Instead of calculating these from the standard discretization,
they are obtained from the algebraic wall-function expressions.

In the case of the transport equation for the turbulence
energy k in incompressible flows, the averaged source term
over the wall adjacent cell is written as

(4)

The terms Pj, and Z thus also need to be provided by the
wall-function.

Sk = pPy — pe = p(Pr, —%).

AWF for smooth wall heat transfer

Before discussing the extension for rough wall heat trans-
fer, it is useful to summarise the standard AWF by Craft et
al.(2002).

In the AWF, the wall shear stress and heat flux are obtained
through the analytical solution of simplified near-wall versions
of the transport equation for the wall-parallel momentum and
temperature. The main assumption required for the analytical
integration of the transport equations is a prescribed variation
of the turbulent viscosity p¢, expressed using y (= yvkllp/z/u)
as the thickness of viscosity dominated sub-layer as

(5)

In the context of Fig.2, the near-wall simplified forms of
the momentum and energy equations become

pt = max {0, ap (y* —y5)}.
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Figure 2: Near-wall cells.
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Table 1: Model coefficients.

«a <t Cp  Yys  Yye  Prie
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cr

where Pr: is a prescribed turbulent Prandtl number, taken
as 0.9. Further assumptions are that convective transport and
the wall-parallel pressure gradient P/dx do not change across
the wall-adjacent cell. Thus, the right hand side terms Cyy and
Cr of Egs.(6) and (7) can be treated as constant. Then, the
equations can be integrated analytically over the wall-adjacent

cell giving
Pr(Cry*+AL)

{ p{l+aPr(y*—y5)/Pri}’
Further integration to obtain U and © is also straightforward.
The integration constants Ay, Ap etc. are determined by ap-
plying boundary conditions at the wall, at y, and the point n.
The values at n are determined by interpolation between the
calculated node values at P and N, whilst at y, a monotonic
distribution condition is imposed by ensuring that U, © and
their gradients should be continuous at y = .

The result is that the wall shear stress and wall heat flux
can be expressed as
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The local generation rate of k, P(= I/t(lji—g)Q), is written
as

0, if y* <y’

P, = k " "
akp (, —:m(

Cyy*+A! z
u{lfay(yt—yi)}) Ay >
(12)
which can then be integrated over the wall-adjacent cell to
produce an average value P, for use in solving the k equation.

For the dissipation rate ¢, the following model is employed:

|

The characteristic dissipation scale y- can be defined as y} =
2cy to ensure a continuous variation of € at y.. Thus, the cell
averaged value is obtained as

2wkp/y2, ify < ye

; 13
kL5 /(coy), if y > ye. (13)
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The value of the constant y; was optimized to be 10.7
through numerical experiments. The other model coefficients
are listed in Table 1.
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Table 2: Cell averaged generation: Py, and integration constant: Ag.

case Py
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Table 3: Coefficients in Eq.(22).
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Extension for rough wall heat transfer

In common with conventional wall-functions, the extension
of the AWF strategy to flows over rough surfaces involves the
use of the dimensionless roughness height, h*. In this case,
however, h* is used to modify the near-wall variation of the
turbulent viscosity. More specifically, ¥ is no longer fixed at
10.7, but instead it becomes a function of h* as

Yo =Yoo {1 — (R7/70)™} (15)

m = max { (0.5 — 04 (’;—0)07) , (1 —0.79 (%)‘”8) }

(16)
The function for the index, m, has been determined through
a series of numerical experiments and comparisons with avail-
able data. For y; > 0, corresponding to transitional roughness
with h* < 70, the analytical solutions derived for smooth walls
can still be used, but with the above modified value for y.
When y; < 0, corresponding to a fully-rough surface with
h* > 70, the viscosity-dominated sub-layer is destroyed.
Unlike in a sublayer over a smooth wall, the total shear
stress now includes the drag force from the roughness ele-
ments in the inner layer which is proportional to the local
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velocity squared and becomes dominant away from the wall,
compared to the viscous force. This implies that the convec-
tive and pressure gradient contributions should be represented
somewhat differently across the inner layer, below the rough-
ness element height. Hence, the practice of simply evaluating
the rhs of Eq.(6) in terms of nodal values needs modifying.
In the present study a simple approach has been taken, by
assuming that the total shear stress remains constant across
the roughness element height. Consequently, one is led to

oo = {

In the energy equation, Pr¢ is also no longer constant
over the wall-adjacent cell. The reason for this is that, since
the fluid trapped behind a roughness element forms a ther-
mal barrier, the turbulent transport of the thermal energy
is effectively reduced relative to the momentum transport.
(The results of rib-roughened channel flow DNS by Nagano
et al.(2004) support this consideration since the obtained tur-
bulent Prandtl number increases significantly toward the wall
between the riblets.) Thus, after a series of numerical ex-
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Figure 3: Modelled turbulent Prandtl number distribution.

periments, the following form has been adopted within the
roughness elements (y < h).

Pr¢ = Prg° + APry (18)
APry = Comax(0,1 —y*/h™) (19)

5.5
Co=—————+-+06 20
O T (jr0)es (20)

Although it might be better to model the distribution of Pry
with a non-linear function, a simple linear profile (Eq.(19))
is assumed in the roughness region of y < h as illustrated in
Fig.3. Note that since the turbulent viscosity is defined as
zero in the region y < y,, the precise profile adopted for the
turbulent Prandtl number in the viscous sub-layer (y < yv)
does not affect the computation. Over the rest of the field
(y > h), Pry = Prg® is applied.

The analytical solutions of both mean flow and energy
equations then can be obtained in the four different cases illus-
trated in Fig.4. Note that it is assumed that the wall-adjacent
cell height is always greater than the roughness height. Even
in the case without any viscous sub-layer (case(a)), the resul-
tant expressions for 7, and ¢., are of the same form as those
of Eqgs.(10) and (11). However, different values of Ay and Ap
are obtained, corresponding to the four different cases.

In Table 2, the cell averaged generation term P, and Ay
are listed, introducing Y* = 1+a(y* —y}). Note that Eqgs.(13)
and (14) are still used for the dissipation, and the integration
for Py in Table 2 can be performed as follows.

Cy+ A 2
/(y—yv) (—1+a(y_yv)) dy

_C? , C(2A+Cy, —2C/a) (A+ Cyy — C/a)?
22 o? o2[1+ a(y — yo)]
ST Oy = CJo)(At Oy =5C)0) |

a?
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For heat transfer, the resultant form of the integration con-
stant A7 can be written as

Ar = {w(©n — ©y)/Pr+ CrE}/D (22)
@[N] ® [y () (CYNEY:
L] o yv______!______
- £ 2
h

Figure 4: Near-wall cells over a rough wall.
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Figure 5: Mean temperature in channel flows at Pr = 0.71;
lines with symbols: AWF-+k — ¢, solid thin lines: log law
profiles.

where the coefficients D and E are listed in Table 3, defining
ar = aPr/(Pr), Br = Co/(h*Pre), YoT =1+ ap(y* —
y3), YPT =14 Br(y* —y;), and Xy = YT + Brh*.

In the case of constant wall heat flux conditions, the wall
temperature is obtained by rewriting Eqgs.(11) and (22) as

Prquw PrCrE
Op =0, + 1/2D—|— n (23)
pepkp

RESULTS AND DISCUSSIONS

The CFD code used in this study is a finite-volume code
STREAM (Lien and Leschziner, 1994). The code employs the
SIMPLE pressure-correction algorithm on a non-orthogonal
collocated grid system with the third order MUSCL type
scheme for convection terms. The AWF has been implemented
with the “standard” linear k —e (Launder and Spalding, 1974)
and also with a cubic non-linear k—e model (Craft et al., 1996:
CLS) for the core-region flow turbulence. For the turbulent
heat flux in the core-region, the usual eddy diffusivity model
with a prescribed turbulent Prandtl number Pr: = 0.9 is used.

Channel flows

Fig.5 shows the mean temperature distribution in turbulent
channel flows at Re = 10° and Pr = 0.71 on a variety of
computational grids. In the smooth wall case (h/D = 0),
with any grid spacing, the AWF well reproduces the result of
the LRN k — ¢ model (Launder and Sharma, 1974: LS) and
the log law (Johnk and Hanratty, 1962):

ot =33+221ny". (24)

The meshes used have 49, 19 and 14 nodes across the channel,
resulting in wall-adjacent cell heights of Ay; /D =0.015, 0.045,
0.09.

In the cases of rough walls with h/D = 0.01,0.03, it is
clear that the AWF well reproduces the log law distribution
for rough walls (Kays and Crawford, 1993):

" 1 Pre 32.6y+

T 0.8Re, 02pr—04i | & Rey,

(25)

where Re;, = u-h/v and k = 0.42. Note that in the case of
h/D = 0.03, the corresponding roughness Reynolds number
is Rep, ~ 220 which is well in the fully rough regime, while
h/D = 0.01 corresponds to Rej ~ 60 which is still in the
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Figure 6: Friction coefficient C'y in rough wall boundary layers.
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Figure 7: Stanton number distribution in rough wall boundary
layers at Pr = 0.71.

transitional roughness regime. For each roughness case, pro-
files from more than one grid are plotted. Since the AWF is
quite insensitive to near-wall grid size, discrepancies between
the profiles are hardly seen.

Flat plate thermal boundary layers

Hosni et al.(1991) measured Stanton number St distribu-
tion in zero pressure gradient isothermally heated rough wall
boundary layer flows. They arranged hemispherical rough-
ness elements on the base of their wind tunnel. According to
Schlichting (1979), their cases of L/d = 2, 4 respectively corre-
spond to 0.63, 0.1 mm of the equivalent sand grain roughness
heights h. Consequently, the flow regimes correspond to the
fully rough (Rej, = urh/v ~ 120) and the transitional rough-
ness regimes (Rejp ~ 16), respectively.

Fig.6 compares the friction factor Cy distribution obtained
by the AWF with the standard k — ¢ model and the experi-
mental results. It is confirmed that the predicted profiles are
reasonable for the rough wall cases as well as the smooth wall
case.

Fig.7 shows the comparison in the distribution of St. It
can be seen that the present predictions accord well with the
experimentally obtained values. For the surface with L/d = 4,
the increase in St over the smooth wall case is about 40%; and
for L/d = 2 the increase is about 75%. This increase of St due
to the roughness is correctly predicted. Note that the profile
of the experimental smooth wall case is from the correlation
shown in Hosni et al.(1991):

St = 0.185(log o Rey )~ 2584 pp=0-4, (26)

Fig.8 compares the mean temperature distribution at the
point of Re, = 10%. The log law lines are from Eq.(25). Al-
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Figure 8: Mean temperature in rough wall boundary layers at
Pr = 0.71; lines with symbols: AWF+k — ¢, solid thin lines:
log law profiles.

Figure 9: Flow geometry of the convex rough wall boundary
layers of Turner et al.(2000).

though the predicted profiles are a little lower than the log
law profiles, the agreement is satisfactory.

Curved wall thermal boundary layers

Heat transfer along curved surfaces is very common and im-
portant in engineering applications such as in heat sinks and
around turbine blades. Thus, although the AWF itself does
not explicitly include sensitivity to streamline curvature, it is
useful to confirm its performance when applied in combina-
tion with a turbulence model which does capture streamline
curvature effects. Hence, the turbulence model used here is
the cubic non-linear k — e model (CLS).

For comparison, the rough wall heat transfer experiments
over a convex surface by Turner et al.(2000) are chosen. The
flow geometry is shown in Fig.9. (Since its curved section is so
short, it is impossible to discuss fully developed characteristics
of the curved flow. However, as far as the present authors
are aware, other such fundamental measurements have not
been reported in the literature.) The working fluid was air
at room temperature and the wall was isothermally heated.
The comparison is made in the cases of trapezoidal shaped
roughness elements. According to Turner et al., the equivalent
sand grain roughness height h is 1.1 times the element height.

Fig.10 compares the Nusselt number Nu distribution un-
der zero pressure gradient conditions. Fig.10(a) shows the
case of h = 0.55mm. The inlet velocities of Uy = 40, 22m/s
respectively correspond to Rep =~ 90,50 and thus they are in
the full and the transitional roughness regimes. In the case
of h = 0.825mm, shown in Fig.10(b), Uy = 40,22m/s cor-
respond to Rej =~ 135,80 which are both in the fully rough
regime. From the comparisons, although there can be seen
some discrepancy, it is recognised that the agreement between
the experiments and the predictions is acceptable in both the
full and transitional roughness regimes.

Fig.10 also shows the effects of the wall curvature on the
heat transfer coefficients in the case of Uy = 40m/s. (The
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0.005

0.0045 | AWF+CLS 1

Expt.
concave surface
0.004 a convex surface

0.0035 | 9
0.003 L.
0.0025 |

St

0.002 4

0.0015 |
0.001 9
0.0005 | 9

0L s L L L L
400

X(mm)
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wall boundary layers at Pr=0.71.

curved section is in the region of 300mm < z < 698mm.)
Although the curvature effects observed are not large, since the
curvature is not very strong, they are certainly predicted by
the present computations with the AWF and cubic non-linear
k — e model. Turner et al.(2000) reported that the curvature
appeared to cause an increase of 2 to 3% in Nu. Computations
are consistent with this experimental observation. However,
it is normally recognised that the turbulence along a convex
surface tends to be damped as does the heat transfer, unlike
in Turner et al.’s cases. Thus, additional tests on curved flows
are made as follows.

Fig.11 shows the Stanton number distribution in bound-
ary layers over the convex and concave surfaces of Gibson et
al.(1984). For both the convex and the concave cases, the
curved section whose radius is R = 0.41m starts at the point
x = Omm. In the smooth wall cases, the computation reason-
ably predicts the experimental profiles in which the Stanton
number is reduced along the convex surface while it increases
along the concave surface. In contrast to this general tendency,
in the initial region of curvature, the Stanton number increases
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slightly along the convex surface before it starts to decrease.
Consequently, St on the convex surface is greater than that on
the concave surface in the region 0 < z < 100mm. In the case
of the concave surface, there can be seen the totally opposite
profile of St.

In the rough wall cases with h = 1mm, the tendency of St is
the same as for the smooth wall, although its magnitude is in-
creased due to the wall roughness. There are no experimental
data for rough walls, but the computation clearly suggests that
in the initial stage of the convex curvature, the heat transfer
increases before starting to decrease as the flow develops, and
in the concave case the opposite tendency can be seen. Turner
et al.’s measurements were in the initial stages of the convex
surface curvature, and thus the tendency shown by both the
experiments and the present computations does appear con-
sistent.

CONCLUDING REMARKS

An extended version of the AWF for rough wall heat trans-
fer is proposed and validated in fully developed channel, de-
veloping flat plate boundary layer and curved boundary layer
flows. The concluding remarks from the present study are:
(1) The effect of wall roughness on heat transfer has been mod-
elled by introducing a dependence on equivalent sand grain
roughness into the turbulent Prandtl number.

(2) The present AWF model can be applied successfully to
rough wall heat transfer and reproduces the log law profiles of
rough wall mean temperatures without significant grid depen-
dency.

(3) The combination of the AWF and the cubic non-linear k—e
model has been shown to predict heat transfer from a curved
rough wall with reasonable accuracy.
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