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ABSTRACT

A reformulation of the Large Eddy Simulation (LES)
equations is presented, based on an alternative decomposi-
tion of the subgrid stress tensor leading to a modified
Leonard term, which becomes an integral part of the LES
equations. This formulation clearly emphasizes the differ-
ence between Reynolds Average Navier-Stokes (RANS)
models and LES. The reformulated LES model is tested on
several well-established flows, such as jet flows, channel
flows and the flow past a circular cylinder and a prolate
spheroid, and the results are compared with results from
conventional LES and data. For the simpler cases at lower
Re-number, the differences between the models are small,
while on the more complicated cases at higher Re-number,
the proposed model shows improved behaviour as com-
pared to the conventional LES model.

INTRODUCTION

Large Eddy Simulation (LES) is based on the idea of sepa-
rating scales, and separates the flow into two regimes by
means of the convolution f(x,t):G(x,A)*f(x,t), where
G(x,A) is the filter kernel of width A. The first regime,
comprised of large scales that can be resolved on the grid,
is computed using a space time accurate algorithm. The
other regime, the small, unresolved, scales, ranges from
the grid-scale cut-off down to the Kolmogorov scales. Ap-
plying the filtering procedure to the incompressible Na-
vier-Stokes Equations (NSE) yields,

3, (V)+V-(V&V)=—Vp+VS-VB+m", V¥=0 (1)
where B=v®v-V®V is the subgrid stress tensor and m"'=
[G*V](v®v+pl-S) the commutation error, where [G*,
VIf=Vf-Vf, Sagaut (2001). Both VB and m" are sub-
ject to modeling, and are thus often combined. The direct
computation of the large, energy containing eddies (being
geometry and flow dependent) gives LES more generality
than Reynolds Averaged Navier-Stokes (RANS) models,
which model the full spectrum of turbulent motions. Sub-
grid modeling is necessary to close (1) and to include the
effects of the small, unresolved, eddy scales.

Here, we derive a modified formulation of the LES
equations which clearly emphasizes the difference betwe-
en RANS and LES, and embodies primarily a re-definition
of the components in B that results in less stringent model-
ing requirements. Moreover, a framework is proposed and
tested for subgrid modeling in this new setting. Finally, re-

1077

sults from the proposed LES approach are presented for jet
flow at Re=95,000; fully developed turbulent channel flow
at Re =395, 595 and 1800; flow past a circular cylinder at
Re=3900 and 140,000; and flow past a prolate spheroid at
a=10° and 20° angle-of-attack at Re= 1.610°. Improved
agreement with reference data is found, primarily at the
high Re number cases, suggesting that the proposed for-
mulation better represents the energy redistribution betwe-
en the resolved and unresolved scales.

MATHEMATICAL AND PHYSICAL

CONSIDERATIONS

A prerequisite when developing models for B is that the
model inherits all the essential mathematical and physical
properties of B, cf. Fureby & Tabor (1997), Vreman et al,
(1994) and Speziale (1985). The principle of frame indif-
ference states that all physical laws which hold in a dy-
namic process are the same for any observer, i.e. in every
frame of reference =. Hence, all well-posed LES models
must have the same transformation properties as the unfil-
tered NSE under a change of frame I—>X* given by
x*(X,t)= c(t)+Q(t)x(X,t) and t*=t. Here, X is the mate-
rial points occupying the body D, ¢(t) a translation and
Q(t) a rotation. From ¥(x,t)=G(A)*v(x,t), it follows that
the filtering is frame indifferent if G=G (Ix|,A). By differ-
entiating the change of frame and by using v(x,t)=
X(X(x,t),t) it follows that the subgrid velocity fluctua-
tions transform as v'*=Qv’ which further implies that v’
is invariant under =—>Z*. From the chain rule of differ-
entiation and the definition of the change of frame it fol-
lows that V*=QV and 9.=d,, whereas the constitutive
equations for a linear viscous fluid, S=2vD, transforms as
S*=QSQT, since D*=QDQ". Hence, the LES equations
(1) transform as the unfiltered NSE provided that
B*=QBQ" . When developing subgrid models for the sub-
grid stress tensor B, the model of the subgrid stress tensor
should satisfy this constraint.

CLASSICAL DECOMPOSITION AND MODELING
By applying the decomposition v=v+v' to the first term
(i.e. the v®v term) in the definition of the subgrid stress
tensor B this tensor can, following Sagaut (2001), be de-
composed as follows,

B=(@—V@VHﬁ—?®7)+(V®v’+v’®V)+(v’®v’)

2
=L+C+R @



where the different component stress tensors can be ascrib-
ed different physical meanings, Pope (2000). From (2) it is
clear that L can be computed explicitly and thus reducing
the modeling efforts to C and R. However, by analyzing
the transformation properties of L, C and R under Z—X*
it is clear that L. and C are not individually frame indiffe-
rent, whereas R is. This implies that if L is explicitly eva-
luated, C and R must be modeled individually, with mod-
els recognizing their individual transformation properties.
For R this is straightforward, since all subgrid viscosity
models are frame indifferent (as D*=QDQ" ) but develop-
ing models for C that satisfies C*=QCQ"+Z, where
Z=V'®(c+Qx)+(c+Qx)®V' results from the change of fra-
me, is not easy. If this leads to neglecting C whilst retai-
ning L and R, B will have incorrect properties.

The classical subgrid models are the Smagorinsky mo-
del (SMG), Smagorinsky (1963), and the One Equation
Eddy Viscosity Model (OEEVM), Schumann (1975), in
which B=—2ka , where v, is the subgrid viscosity. Close
to walls A, is usually changed to A=A(l-e™"*"*") to ac-
commodate a correct scaling of the subgrid stress com-
pentents as the wall is approached. In order to better han-
dle high Re-number wall bounded flows a subgrid wall
model was proposed by Fureby et al. (2004) and Wikstrom
et al. (2004), in which the subgrid viscosity v, in the first
cell adjacent to the wall is evaluated to comply with the
universally assumed law of the wall (hereafter denoted by
WM). The assumption behind this model is that the streaks
and ejection events are as frequent in wall-bounded flows
as are vortices in free flows.

REFORMULATION OF THE LES MODEL

As a direct remedy to the individual component stress ten-
sor modeling, we suggest that an alternative to the decom-
position in (2) in which the decomposition v=v+v' is ap-
plied to both terms in the definition of the subgrid stress
tensor B. Then, B can be decomposed as,

B=(V&V-VOV)+(VOV-VOV+V ®V-V'®V) 3)

+(V'®V'-v'®v')=L+C+R
where the different component stress tensors can be ascri-
bed similar physical meanings as before, but with one sig-
nificant difference; all three component stress tensors are
now frame indifferent. A similar decomposition was sug-
gested already in 1996 by Germano (1996), but on other
grounds. This suggests that we should reformulate the LES
equations in such a way that the modified Leonard term L
becomes an explicit part of the LES equations and not of
the subgrid stress tensor which, in turn, is redefined as the
sum of the modified cross and Reynolds stress tensors,

3, (V)+V(V@V)=—Vp+VS-V(VE&V-v@V-B)+m" @

B=C+R=(VOV-VOV'+V'@V-V'®V)+(V@V -V OV’

with V¥=0. In (4), the presence of the modified Leonard
term L=(VOV-v®V) clearly distinguishes them from the
RANS equations, emphasizing the importance of the smal-
lest resolved scales. This explicit and exact term is identi-
cal to the scale similarity model, Bardina et al. (1980),
found to have high correlation with DNS data. Closure
modeling is thus only required for the modified cross- and
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Reynolds terms, Cand R respectively, which now can be
modeled separately or together.

SUBGRID CLOSURE MODELING OF B

Next we will discuss possible_closure strategies for the
modified subgrid stress tensor B and its component stress
tensors C and R, respectively. In the simplest approach
B is modeled by a subgrid viscosity model,
B=C+R=-2v,D,, )
Alternatively this can be thought of as neglecting one of
the components of B. The resulting LES model, (i.e. (4)
closed by (5)) is then identical to the conventional LES
model (1) using the mixed model for closure of the subgrid
stress tensor B. Candidate subgrid models are the SMG
model, (Smagorinsky (1963)), the OEEVM, (Schumann
(1975)), or the Dynamic Smagorinsky (DSMG) model,
(Germano et al. (1991)). .

A more elaborate model for B is obtained if the origi-
nal structure of B is retained such that C and R are mod-
eled separately. Based on the physical processes repre-
sented by each of the components it is appropriate to
model R by a subgrid viscosity model i.e. R=—2vkﬁD,
with vy being evaluated using any of the previous sub-
models. A more difficult modeling problem arises when
considering C whose effects are less known. Instead of
using functional models we attempt to close this term by
using modern structural models as inspired by the ADM of
Stolz et al. (2001). Following van-Cittert (1931), an ap-
proximation v* to v can be computed by repeated filtering
of ¥V such that v¥=Gy *VmEio(l—G)k*V which in turn
leads to an approximation v* to v’ computed from
V*av* V=G #V-V=3 (1-G)*+¥ . Following Stolz et
al. (2001), this series expansion is truncated at N=5 result-
ing in V*=y*-V=(V-V)+(V-2¥+V)+.... Applying this ap-
proximation to the expression for the modified cross term
C finally yields,
B=C+R=(7OV*-T@V*+V*@V-v*@V)-2v, Dy, ©)
In the computations to be presented, the LES model (4)-(6)
will be compared to the conventional LES model (1), us-
ing eddy viscosity models for the closure of vy.

NUMERICAL METHODS

A finite volume method for arbitrary cell-shapes and a seg-
regated approach described by Weller et al. (1997), is used
to discretize the LES equations. The space discretization
uses high-order econstruction of the convective fluxes and
central differencing of the inner derivatives of the viscous
flux terms with compact 2™ order stencils and time inte-
gration is performed by explicit 2" order backward differ-
encing which thus guarantees overall 2" order accuracy
and low numerical diffusion. The pressure-velocity cou-
pling is handled with a PISO procedure based on a modi-
fied Rhie & Chow interpolation for the cell-centered data
storage structure. The equations are solved sequentially,
with iteration over the explicit source terms, with a Cou-
rant number of CFL<0.3.



ROUND TURBULENT JET FLOWS

The first test case is that of a round turbulent jet. We con-
sider a jet with Rep=95,500, Hussein ef al. (1994), based
on the jet-exit velocity, vy, diameter, D, and molecular vis-
cosity, v, emerging into ambient air with a co-flow veloci-
ty of vo. The velocity profile at the nozzle is assumed to be
top-hat shaped with no superimposed perturbations, e.g.
Hussein et al. (1994). The computational domain is cylin-
drical with a length of 60D and a diameter of 20D, and the
grid consists of 240x50x100 cells in the axial, radial and
tangential directions. The grid is refined in the jet-shear
layers around the nozzle, and stretched in other regions of
the flow. Conventional incompressible inflow and outflow
boundary conditions are provided together with circumfer-
ential freestream boundary conditions.

Figures 1a and 1b shows axial profiles of the time-
averaged axial velocity component (V,) and the corre-
sponding rms-velocity fluctuations v™=((v ~(v )*}?
respectively. Comparison is made with several experimen-
tal data sets, Crow & Champagne (1971), Lau ez al. (1979)
and Cohen & Wygnanski (1987). For the axial profiles of
(V) all LES models, both conventional and proposed, are
in good agreement with data, e.g. the length of the poten-
tial core is ~4.5D. Conceming the rms-velocity fluctua-
tions v{™ we find acceptable agreement between LES and
experimental data, with peak values occurring towards the
end of the mixing region. The proposed models, (4)-(6),
are however generally in better agreement with data than
the conventional LES model, in particular for x/D<15. The
reason for this is the improved prediction of the kinetic en-
ergy cascade rate of the proposed models.
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Figure 1. Round jet. Streamwise variation of the (a) stre-

amwise velocity component and the (b) streamwise rms-
velocity fluctuations on the medium grid.

In figure 2a and 2b we show radial profiles of (V)
and v™ at x/D=4, 8, 16 and 32. All LES are in reason-
able agreement with data, but with the proposed models
showing somewhat better agreement with the (v, ) data at
x/D=4, 8 and 16. For v™ we find that at x/D=4 both pro-
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posed models give better agreement with the data than the
original LES model, with (5) giving the best agreement. At
x/D=8 both proposed models again give better agreement
with the data than the conventional LES model but now
with (6) giving the best agreement. Note however that
none of the LES are able to reproduce the strong dip in
vi™ at x/D=4, whereas the corresponding dip at x/D=8 is
reasonably well reproduced.
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Figure 2. Round jet. Radial variation of the (a) streamwise
velocity component and the (b) streamwise rms-velocity
fluctuations at x/D=4, 8, 16 and 32 at the medium grid.

TURBULENT CHANNEL FLOW

The second test case is the fully developed turbulent chan-
nel flow. The channel is confined between two smooth pa-
rallel plates 2h apart, where h is the channel half-width.
The flow is driven by a fixed mass flow in the streamwise
(ex) direction. No-slip conditions are used in the cross-
stream (ey) direction and periodic conditions are used in
the spanwise (e,) direction. As initial conditions a parabo-
lic v distribution is used. For Re, =395 and 590, DNS data
is available from Moser et al. (1999) and for Re =1800 ex-
perimental data is available from Wei & Willmarth (1989).
The physical channel size is 6hx2hx3h in the streamwise,
cross-stream and spanwise directions, respectively. All
LES calculations use 60° grids with uniform spacing in the
streamwise and spanwise directions whereas the grid is
gemetrically clustered in the wall-normal direction so that
the spatial resolution varies between (Ax", Ay™, Az")=(40,
0.3, 20) and (180, 2, 90).

In figure 3a we compare the mean streamwise velocity
(V) (integrated over time, x and z) of the conventional
LES model (1) using the DSMG and OEEVM+WM clo-
sure models, and the proposed models ((4) together with
(5)-(6) and the wall model). At Re, =395 and 590 all LES
are in good agreement with the DNS data across the chan-
nel, suggesting that at high enough resolution the details of
the models are less important, and that the LES predictions
approach that of DNS. At Re=1800 differences between
the models are starting to appear: Both the OEEVM and



DSMG models overpredict the velocity between y'=50
and 200, whereas the OEEVM+WM, and the proposed
models, particularly that of (6) show good agreement with
data. This implies that the wall model is important, and
that this model is supported by the improved energy trans-
fer of the modified Leonard term in the proposed models.
In figure 3b we compare the predictions of the resolvable
axial rms-velocity fluctuation v™*=v™/u_, where now
VIS (T, —(V, N>, with DNS and experimental re-
sults, Wei & Willmarth (1898). At Re, =395 all LES mod-
els show good agreement with the DNS data across the
channel, however with a slight shift of the peak towards
higher y*. The DSMG models overpredict the peak value
by a few percent whereas the OEEVM+WM is slightly
more shifted towards higher y* values. At Re=590 the
scatter between the LES model predictions increases. Best
agreement is obtained with the proposed models, in parti-
cular (6). The previously observed shift of the peak value
towards higher y* values remains, and is somewhat more
pronounced as is the overprediction of the peak value for
the DSMG model. For Re,=1800 similar observations are
made, but with more pronounced effects.
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Figure 3. Fully developed turbulent channel flow. (a)
Mean streamwise velocity profiles at Re =395, 590 and
1800. The results for Re, =590 and 1800 are shifted 10 and
20 units, respectively, in the vertical direction. (b) Rms-
velocity fluctuation profiles at Re.= 395, 590 and 1800.
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FLOW PAST A CIRCULAR CYLINDER AT Re=
3900 AND Re=140,000

The third test case is that of the flow past a circular cylin-
der at Rep=3900 and 140,000. Comparison is made betwe-
en the traditional and proposed LES models and experi-
mental data, Lourenco & Shih (1993), Ong & Wallace
(1996) and Cantell & Coles (1983), at Rep=3900, and 140,
000. In both cases, the computational domain is of rectan-
gular form with a spanwise extent of 1.5zD. The cylinder
is located 10D downstream of the inflow and 20D up-
stream of the outflow, and the vertical extent of the do-
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main is 20D. The height of the first cell at the cylinder sur-
face is y'=10 for both Re-numbers, resulting in grids with
about 1.0-10° and 1.3:10° cells, respectively, with 48 cells
in the spanwise direction. Conventional incompressible in-
flow and outflow boundary conditions are used together
with periodic side condtions, slip conditions at the top and
bottom and no-slip cylinder wall conditions. Figure 4a and
4b show perspective views of both cases, in terms of iso-
surfaces of the second invariant of the velocity gradient, Q,
identifying vortical regions. The influence of the Re-num-
ber on the wake is evident: at Rep=3900 the wake is fairly
wide but at Rep=140,000 the width of the wake is much
narrower since separation moves downstream with incre-
asing Rep. The wake consists of curved shear layers en-
closing a region with vortices shed from alternate sides of
the cylinder. The complex 3D vortex structures (spanwise
quasi-2D vortices and longitudinal vortices) and the shear
layers are clearly visible, although the complexity of the
structures obscures the view.

Figure 4. Flow past a circular cylinder. Perspective views
of the flow at (a) Rep=3900 and (b) Rep=140,000 in terms
of iso-surfaces of the second invariant of the velocity gra-
dient tensor.

Figure 5a and 5b show the time-averaged streamwise
velocity, (V,)v,, for the Rep=3900 and Rep=140,000
cases, respectively, at different cross-sections. For Rep=
3900 the comparison between LES and experimental data
is satisfying. At x/D=1.06 and 2.02 very good agreement is
found, whereas at x/D=1.54 all LES” underpredict (v, )
with about 5%. Further downstream, at x/D=4.00, 7.00 and
10.0, good agreement is again obtained for all LES’. Vir-
tually no difference can be found between the different
LES, suggesting that at this resolution the influence of the
closure model is small. For Rep=140,000 we typically find
larger differences among the predicted profiles, and be-
tween these and the experimental data. This is caused by
the coarser resolution forcing the subgrid models to act in
a wider range of scales. In particular, at x/D=1.00, 1.50
and 2.00 we find that the OEEVM+WM results in a more
narrow wake as compared to the proposed models which
show good agreement with the data. All models overpre-
dict the peak reverse velocity with about 5% to 10%. Far
downstream (x/D=4 and 7), good agreement between the
predicted and measured velocity profiles is again obtained
for all LES models.
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Figure 5. Flow past a circular cylinder. Time-avearged ve-
locity at x/D=1.06, 1.54, 2.02, 4.0, 7.0 and 10.0 for (a)
Rep=3900 and at x/D=1.00, 1.50, 2.0, 4.0 and 7.00 for (b)
Rep=140,000.

FLOW PAST A PROLATE SPHEROID AT 10° AND
20° ANGLE OF ATTACK

The fourth case is that of the flow past a prolate spheroids
at 10° and 20° angle-of-attack, Barber & Simpson (1991)
and Chesnakas & Simpson (1996), in which a prolate
spheroid (with a length of L=1.37 m) was mounted on a
sting in a wind-tunnel of quadratic cross section. The free-
stream velocity is vo=46 m/s resulting in a body-length Re
number of Re;= 4.0-10° and the angle-of attack was a=10°
and 20°, Two grids with 0.8-10° cells (y*~30) and 1.6-10°
cells (y'=10) are used. Conventional incompressible in-
flow and outflow boundary conditions are used together
no-slip wall conditions. Following figure 6 the flow over a
prolate spheroid at an incidence contains a rich gallery of
complex 3D flow features. The flow separating from the
leeward side of the body rolls up into a vortex on each side
of the body and reattaches at the top-dead centre. This
primary vortex is at higher a values accompanied by a sec-

Figure 6. Flow around a prolate spheroid. Perspective
view from the stern of the cross-flow separation and the
longitudinal vortices around a 6:1 prolate spheroid at 20°
angle-of-attack. The flow is represented by surface stream-
lines, streamlines released on the hull and contours of the
instantaneous velocity magnitude at the cross-sections
x/L=0.600 and x/L=0.772
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ondary vortex that separates and reattaches higher up on
the body. The complex interaction between vortices is
strongly dependent on the angle of attack and the Re-num-
ber, and results in a highly skewed 3D-boundary layer.
Boundary layer detachment is almost always accompanied
by undesirable effects, such as loss of lift, increase in drag,
and the amplification of unsteady effects including fluctu-
ations in pressure. Prediction of 3D separation is hard and
constitutes one of the main obstacles to more widespread
use of CFD in analysis and design.

Figure 7a and 7b show the static pressure coefficient
C; in the meridian plane and as a function of ¢ at x/L=
0.772, respectively. As seen in figure 7a, the agreement
between LES and data for a=10° is very good. Along the
wind-ward side at the stern there is some discrepancy, pos-
sibly due to the fact that the support sting used in the ex-
periments is not included in the LES, see also Wikstrom et
al. (2004). Compared to the distribution at a=10° the LES
profiles at a=20° exhibit greater streamwise variation, cor-
responding to the stronger flow acceleration on the wind-
ward side and greater deceleration over the leeward side.
In figure 7b, the agreement between LES and experimental
data at a=10° is good with the exception of the sector
120°<g<150°, that corresponds to the region beneath the
primary vortex. For a=20°, C, shows the existence of both
a primary and a secondary separation on the body and the
agreement between experimental data and LES is reason-
able for the standard LES and slightly improved for the
proposed models. Figure 7c and 7d shows the time-
averaged boundary layer velocity profiles along rakes or-
thogonal to the hull at x/L=0.600, ¢=90° and x/L.=0.772,
@=60°, respectively. As shown by Wikstrom et al. (2004)
the conventional LES model, using the OEEVM+WM,
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Figure 7. Flow around a prolate spheroid. Comparison of
the static pressure coefficient, Cy, at (a) the meridian plane
and (b) at x/L=0.772, and the normalized velocity (U, V,
W) in the body surface coordinate system at (c) x/L=0.600
and @=90° and (d) x/L=0.772 and ¢=60°.

gives good agreement with the experimental data at three
out of four rakes, with the fourth rake located at x/L=
0.772, ¢=60°. From figures 7c and 7d it is clear that the
proposed model (4) using the closure model (5) give
equally good agreement with experimental data at x/L=



0.600 and =90°, as the conventional LES model, but con-
siderably better agreement at x/L.=0.772 and ¢=60°. In fact
very good agreement is also found between the proposed
model and the data at x/L=0.600 and ¢=60°, and x/L=
0.772 and ¢=90°. The main reason for this improvement is
that the predicted location of the primary vortex is in
closer agreement with the measured location using the
proposed model, the reason for which is believed to be the
improved handling of the smallest resolved scales, and the
associated interscale energy transfer, offered by including
the modified Leonard term in the LES equations.

CONCLUDING REMARKS

From this mathematical investigation it is found that a
modified Leonard stress tensor appears as an explicit term
in the LES equations, together with a true subgrid stress
term, composed of the modified cross and Reynolds stress
tensors, that have to be modeled. This new formulation
emphasizes the difference between RANS and LES, and
reduces the modeling requirements for LES, and at the
same time provides better correlations with DNS data in
canonical flows. Furthermore, both the modified Leonard
stress tensor, L, and each for the remaining two parts of
the subgrid stress tensor, the modified cross and Reynolds
stress tensors, are individually frame-indifferent which
simplifies the modeling and provides additional insight
into the subgrid flow physics. Comparison of predictions
from the proposed models and conventional LES models
show that the former provide improved results in a range
of flows.
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