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ABSTRACT

We propose a new model of turbulence for use in large-eddy
simulations (LES). The turbulent force, represented here by
the turbulent Lamb vector, is divided in two contributions.
The contribution including only subfilter fields is determinis-
tically modeled through a classical eddy-viscosity. The other
contribution including both filtered and subfilter scales is dy-
namically computed as solution of a generalized (stochastic)
Langevin equation between periodic reinitializations. This
equation is derived using Rapid Distortion Theory (RDT)
applied to the subfilter scales. The general friction opera-
tor therefore includes both advection and stretching by the
resolved scale. The stochastic noise is derived as the contribu-
tion from the energy cascade described by the aliasing. The
LES model is thus made of an equation for the resolved scale,
including the turbulent force, and a generalized Langevin
equation integrated on a twice-finer grid. The model is val-
idated by comparison to DNS and is tested against classical
LES models for isotropic homogeneous turbulence, based on
eddy viscosity.

INTRODUCTION

The need of Large Eddy Simulation (LES) modelisation is
rooted in our inability to handle all the degrees of freedom of
a large Reynolds number turbulent flow. The general strategy
of LES is to try to exactly handle the largest scales of the flow
while parameterizing the global effect of the subgrid scales.
Most of the LES models are designed to correctly reproduce
the dissipative part of the turbulent stress tensor via a tur-
bulent viscosity tuned so as to stabilize the flow. However,
the effect of subgrid scales is generally much more complex
than a simple dissipation. An important challenge for model-
ing is indeed to reproduce the complete energy transfer from
subgrid scales to resolved scales, a phenomenon sometimes
referred to as ”backscatter”. Pure viscosity models cannot
reproduce this phenomenon, even through negative viscosity.
Detailed investigations of the interactions between resolved
and subgrid scales have shown that a large part of the tur-
bulent tensor is due to interactions with scales down to half
the cutoff scales (Domaradzki et al., 1994). This behavior mo-
tivates the introduction of new type of models based on the
estimation of the largest subgrid scales to try to capture the
back-scatter. The estimated scales can be either a random

1073

process obeying given statistics, or can be inferred from an
analysis of the nonlinear terms of resolved scales (Domaradzki
and Saiki, 1997). Another class of models compute the subgrid
scales via approximate equations. These multi-levels models
can not be considered as LES models if the cost of the integra-
tion of small scales is too important. Dubois et al proposed a
dynamic multi-level model based on the hypothesis of approx-
imated manifolds (Dubois and Jauberteau, 1998). However,
the model implies as many degree of freedom as a Direct Nu-
merical Simulations (DNS).

Our strategy relies upon the modeling of the subgrid scales
by a stochastic process defined through an appropriate dy-
namic Langevin equation. The model is based upon Rapid
Distortion Theory (RDT). Our strategy to use an additional
approximate equation for the largest subgrid scales is close
to recent subgrid-scale estimation models advocated by Do-
maradzki and his collaborators (Domaradzki and Saiki, 1997)

One of the main difference is the choice of the subgrid
scales equation. In our model, we derived an equation for
the cross stress tensor from the Navier Stokes equation us-
ing the RDT hypothesis. The basic hypothesis of non-locality
in scales has been studied theoretically and experimentally for
different flows (Carlier et al., 2001, Dubrulle et al., 2002, Laval
et al., 2003, Laval et al., 2001). The model is derived inde-
pendently of the filter and does not require a deconvolution of
the filtered quantities. A similar model has already been suc-
cessfully validated in two-dimensional turbulence (Laval et al.,
1999, Laval et al., 2004).

In this paper, we derive the Langevin equation of the sub-
grid scales and test the model by comparison with DNS. Then
we explain how this model can be used in the LES context by
projection onto the near-cutoff subgrid scales. The resulting
model will be compared to several other existing LES models
for isotropic homogeneous turbulence.

DERIVATION OF THE MODEL
Consider a turbulent flow, with velocity field u(x,t) and
introduce a filtering procedure so as to separate it into a large-
scale field @ and a subgrid field u’ = u — u. The large-scale
field obeys a dynamical equation obtained by filtering of the
Navier-Stokes equation, which may conveniently be written as

(Wu et al., 1999):
du+ (@xu), +£, + (W xu'), =vAu

(1)



L=wxu +u xTu (2)
Here, w’ and @ are the subgrid and large scale vorticity and v
is the viscosity. The subscript 1 means divergence-free com-
ponent. The interaction between resolved and subgrid scales
mainly responsible, for the energy backscatter are singled out
in the quantity £. Using an RDT approximation the equation
for u’ can be written as:

ou' + 0, =w+v)Ad —f]. (3)
where the non-linear interactions between subgrid scales are
modeled by a dissipative term v;Au’. The quantity f/

(@ xu); — (wxmu), is a forcing stemming from the energy
cascade. The equivalent equation for the subgrid vorticity w’
is obtained by taking the curl of eq. (3). Combining the
equation for w’ with the equation for u’, and using the fact
that subgrid scales vary over fast time scale with respect to
large scale we can write the equation for £:

Ol w X 8tu’+81w’ X u,
— (@ x (@ +£)+ (Vx (€ +£]) x7)

+(v+vy) (GX Au’ + Aw’ Xﬁ).

Q

Q

(4)

In order to obtained a closed equation for £, the last two
terms of eq. (4) are lumped into a dissipative term (v+v})AL.
For simplicity, we use a constant turbulent viscosity v/ . In this
model the nonlinear part corresponding to the subgrid stress
tensor is modeled using a Langevin equation. In order to get
a practical LES model, one needs to introduce a model for the
term (w’ X u’) | . This term is modeled by a simple dissipation
term v AU where v¢ only depends on time and is linked to the
energy at the cutoff scale. Finally we get the following RDT
model:

(@xW), +€, =(v+u)Au (5)
{@x @ +£))+ (Vx@ +£)xa)},
(v+vf) ALy (6)
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THE PRACTICAL MODEL

In order to build a practical LES model, one needs to re-
strict the integration of the equation (6) to a limited number
of degree of freedom. When the typical size A of the filter
used to split large and small scales is within the inertial range
as require for a LES simulation, the intensity of £ is maxi-
mum near A. Therefore, the integration of the £ equation on
a grid twice as large than the grid used for resolved scales do
not lower significantly the performance of the LES model. In
this paper, all the validation of the model will be performed
with a mesh ratio of two. Integrating only the largest scale
of £, the dissipative term v;A£; has been replaced by an
hyper-dissipative term v} AP£, in order to limit the dissipa-
tion to the smallest scales. The resulting model is adapted to
any geometry and the only parameter is in the modelisation
of the Reynolds stress tensor (w’ X u’),. However, in some
case, the LES model may support additional approximations.
In the spirit of quasi-linear approximation, the transport and
the stretching by resolved scales as well as the dissipative term
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may be replaced by a friction term —£, /7 where 7 is a typical
time scale. The resulting model is:

U + (wxu), +£, =v+wAu (7
oty = —Li/r—{@xf +(VxE)xua} @

The resulting model looks like a classical Langevin model,
where the friction is provided by the transport and stretch-
ing by the large scale, and the stochastic forcing &
— {E X £ +(V xf]) x E}J_ originates from the energy cas-
cade through the cut-off scale. In this respect, it is natural
to define the friction time as a typical correlation time with
respect to the large scales. The simplest choice is to link the
correlation time with the gradient tensor S = V -u. In the
following tests, we used 7 = 2(S : S)1/2.

THE RESULTS

As a first validation step, the RDT model (egs. 5-6 ) and
the Langevin model (egs. 7-8) have been tested numerically by
comparison with high resolution DNS and other LES models
for decaying and forced isotropic turbulence.
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Figure 1: Comparison of evolution of the kinetic energy for
our RDT model (egs. 5-6) and the corresponding DNS of
homogeneous isotropic turbulence. The LES with our model
was performed with 852 effective Fourier modes for the equa-
tion of £. A cutoff filter at k. = 21 was used to separate
resolved and subgrid scales. The DNS was performed with
3423 effective (i.e. after dealiasing) Fourier modes. The
simulations are initialized with a random velocity field with
Gaussian statistics such as the initial kinetic energy spectrum
is E(k,to) = akte=k?/8 The Taylor Reynolds number varies
from Ry = 260 to R) = 26 during the simulation.

In Figure 1, the energy decay obtained with the RDT model
(egs. 5-6) is compared to the same quantity of the equivalent
high resolution DNS. In this validation, the term (w’ x u’) |
was modeled with a turbulent viscosity linked to the level of ki-
netic energy at the cut-off scales vy = Cy kc_l/Z E(kc)l/Q. The
constant Cy was adjusted to get the best fit of energy spectra.
This model is equivalent to the spectral model (Lesieur, 1990),
but the constant needs to be lowered as the cross stress tensor
is already modeled by £. The results show that the modelisa-
tion of £ by the Langevin equation (6) is accurate even if the
additional turbulent viscosity v} introduced in the equation of
£ to dump the smallest scales has not been optimized. In the



numerical tests, we choose v} = Cok?k;'/? E(k.)Y/2. The
constant Cp = 0.002 was adjusted to get enough dissipation
at the smallest scales in order stabilize the equation. Several
values have been tested and the accuracy of the model is not
very sensitive to this parameter.

In a second test, the simplified Langevin model (egs. 7-
8) has been compared to an equivalent high resolution DNS
and two other LES of forced isotropic homogeneous turbu-
lence. The averaged energy spectra are shown Fig. 2. The
four simulations were initialized with the same velocity field
(extracted from a previous DNS) and were integrated over 4
turnover times. Our Langevin model gives better results. Un-
like the two other LES models, our model is able to reproduce
the right k£—5/3 slope which means that the model leads to a
correct dissipation near the smallest resolved scales.

1
1.00 4 =
w 0.10—E 3
1 ~I
DNS
0.01 o —_——— Spectral model
1 ————— Smagorinsky model
] — — — Langevin model
T

o

Figure 2: Comparison of the mean kinetic energy spectra
for forced homogeneous isotropic turbulence. The DNS was
performed with 3422 effective (i.e. after dealiasing) Fourier
modes, and the three LES were performed with 423 effective
Fourier modes using a cutoff filter at k. = 21. For our LES
model (eqs. 7-8) the equation of £ was integrated with 853
effective Fourier modes. The forcing introduced in the largest
wavenumbers k < 1.5 was computed so as to inject a constant
level of energy in time. The statistics were obtained after a
period of stabilization. The Taylor Reynolds number is ap-
proximately constant and equal to Ry = 200.

Several other statistics have been compared for the same
simulations. In general, our model seems to give better re-
sults than the two other LES models. The fig. 3 shows the
comparison of the Probability Density Function of velocity in-
crements. Looking for the results, our model seems to better
capture the right shape of the PDF which is linked to the
intermittency level.

An other statistics can also be performed on the velocity
gradient tensor A = Ou;/0x ;. We compared the joint PDF of
the two normalized invariant:

Q* _ _lzzmzmz (9)
2 (Sijsi5)

R = 1 Ay Ak Agi (10)
3 (5i5545)%2

where Eij = %(Z” =+ Zﬂ) and gij = gij - <§”) (<> is a
sample averaging). These statistics have already been used to
discriminate between different turbulent models (van der Bos
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Figure 3: Comparison of the normalized PDF of the transver-
sal velocity increments (u(x) — u(x + 0x) with u-dx = 0 and
|6x| = L/64). The simulations are identical to fig. 2

et al., 2002). The results are shown fig. 4. The joint PDF
is plotted for the DNS and the deviation from this PDF is
plotted for the three LES simulations. The statistics with our
model is, again, in better agreement with the DNS.
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Figure 4: Joint PDF of R* and Q* (eqs. 9-10) for the DNS
(upper left). The three other graphs present the difference
of the same statistic between the DNS and the three other
models (see description in fig. 2): Langevin model (upper
right), Smagorinsky (lower left) and Spectral model (lower
right).

CONCLUSION

In this work we presents a new strategy to derive a LES
like model. This models falls in the category of models with
stochastic evaluation of subfilter scales. Several models of
this category have already been proposed (see (Domaradzki
and Adams, 2002) for a review). In some case, the small
scale velocity is estimated using the small scales generated by
nonlinear interactions of resolved scales rescaled using a char-
acteristic time (Adams and Stolz, 2001). In our approach,
we chose to integrate an equation directly for £ and using an



additional model (turbulent viscosity in this case) for the re-
maining Reynolds stress tensor. The equation of £ is derived
from the Navier Stokes equation for the subgrid scales veloc-
ity using the RDT hypothesis of predominance of non-local
interactions between resolved and subgrid scales over local in-
teractions between subgrid scales. The derivation leads to a
Langevin equation for £. In a simplified version of the model,
this equation can be replaced by new Langevin equation with
a characteristic time 7 which needs to be evaluated with re-
spect to resolved scales quantities. The two versions of the
model have been compared with equivalent high resolution
DNS and more common LES models in the case of decay-
ing and forced homogeneous isotropic turbulence. The model
seems to reproduce accurately the main statistics of the flow.
This approach can be easily extend to more realistic flows such
as shear flows or flows with rotation. The main hypothesis of
the models have already been studied theoretically for plane
parallel flows for instance. The adaptation of the model to
new flow configurations is in progress.
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