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ABSTRACT

By ‘deterministic large-eddy simulation’ we mean the sim-
ulation of a reduced number of modes in a spectral closure
with a simpler model representing the effect of the unresolved
modes. The physical ideas behind standard subgrid mod-
els translate into this deterministic setting, in which testing
and validation become particularly easy. We reformulate the
Smagorinsky model and the one-equation subgrid model of
Yoshizawa and Horiuti in this setting and apply them to the
transient evolution of forced turbulence. We also formulate
(stochastic) LES models in which the subgrid model is a spec-
tral closure.

INTRODUCTION

Large eddy simulation computes a reduced number of de-
grees of freedom in a turbulent flow, the resolved large scales,
and models the effects of the unresolved scales. The justifi-
cation is that while the resolved large scales are determined
by flow-specific features like boundaries and instability mecha-
nisms, the unresolved small scales may have universal features
that"make them susceptible to modeling strategies, generally
based on Kolmogorov’s theory of the universal small scales of
motion in turbulent flows.

The problem of modeling small scales can also be posed
in an entirely deterministic setting: starting with a spec-
tral closure model and a given number of modes, we can ask
whether the number of modes can be reduced by replacing
the unresolved modes by some simpler model. This program
is reasonable theoretically because no property of turbulence
that is invoked to formulate models is not a property of the
spectral closure we use; it is reasonable practically because
it makes testing of the physical ideas behind subgrid models
becomes very simple. We will show that some basic subgrid
models: the Smagorinsky model and the one-equation subgrid
model of Yoshizawa and Horiuti (1985), can be reformulated in
this deterministic setting. We will also propose a deterministic
reformulation of the dynamic Smagorinsky model and briefly
outline the use of spectral closure as a subgrid model.
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DETERMINISTIC SUBGRID MODELING IN GENERAL

We use an analytically simple closure, the CMSB model of
(Rubinstein and Clark, 2004), in which the spectral evolution
equation is

OF
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Suppose that we compute with this model, up to some scale
koo at which E is vanishingly small. The analog of LES is a
computation on a reduced space of explicitly resolved modes
k < km < koo with some model accounting for interactions
with the unresolved modes & > k. In view of this connec-
tion, the scale ky, may be called the filter scale. It is possible
to imitate the basic physical idea of any LES model in this
context.

Decomposing the transfer term into resolved and unre-
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For this spectral closure, the effect of the subgrid scales enters
entirely through the two quantities:

vm = Cn / dp 6()E(p) ©)
km

fm Cu / dp 0(p)E(p)*p~? (M

an eddy viscosity and a forcing term respectively.

In general, subgrid modeling will also require the flux
through the filter scale, Frn = F(km) which is expressed in
terms of vm and fm as
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The integral on the right side of this equation defines the re-
solved strain

km
5% = / dk K2E(k) 9)
0
so that more simply,
s2_ L5
Fm = vmS* — —5-kmfm (10)

THE DETERMINISTIC SMAGORINSKY MODEL
The simplest subgrid model is the Smagorinsky model,
which postulates that the subgrid scales are in a local Kol-
mogorov steady state in which
E(k) = Cxe?/3k—3/3 (11)
and

o(k) = Co [ B(K)] 7'/ (12)

Egs. (11) and (12) express the subgrid quantities vy, and fim
in terms of ¢ and k,,. Whereas k., is the known resolution
limit, € is a new quantity requiring closure. The Smagorinsky
model closes € by assuming an instantaneous flux balance

between the resolved and unresolved scales.
Using Egs. (11), (12), and (13) to close vy, and fr, in Egs.
(6)—(7) leads to

vm = aFdknt? (14)
fm = caFmky’ (15)

To lighten the notation, the various model constants which
arise are always written in the form ¢; but not given explicitly;
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for example, in Eq. (14) ¢; = 3CuyCk /4Cy, and in Eq. (15),
C2:CHC?{/5CG. '
Substituting Eqs. (14)—(15) in the expression for the flux
through the filter scale Eq. (5) leads to
Fm = caFal 2k?/352 — c4Fm (16)
consequently

Fm = cs5|53k2 (17)

As in the classical Smagorinsky model, the flux depends on
the resolved strain. Note also that the flux Fy, is necessarily
positive; although f,, appears in Eq. (10) with a negative sign,
indicating that this term represents the backscatter of energy
from small to large scales, the assumptions of the Smagorinsky
model lead to the expression Eq. (17) which is necessarily
positive, so that the net energy flux is always from resolved to
subgrid scales.

The basic subgrid quantities in the deterministic Smagorin-
sky model can also be expressed in terms of the cutoff scale
Am ~ k7! and S by replacing Fm by Eq. (17) as

vm = i ALIS) (18)
fm = &lSPAT (19)
Fm = cgAL|SP (20)
The expression for vm, in Eq.  (18) recovers the usual

Smagorinsky model. Similarly, the expression for f coin-
cides with the random force proposed by Leith (1990).

YOSHIZAWA-HORIUTI ONE-EQUATION MODEL

The Smagorinsky model makes two assumptions: Kol-
mogorov scaling of the subgrid scales, and a local flux balance.
It can be generalized, either by retaining the assumption of a
local flux balance and dropping Kolmogorov scaling (Bataille
et al., 2005), or by assuming Kolmogorov scaling but drop-
ping the flux balance. We consider the one-equation model of
Yoshizawa and Horiuti (1985) from the latter viewpoint. As-
sume that F, and € are independent and that € satisfies the
phenomenological relaxation equation

¢ = Cy /3K (Fm — € (21)
where Fp, is defined by Eq. (17). This equation proves to be
equivalent to the subgrid energy equation k = Fp, — k3/2/L
used by Yoshizawa and Horiuti. In steady state conditions,
€ = Fm, as in the Smagorinsky model, but in general, a flux
imbalance can exist.

VALIDATION OF THE SUBGRID MODELS

To test the subgrid models we begin with a sanity check
by verifying that they can correctly maintain a Kolmogorov
steady state. We run the CMSB model with 500 modes
to a forced steady state beginning from a nearly zero spec-
trum. After 80000 time steps, an approximately steady state
is achieved. Noting that the spectrum is nearly Kolmogorov
already at 64000 time steps, we switch on the models with 20
mode resolution at 66000 time steps.

Figure 1 shows that the spectra computed using the deter-
ministic Smagorinsky model can indeed be made to overlay
the full model when the cutoff scale is set to km = 20. Fig-
ure 2 compares the resolved kinetic energy, the energy in the



first 20 modes, with the energy predicted by the deterministic
Smagorinsky model. When the subgrid model is turned on

at 66000 time steps, the total energy immediately drops and 0.02 '.’\_
correctly equals the energy of the resolved motion. i i ‘l
Finally, Figure 3 compares the dissipation rate with the en- L i
. i . L [ [
ergy flux predlctecll by the determmlst.lc .sz.tgormsky I.nodel. 0015 - id /'I \_\ - :[—\
When the model is turned on, the dissipation drops imme- L i N i
diately to nearly zero because the dissipation scales are no i l' ) i
longer resolved. But Figure 3 shows that the determinis- | i
tic Smagorinsky model immediately supplies an energy flux 0.01 - i
through the cutoff scale exactly equal to the dissipation rate, L :
thereby maintaining the correct energy balance. This result is i i
of course consistent with the behavior of the resolved energy o005l i
in Figure 2. | Il
Similar verification is possible for the one-equation model. L :
- / .
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- Figure 3: Dissipation (dot-dash) and subgrid flux from
0k Smagorinsky model (solid).
g TRANSIENT FORCED TURBULENCE
10"k We next test the two subgrid models in transient forced
% F turbulence by turning the models on at the beginning of the
[ simulation instead of during the steady state. The subgrid
10°F models attempt to reproduce the resolved kinetic energy and
F the flux through the cutoff scale; the time evolution of the re-
i solved kinetic energy is shown above in Figure 2 and the energy
10°E flux through kn, is shown in Figure 4. Both quantities exhibit
- strong dynamic behavior rather than simple relaxation: note
“;., ) 1‘31 L 1':7 — in particular that the energy growth is not even monotonic.

k There is also a very distinct transient imbalance between dis-
sipation and energy flux, although this imbalance cannot be
. captured by a subgrid model.
Figure 1: Spectra after 80000 time steps for CMSB model with
500 modes (dotted) and Smagorinsky model with 20 modes

(solid). The graphs nearly superpose where both are defined
(k < km = 20). ]
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Smagorinsky model
Figure 5 shows that the energy and dissipation evolution
are very smooth; the overshoots in both which are evident in

Figure 2: Kinetic energy computed by Smagorinsky model
(solid) compared to resolved energy (dotted).
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Figures 2 and 4 are entirely absent. This smoothing effect
corresponds to the frequently repeated observation that the
Smagorinsky model is ‘too diffusive.’ The effect of increasing
the number of resolved modes to 100 is shown in Figure 6. As
expected, the evolution is closer to the original closure model
but is still somewhat too smooth. But even this accuracy is
available only at the expense of a rather highly resolved sim-
ulation. We emphasize that this comparison is not intended
to discredit the Smagorinsky model; it simply suggests what
may be lost by using such a simple subgrid model.
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Figure 5: resolved kinetic energy (solid, left scale) and energy
flux through filter scale (dotted, right scale) in deterministic
Smagorinsky model at resolution 20.
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Figure 6: resolved kinetic energy (solid, left scale) and energy
flux through filter scale (dotted, right scale) in deterministic
Smagorinsky model at resolution 100.

Yoshizawa-Horiuti single-equation model

A limitation of this model in this test case is that the sub-
grid energy cannot build up if it vanishes initially. The model
was only satisfactory when initiated after the subgrid energy
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had grown to some extent. In this test case, as few as 10 time
steps could be used. The results are shown in Figure 7. Ini-
tiating the deterministic Smagorinsky model after the same
number of time steps led to an insignificant change in the pre-
dictions.

The Yoshizawa-Horiuti model is superior to the Smagorin-
sky model in this test case because the evolution of both the
resolved energy and the flux exhibit some dynamic behavior;
although the simple linear relaxation postulated in Eq. (21) is
far from accurate, it does at least capture the overshoot in the
dissipation rate. Certainly, the linear relaxation assumption is
preferable to the much cruder assumption of an instantaneous
flux balance made in the Smagorinsky model.
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Figure 7: resolved kinetic energy (solid, left scale) and energy
flux through filter scale (dotted, right scale) in Yoshizawa’s
single equation model

DYNAMIC SMAGORINSKY MODEL

Although there is no meaningful Germano identity in the
deterministic setting, we can imitate the idea of the dynamic
model as follows. Assume the Smagorinsky model in the form
v(km) = Cky25(km) in which the constant C is unknown: we
recall that its value follows from the flux balance on which the
model is based. We can also obtain its value by comparing
the viscosity at two different filter sizes, say km and km /2.
‘Writing

o<}
v(km [2) = CH/ dp 6(p)E(p)

km /2

km
—on [ 0wmG)+u)  (22)
km/2
and substituting the value of v(ks ), then solving for C,
km
on [t owee)
C= ko /2 (23)

(km /2)728 (km /2) = (km) =28 (km)

An important property of this deterministic dynamic model
is that if the resolved energy spectrum is Kolmogorov, the con-
stant C will revert to its ‘equilibrium’ value in Eq. (18). By



allowing a departure from this equilibrium value, this model
appears, like the Yoshizawa-Horiuti model, to relax the condi-
tion of a flux balance between resolved and unresolved scales:
compare in this respect (Yoshizawa et al., 1996). TUnlike
the Yoshizawa-Horiuti model, however, this model attempts
to characterize the imbalance in terms of resolved quantities
alone.

SPECTRAL CLOSURES AS SUBGRID MODELS

In the previous sections, the spectral closure has been sub-
stituted for the Navier-Stokes equations. We next describe the
possibility of using the spectral closure as a subgrid model.
The goal of this program is to model the interaction between
resolved and unresolved scales more accurately. Replacing the
spectral closure by simpler models permits systematic deriva-
tion of families of subgrid models.

CMSB LES model

We reconsider Eq. (1) with the closure assumption Eq.
(5), written in terms of resolved and unresolved parts. This
time, instead of replacint the small scales by a deterministic
model, we replace the closure for the large scales by the exact
equations of motion, with the unresolved terms reformulated
as a Langevin model following Kraichnan (1971). The result
is

’l.l.i(k) = -";;Pimn (k) U‘m(p)un(q)
AI
—l/mszLi(k) + fi(k) (24)
where
/ = / dpdq 6(k —p — q) (25)
Al P:q<km

restricts the nonlinear interaction to resolved modes alone,
v is defined by Eq. (6), and the random force f; has the
components (Kraichnan, 1971)

fa(k) = \/CBw(t)k/ dp B(P)I/Z%WQ(P)’U’O:(P) (26)
km

where w(t) is white noise with unit variance, and vo and we
are independent Gaussians with variance

1

(va(k)va(—K)) = (wa(Kjwa(-K)) = 5—

E(k) 27)
It is straightforward to verify that the subgrid model defined
by Egs. (24)-(27) reproduces the original CMSB model pro-
vided that the triple correlations are replaced by the CMSB
model on resolved scales.

Evidently, the subgrid quantities are defined in terms of the
subgrid spectrum E(p) and time scale §(p). Again, we reverse
our earlier procedures by taking their equations of motion to
be the CMSB model equations with resolved quantities re-
placed by their values from the simulation. The resolved field
enters these equations only through the resolved strain of Eq.
(9); this quantity can be computed from the resolved field
independently of spectral information as

2
- Ou;  Ouj
52 = i d

[ij + Bzi:|

(28)
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The subgrid equations are

E(k)=—Cp {sz(k) / dp 6(p)E(p)
k

k
52 +/ dk K2E(n)]

—%k"’a(k)E(k)z + k4 / ” dp %G(p)E(p)Q}
& p

+0(k)E(k)

—wk?E(k)

k
b(k)y=1—Cy [§2 +/ dr KZE(R)] 0(k)2  (29)
It is reasonable to interpret the term in the subgrid spectral
evolution equation that contains S as the production of sub-
grid energy by the resolved field.

The main features of this model are that the couplings be-
tween resolved and unresolved quantities show both damping
and forcing and that no assumptions about Kolmogorov scal-
ing, scale separation or the like have been made. We have
assumed that the unresolved motion is isotropic, however.

Heisenberg LES model

‘We obtain it from the previous model by dropping the ran-
dom force contribution, and closing §(k) = [k*E(k)]~1/2. The
relevant equations are

uz(k) = —%Pimn(k)/ u’m(p)u”'(q)
Al

—vmk?u;(k) — 2vk2E(k) (30)
where
[eo)
E
Y = Cly / dpy | Z2) (31)
km P
The subgrid energy spectrum E(p) satisfies
[oo]
E(k)=C} {—sz(k)/ dp ,/—E-@
I P
k
E(k) | 5
+ % 52 +/k dr n2E(n):|
—2uk2E(k) (32)

The structure of this model is very simple: the subgrid scales
act as an eddy viscosity in Eq. (30); they evolve according to
Eq. (32) in which the resolved scales contribute to production
of the subgrid motion through S.

Smagorinsky model

The Smagorinsky model is obtained by two steps: first,
assume that the subgrid energy spectrum is Kolmogorov, so
that the eddy viscosity formula Eq. (31) becomes

1/3kf,{3

Vm = Cg€ (33)

Second, determine the new quantity e, the subgrid dissipation
rate, by assuming that the spectrum is in an (instantaneous)
steady state, that is, by setting the left side of Eq. (32) to
zero. The result is

cre2/3k34 = 52 (34)



Substituting this value of € in Eq. (33) and expressing the filter
size Ay, in terms of km through Am = 27 /km , we recover the
Smagorinsky model in the form Eq. (18).

Yoshizawa-Horiuti one-equation model

‘We reverse the logical order by considering a model more
complex than the Smagorinsky. Integrating Eq. (32) over all
subgrid scales gives the subgrid energy balance

K=Cg /001/%# 5% —¢ (35)

where ¢ is the subgrid dissipation rate. Assume, as in the
Smagorinsky model, that E(p) is Kolmogorov. We obtain

K= ZCHC}Jzel/Sk;4/3§2 —e (36)

but under our assumptions, K and € are related through K =
(3/2)Ck €2/ 8k-2/3, accordingly Eq. (36) can be written in
terms of the subgrid dissipation rate alone as

¢ = cgel/3k2/° {chl/e'k,;“/“"'sz - e} (37)

which coincides with Eq. (21). The Smagorinsky model is
simply the steady form of this equation obtained by setting
the term in braces to zero.
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