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ABSTRACT

A new partialy integrated transport model (PITM) for
subgrid-scale stresses and dissipation rate is proposed for
Large eddy simulations using relatively coarse grids of un-
steady flows which present non-equilibrium turbulence spec-
tra. The use of transport equations for all the subgrid-scale
stress components allows to take into account more precisely
the turbulent processes of production, transfer, pressure redis-
tribution effects and dissipation, and the concept of turbulent
viscosity is no longer necessary. In this study, a formally con-
sistent derivation of the model is obtained when the cutoff
location is varied, which guaranties compatibility with the
two extreme limits that are the full statistical Reynolds stress
transport model and direct numerical simulation. So, this
approach enables to bridge URANS and LES methods with
“seamless coupling ” (Hanjalic et al., 2004). The present model
is first against on the well known fully developed turbulent
channel flow. The applications to the channel flow with wall
mass injection are successfully performed for two different
channel heights. The flows are characterized by the devel-
opment of natural unsteadiness with a transition process from
laminar to turbulent regime or by an acoustic resonant regime
subjected to the vortex shedding mechanism.

INTRODUCTION

Advanced statistical models based on the Reynolds Aver-
aged Navier-Stokes Equations (RANS) such as the Reynolds
Stress Models (RSM) (Launder 1989, Speziale et al. 1991)
can be able to accurately predict complex flows for engineering
applications, as for instance flows with strong effects of stream-
line curvature, system rotation or wall injection (Chaouat,
2001). However, these models based on one point closure
are not well suited for unsteady flows subjected to medium
range frequencies that can interact with the turbulence scales
and they cannot provide information on turbulence structures,
two-point correlation statistics or energy spectrum which can
be useful for investigating the flow characteristics. Contrary
to full statistical modeling, LES enables to mimic the mecha-
nisms of turbulent interactions, and informations on velocity
or pressure fluctuations and on two-point correlations are pos-
sible. New trends in LES of turbulence have been proposed
in the past decade, such as for instance the dynamic model
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(Germano et al., 1992), the structure model (Lesieur and
Metais, 1992). Deardorff (1973) has developed a model which
lies on the transport equations of the subgrid scale turbulent
stresses with an algebric relation for the length scale. De-
spite improvements in the more advanced approaches, several
modeling problems remain. Among these problems, for in-
stance, the filter width may no longer be a good estimate of
the characteristic subgrid-scale turbulence length when the fil-
ter cutoff is located at a wave number below the inertial range
in non-equilibrium flows. To overcome this problem, Schiestel
and Dejoan (2005) have developed a new subgrid scale model
based on two transport equations for the subgrid-scale energy
and the dissipation rate € equation. In that approach, the
transport equation for the dissipation rate is used for calcu-
lating the length scale without referring directly to the mesh
size. The aim of the present study is to propose a new LES
approach involving all the stress transport equations of the
subgrid-scale turbulence including also the dissipation rate
equation (Chaouat and Schiestel, 2005). This modeling strat-
egy is motivated by the idea that the recognized advantages
of usual second order closures (RSM) are worth to be trans-
posed to subgrid-scale modeling when the SGS part is not
small compared to the resolved part. In particular, due to
the presence of the subgrid-scale pressure-strain correlation
term in the transport equations, this new model embodies in-
teresting features allowing a more realistic description of the
flow anisotropy than eddy viscosity models, and also a better
account of history and nonlocal effects. The model formula-
tion is built such that the new subgrid-scale model complies
with the two extreme limits that are DNS and full statistical
Reynolds stress model in a continuous way. This behavior al-
lows the development of hybrid models that enables to bridge
URANS and LES methods with “seamless coupling ” (Hanjalic
et al., 2004). Recently, this line of thought appeared to gain
major interest in turbulence modeling (Spalart, 2000). The
main applications will be concerned with simulations of tur-
bulent flows which undergo non-equilibrium changes such as
produced by unsteadiness (forced or natural) in the mean or
strong spatial variations on relatively coarse grids. In order to
calibrate the present model, LES of fully developed turbulent
channel flow is performed and the Reynolds stresses compo-
nents are compared with available DNS data (Moser et al.,



1999). The application to the channel flow with wall injection
is then considered for illustrating the potentials of the method.
This case is of central interest for engineering applications in
Solid Rocket Motors (SRM). The mass transfer resulting from
the propellant combustion (represented by the mass injection
at the wall) produces an internal flow field with different flow
regimes, from laminar to turbulent, which affects the ballistics
predictions of the rocket (Chaouat and Schiestel, 2002).

GOVERNING EQUATIONS

‘We consider the turbulent flow of a viscous fluid. As in
the usual treatment of turbulence, the flow variable & is de-
composed into a filtered part £ including mean value and
large-scale fluctuation and a subgrid-scale fluctuating part ¢
such that £ = € + ¢'. The quantity £ is defined by the filter
function G in physical space. The Reynolds statistical aver-
age of £ is denoted by < ¢ > so that the large scale fluctuation
is £~ < € >. In the present case, the Favre averaging is used
for compressible flows. In that definition, the variable ¢ can
be written as ¢ = £+ ¢ leading to a modified filter £ = p&/p.
The filtered equations of the mass, the momentum and the
energy are:

8ip+ (piij) ; =0 1
B (i) + (P 7),; = (315 — pullul) 5 (©)

%P E)+(pEw;),; = (G0 — g) ; + (ffij“ﬁ' -ﬁE”uQ’) ;
(3
where u;, E, 0ij, q; are respectively the velocity vector, the
total energy, the tensorial term composed of the pressure and
the viscous tensor, and the total heat flux vector. In these
expressions, the 7;; tensor takes the form:

_ o _ _ 2__

Oij = B(Ti +8j.4) = (POij + 3 Btk ki ) 4)
where p stands for the dynamical molecular viscosity. The
subgrid-scale Reynolds stress tensor for the fluctuating ve-
locities is (735 )sgs ujuj. The filtered heat flux is
computed using Fourier law g = —x8T/dz; where T is
the temperature and x stands for the thermal conductiv-
ity. The fluctuating correlation which appears in the right
hand side in the energy equation (3) can be developed as
oijul — ﬁE”u;.’ ~ puul u;/ + ph! u;.’ where h is the enthalpy
of the fluid. So that the closure of the mean flow equa-
tions is necessary for both (7ij)sgs and the turbulent heat
flux (Fhi)sgs = h"ug’.

TRANSPORT EQUATIONS SUBGRID-SCALE MODEL

The subgrid equation modeling

The modeling lies on the analyzis of the turbulent
processes in the spectral space for homogeneous turbulence.
So, the subgrid scale equation terms are derived by partial
integration in spectral space. In a subsequent step, the
diffusion terms are also implemented in order to account for
non homogeneous fields. In this framework, a cutoff wave
number K. is introduced in the medium range of eddies while
the wave number k4 is located at the end of the inertial range
of the spectrum after the transfer zone. The subgrid-scale
energy in the range [kc,kq] is denoted ksgs = (Tmm)sgs/2-
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We define the dimensionless wave number 7. = kck3/2/¢
using the cutoff wave number k. and a macro-turbulent
length scale computed by means of k¥ and € where k denotes
the total turbulent kinetic energy (resolved part and modeled
part) and e is the dissipation rate.

The turbulent transport equation of the subgrid-scale ten-
SOT (Tij)sgs = u} uj is modeled in physical space as:

8 (p(Tij)sgs) + (ﬁ (7i5) sgs ’l—l'k),k = P;;

—peij + B} + B + BY + Jy; (5)
where
Pyj = —p(Tik)sgstij e — P(Tjk)sgs i,k (6)
2
€ij = S€bij @

The terms on the right-hand side of equation (5) are identified
as the production by the filtered velocity P;j, the turbulent
viscous dissipation ¢;;, the redistribution of the subgrid-scale
turbulent kinetic energy among the stress components ®;;,
and the diffusion due to the fluctuating velocities and pressure
Jij together with the molecular diffusion. The redistribution
terms ¢I>}]-, @?j and @} of the pressure-strain subgrid-scale
fluctuating correlations must be modeled. In the limit of van-
ishing 7¢ , the spectral cutoff goes to zero and the assumptions
are chosen in order to recover the usual statistical model of
Launder and Shima (1989). In compliance with that condi-
tion, we propose the following model hypotheses in the range

[KC1 K’d]:
. _ 2
Di; = —Csgsy P | (Tij)sgs — S ksgsdij (8)
Kage 3
Py 1
O = —ca | Pij — ‘3‘Pmm5£j 9)

Equation (8) characterizes non-linear interactions whereas
equation (9) represents the linear contribution of the return to
isotropy with respect to the velocity gradients. According to
the classical physics of turbulence, the coefficient Csgs, IS ex-
pected to increase with the parameter 7. in order to increase
the return to isotropy in the range of larger wave numbers.
‘We suggest a simple empirical function:

1+ann2
1+n2

Csgsy =

(10)

where ay is a numerical constant. This function satis-

fies the limiting condition limy,—0cCsgsy (%) = c1. The
function ¢; depends on the second and third subgrid-
scale invariants Aj = a;jaj;, Az = ajjajkar; and the

flatness coefficient parameter A =1 — %(Az — A3) where
a;; = ((7ij)sgs — %ksgséi]’)/ksgs- The term @} takes into ac-
count the wall reflexion effect of the pressure fluctuations and
is imbedded in the model for reproducing correctly the loga-
rithmic region of the turbulent boundary layer (Gibson and
Launder, 1978). The diffusion process Jij is modeled assum-
ing a tensorial gradient law:

k
By = (B35 epu 4 eaP ™2 (rdeon(rigdogst) (11
k

3

where ¢, is a numerical coefficient. In contrast to the two-
equation model, it can be mentioned that the production term



P;; is allowed to become negative. In such a case, this implies
that energy is transfered from the filtered motions up to the
resolved motions, known as backscatter process.

The dissipation rate equation by spectral splitting

This equation is modeled by considering the turbulent pro-
cesses which develop in a spectral slice (Schiestel, 1986). In a
first step, the case of homogeneous anisotropic turbulence is
considered. The constant value of the mean velocity gradient
is denoted A;;. The equation of the energy spectrum balance
E(r) is:

OE =—A;jA;j +T — 2wk?’E (12)

The three terms on the right hand side of this equation rep-
resent the production caused by the mean velocity gradient,
the spectral transfer which results from triad interactions of
wave number modes, and the viscous dissipation. The term
Aj;; corresponds to the spherical mean of the spectral tensor
of the double velocity correlations in wave vector space. Inte-
gration of the basic equation (12) over the wave number range
[£j—1,k;] yields the following equation:

atk["'j—ls”fj] = P[Nj—ls’ﬁj]_F('ij)+F(nj—l)_e[nj—lx""j] (13)

with the relations

rj

Kl yomg] = / E(x)dx (14)

Kj—1
Ploj_1m1= _Alm/ ’ ) Aim (K)dK (15)

Kj—
F(k;) = F(kj) — E(k;) Okj (16)
F(x) = / T(k')dr' = — /0 T(x')dw! (17)
€lrj_1:m5] = 2"\/’e ’ HZE(H)d” (18)

j—1
F represents the spectral energy rate transfered into the wave
number range [k,+oc] by vortex stretching from the wave
number range [0,x]. Equation (13) can be applied for any
wave number range such as [0, k¢), [k¢, k4] and [k4, 0of. Tak-
ing into account the significant processes, one can obtain the
following approximated equations:

Bt(k — ksgs) = Pjo,x.] — F(ke) (19)
Otksgs = P, ny] — F(Kd) + F(ke) (20)
0= F(Kkq) = €[ y,00] (21)

where €[, o[ & €. Equation (21) indicates that the dissipa-
tion rate € can indeed be interpreted as a spectral flux. In the
present approach, the splitting wave number k4 is assumed to
be related to the cutoff wave number k. by the dimensional
relation:

€

Kd — Ke = ngsm (22)

where (595 is a coefficient which may be depended on the
spectrum shape and on the Reynolds number. The numerical
coefficient (s45 is chosen such that k4 is sufficiently large to
encompass the inertial zone and then equation (21) is verified,
the energy density beyond kg4 being negligible. The relation
(22) is proposed for adjusting the location of the cutoff wave
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number to the evolving spectrum. The dissipation rate equa-
tion is then obtained by taking the derivative of equation (22)
with respect to time using equation (16) written for the wave
number &;:

Orj _ F(rj) — F(k;)

at E(x;) (23)

Taking into account (20) and (21), one can easily obtain:

de € €2
— = Csgses T (Plre,ng] + Fke)) —Csgsea ™  (24)
ksgs ksgs

at
where cggse; = 3/2. Setting kg > ke, and E(kq) < E(ke),
Csgseq takes the form (Chaouat and Schiestel, 2005):

(760

The cutoff wavenumber k. is supposed to be known because
the filter width can be freely specified. In the case of full
statistical modeling where k. = 0, equation (22) is reduced to
the equation:

ksgs

KaE(rq) (25)

Csgses — Csgsey —

€
Kd = (4 Py (26)

where the coefficient {4 is a numerical constant chosen such
that k4 is located after the inertial range. By taking the
derivative of equation (26) with respect to time, using equa-
tion (23), another formulation of the dissipation rate equation
is then obtained:

de €

2
€
2= %y Plo,c0[ — Ce2 " (27)
where c¢; = 3/2 and
k F(ka) )
— - -1 28
o == ot (e )

This is in fact the usual € equation used in statistical closures.
Equations (25) and (28) show that the coefficients csgse, and
Ce, are functions of the spectrum shape. Keeping in mind
that the dissipation rate ¢ must remain the same regardless
the location of the wave number &, comparing equation (24)
with equation (27) allows to express the coefficient csgge, in a
more convenient form:

ksgs

k

Csgses = Cep + (Ceg - cel) (29)
The function ksgs/k which appears in equation (29) can be
calibrated by referring to the Kolmogorov law of the three-
dimensional energy spectrum in the inertial wave number
range in nearly equilibrium flows:

E(k) = Cge*/3x~5/3 (30)
where Cx = 1.50 is the Kolmogorov constant. The subgrid-
scale turbulent kinetic energy is then estimated by integrating
the Kolmogorov law in the wave number range [k, +00[:

o 3 -
ksgs = / BE(k)dk = ECKez/snc 2/3 (31)
ke
Taking into account expression of the dimensionless wave num-
ber ne = kck3/2 /e and equation (31), the ratio ksgs /k is easily
obtained by analytical derivation:

ksg.s 3Ck —-2/3
=2 =", 32
k 2 (32)



As a result of interest, equation (32) shows that the function
ksgs/k is dependant on the parameter 7, /3 The previous
result is only valid in the inertial range. It is extended empiri-
cally to the general case, taking care to satisfy the limit when
ksgs approaches to k, ( i.e. when 7). goes to zero). So, the co-
efficient csgse, in equation (29) is modeled taking account of
equation (32). The empirical choice is proposed:

Cey — C
Coguen = Cr + 25 (33)
1 Tle

where 3, is a numerical constant which takes the theoretical
value B, = 2/3Ck =~ 0.444 in order to satisfy the correct
asymptotic behavior in 7. 2/3 for high values 7.. In the
limit of full statistical modeling, ksgs — k and the usual
RSM model is recovered while in the limit ksgs — 0, the
subgrid-scale energy is not maintained due to the fact that
Csgses —> Ce; and the model behaves like a DNS (but the
model become useless!).

For non-homogeneous flows, the convection and diffusion
terms are imbedded in equation (24). Then, also taking into
account low Reynolds number terms, the modeled equation of
the dissipation rate can be written as follows:

€ Pmm

2

B4 (pe) + (peti;) ; = cey

€e
~ Cogsey Pr— + Je (34)
ags

ksgs
where the diffusion process Je is modeled assuming a tensorial
gradient law:

),J'

where ¢ is a constant coefficient and & = € — 20[(/ksgs),n]-
Intuitively, it is obvious that the usual ¢ equation used in
statistical modeling in which the whole spectrum is modeled
cannot be used without modification in LES in which just a
part of the spectrum is modeled. This modification is made
here through a variation of the coefficient csgse, and so the
model is allowed to “read ”the size of the mesh in order to
model only the appropriate portion of the turbulence field.
This is the main feature of the present LES model which is
basically different from an URANS approach.

k.
segs (Tim)sgs€,m (35)

Je = (ﬂf,j + Cep

Practical formulation

In a practical formulation for the case of wall bounded
flows, the length scale can be computed using the normal
distance to the wall L = Kz3 where K is the Von Kidrman
constant. In that condition, we use the alternative dimen-
sionless wave number N, = k.L instead of the previous wave
number 7. = k¢ k3/2 /e and we introduce modified coeffcients
o, By in equations (10) and (33). In that framework, the
alternative fonctions of the subgrid-scale turbulence model are
written more simply in the following way :

14 apn N2
Gogn1 =~y O (36)
c
and Ceg — Cey

(37

Csgseg = Ceq + —z
1+ By N3
The cutoff wave number k. is approximated by the filter
width: -

Ko = ———
(A1A2A3)3

(38)
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The large scale part of the Reynolds stress is given by:

(Tijlles =< Wiy > — < U >< @5 > (39)
So that the total Reynolds stress 745 is calculated as the sum
of the subgrid and large scale parts 7i; = (7ij)sgs + (7ij)les-

LES OF FULLY DEVELOPED TURBULENT CHANNEL
FLOW

This flow is chosen as a preliminary test case for the pro-
posed approach. Numerical simulations are performed on
coarse and refined meshes requiring 16 x 32 X 64 grids (LES
1) and 32 x 64 x 84 grids (LES 2) with different spacings A;.
This choice is motivated by the necessity of checking the grid
independence of the solution on the numerical point of view
as well as the consistency of the subgrid scale model when
the filter width is changed. In the normal direction to the
wall, the grid points are distributed in non-uniform spacing
with refinement near the wall. The numerical simulation of
fully developed turbulent channel flow is compared with data
obtained by the direct numerical simulation of Moser et al.
(1999) for a Reynolds number R = pru-§/2u = 395, based
on the averaged friction density p-, the averaged friction ve-
locity ur and the channel half width §/2. Several trial and
error tests have been made for selecting appropriate values
for the two model coefficients apr = 1.5 and S = 0.5. Fig-
ure (1) shows the evolutions of the normalized total Reynolds
stresses computed as the sum of the subgrid and large scale
parts (i=1,2,3) for the two different meshes with comparisons
with the DNS data. As observed, a good agreement is ob-
served for both LES simulations although the meshes are not
refined.

LES OF CHANNEL FLOW WITH WALL INJECTION

The application to the channel flow with wall mass
injection which undergoes the possible development of
natural unsteadiness (depending on the channel height)
with a transition process from laminar to turbulent regime
(Chaouat, 2002) is then considered as shown in Figure (2) for
illustrating the potentials of the method. The objective is to
simulate the flow which develops in the specific experimental
setup VECLA made at ONERA. Values of the length, height
and width of the channel are respectively L; = 58.1 cm,
Ly = 6 cm and § = 1.03 cm. The present LES results
are compared to the experimental data of Avalon et al.
(1998). The numerical 3d simulation is performed on a mesh
composed of 400 x 44 x 80 grid points in the streamwise,
spanwise and normal directions to the wall. Figure (3) shows
the instantaneous spanwise filtered vorticity @; = € kUK, j
in different planes of the channel and provides the detail of
the flow structures subjected to mass injection as well as the
location of the transition. The flow is then characterized by
the presence of roll-up vortex structures of large magnitude
of vorticity. Because of the injection, it is found that these
structures are inclined in the normal direction to the axial
flow as previously observed by Apte and Yang (2003). Figure
(4) describes the profiles of the streamwise turbulent intensity
< 711 >Y2 Ju,, where w,, denotes the bulk velocity, in
different cross sections and reveals a fair agreement with
the experimental data, (However, the measurements are not
reliable near the walls).



Other simulation in the Vecla setup for a different channel
height § = 2.06 cm is performed. Contrary to the previous
case, the experiment indicates that the flow is then character-
ized by a low level of turbulence intensity which enables the
development of the vortex shedding near the wall. The flow
appears oscillating with an acoustic resonant regime which
corresponds to the second longitudinal mode (Avalon et al.,
1998). This flow has been previously predicted fairly well using
* a Reynolds stress model (Chaouat and Schiestel, 2002). The
objective of the present LES is to provide qualitative details
of the flow structures. The mesh is composed of 600 x 22 x 60
grid points in the streamwise, spanwise and normal directions
to the wall. In order to trigger the instabilities, a Gaussian
forcing has been applied in the immediate vicinity of the per-
meable wall. Figure (5) shows the instantaneous vorticity
contours in different planes of the channel. The development
of the acoustic boundary layer chararacterized by horizontal
lines is well visible close to the injected wall, in particular from
the head end to the exit section of the channel. Figure (5b)
which shows the enlarged view of the instantaneous vorticity
near the exit reveals the presence of vortex which develop near
the injected wall. The analyzis of the pressure signal close to
the head end of the channel indicates indeed that the pressure
is locally oscillating contrary to the previous case in which the
pressure remains perfectly steady in the upstream location of
the transition. The present structures appear quite organized
in agreement with visualization tests using Acetone Planar
Laser-Induceed Fluorescence (PLIF) (Avalon et al., 2000) but
differ appreciably from the chaotic structures observed in fig-
ure (3) which are developed in a fully turbulent flow regime.
The instantaneous vorticity contours described by figure (5¢)
are still characterized by the injected noise at the wall and re-
veal that the turbulence intensity is not as so developed than
for the previous case (see figure 3b). That useful compari-
son between these figures shows that the flow structures in a
plane channel may evolve differently according to the physical
phenomena encountered.

CONCLUSION

A new partially integrated transport model (PITM) for
subgrid-scale stresses and dissipation rate has been proposed
for LES of unsteady flows which present non-equilibrium tur-
bulence spectra or LES on coarse grids. The use of transport
equations for all the subgrid-scale stress components allows
to take into account more precisely the turbulent processes
and the concept of turbulent viscosity is no longer necessary.
The partial integration in spectral space leads to a formal
derivation of the model which continuously complies with the
variations on the relative cutoff location attached to filter size
and which guaranties compatibility with the two extreme lim-
its that are the full statistical Reynolds stress model and direct
numerical simulation. The present model has been successfully
calibrated on the well known fully turbulent channel flow. The
application to the channel flow with wall injection has been
then considered for illustrating the potentials of the method.
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Figure 1: Turbulent Reynolds stresses
1

(< (Tii)sgs > + < (Tii)les >)2 /ur. (a) LES 1; (b) LES 2;

o:4=1,A:1=2,V:4i=3; —: DNS.

(b)

Figure 3: Snapshots of spanwise instantaneous filtered vor-
ticity, d = 1.03 cm. —4.10%s71 < @ < 4.10%5™1, Aw = 2000
s~1. (a) plane (z1,z3), 22/ = 1; (b) plane (z1,22), £3/d ~ 0.
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Figure 4: Streamwise turbulent stresses. +: < ('rn)% > [um;
o: experimental data; (a) 50 cm; (b) 57 cm.

Figure 5: Snapshots of spanwise instantaneous filtered vor-
ticity, § = 2.06 ecm. —4.10%s71 <@ < 6.10%s~1. (a) plane
(z1,3), 22/6 = 1, Aw = 200 s™1; (b) Enlarged view in the
lower wall region near the exit. plane (z1,z3), z2/6 = 1,
Aw = 200 s™1; (c) plane (z1,%2), 3/ ~ 0, Aw = 1000 s~1;
(d) plane (z1,2), 3/ = 0.5, Aw = 50 s~1.
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