TURBULENCE TOPOLOGIES PREDICTED USING A DYNAMIC NON-LINEAR
SUBGRID-SCALE MODEL BASED ON SPEZIALE’'S QUADRATIC
CONSTITUTIVE RELATION

Bing-Chen Wang!, Jing Yin?, Eugene Yee!, and Donald J. Bergstrom?
!Defence R & D Canada - Suffield,
P.O. Box 4000, Medicine Hat, AB, T1A 8K6, Canada
bingchen.wang@drdc-rddc.gc.ca, eugene.yee@drdc-rddc.ge.ca

2Dept. of Mechanical Engineering, Univ. of Saskatchewan,
Saskatoon, S7N 5A9, SK, Canada
jiy080@mail.usask.ca, don_bergstrom®@engr.usask.ca

ABSTRACT

Turbulence topologies related to the invariants of the re-
solved velocity gradient and strain rate tensors are stud-
ied. The a posteriori large-eddy simulation (LES) approach
adopted in this research is based on a dynamic non-linear
subgrid-scale model. In contrast to most of the previous re-
search which focussed on only isotropic turbulence, the present
study examines the influence of near-wall anisotropy on flow
topologies. Some interesting phenomenological results have
been obtained including a wing-shaped contour pattern for
the marginal expectation of the resolved enstrophy generation
and the negative shift of the peak location (mode) in the joint
probability density function (JPDF) of invariants of the re-
solved rate of strain tensor. The newly observed turbulence
phenomenologies are believed to be important and efforts have
been made to explain them on an analytical basis.

INTRODUCTION

The past decade has seen a rapid development in the
methodology of turbulence topology since the seminal works
of Chong et al. (1990) and Chen et al. (1990). This method-
ology has provided new insight into turbulence phenomena.
It is based on analysis of tensorial invariants and utilizes
critical-point theory to classify eddying motions (Perry and
Chong, 1987). The method of turbulence topology has been
developed through theoretical analysis based on restricted
Eulerian dynamics (Vieillefosse, 1984; Cantwell, 1992; Chacin
and Cantwell, 2000), direct numerical simulation (DNS) analy-
sis (Chen et al., 1990; Soria et al., 1994; Martin, 1998; Ooi et
al., 1999; Chong et al., 1998), and recent a priori LES studies
(Borue and Orszag, 1998; van der Bos et al., 2002).

The tensorial invariants of the velocity gradient are essen-
tial for understanding small-scale turbulent motions, and there
are several good reasons to investigate them: (i) the topo-
logical structures obtained from the analysis are universal,
viz. frame invariant under affine transformations (Soria et al.,
1994; Tsinober, 1998); (ii) in the case of incompressible flows,
analysis of a 3-D field can be performed using only two invari-
ants; (iii) different length scales of turbulence corresponding
to different magnitudes of the velocity gradient can be sorted
in an unambiguous manner using the invariant phase plane;
and, (iv) it has been shown in several studies (Blackburn et
al., 1996; Chong et al., 1998; Ooi et al., 1999; van der Bos et
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al., 2002) that the so-called invariant discriminant appears to
be an effective quantity for flow structure visualization since
it does not require any arbitrary thresholds.

Recently, a dynamic non-linear subgrid-scale (SGS) model
(DNM) has been proposed by Wang and Bergstrom (2005). In
comparison with the conventional dynamic model (DM) (Ger-
mano et al., 1991; Lilly, 1992), the DNM exhibits desirable
numerical robustness, flexibility in incorporating backscatter,
and a more realistic geometrical representation of the SGS
stress, since it allows for more complex alignment pattern be-
tween the SGS stress and resolved strain rate tensors. A good
SGS model should exhibit the capability to reproduce generic
turbulence topological features and also to statistically predict
the expected characteristic geometrical alignment patterns be-
tween fluid (eigen-)vectors. This paper aims to evaluate the
DNM using advanced criteria and explore turbulence topology
using the a posteriori LES method based on it.

MODEL FORMULATIONS AND PHYSICAL CONCEPTS

Dynamic Non-linear Model
The DNM implemented in this LES approach is based on
the quadratic constitutive relation proposed by Speziale and
his colleagues (Speziale, 1987; Gatski and Speziale, 1993) for
the Reynolds averaged Navier-Stokes (RANS) method, which
can be implemented into LES as
T35 = Tij — Tkkdij /3 = —CsBij — Cwyij — Onmij 1)
T = Tij — Trrdsj /3 = —Csai; — CwAhi; — OnGij
where the asterisk is used to indicate a trace-free tensor; 7;;
and Tj; are the grid-level and test-level SGS stresses, respec-
tively; and Cg, Cw and Cpy are model coefficients to be
determined dynamically. The tensor quantities appearing in
Eq. (1) are defined as
Bij = 202(8|S5;5, vij = AA%(SikQ%; + Sjkk:)
Mg = 4A2(§ik§k]’ - %S’mns’nmdz])
Q5 = 2A2|§|§ij, Aij = 4A2(§ikﬂk]’ + g]kﬁm)
Cij = 4A2(S;kSkj — 3 SmnSnm0is)
where S'ij = (ﬁiﬁj + ﬂjﬂ‘)/Q and Qz’j = (ﬂi’j — ﬂj’i)/Q are the
resolved strain and rotation rate tensors; |S| = (25;; 512

2)

and A and A represent the grid and test-grid filter sizes, re-
spectively. The dynamic procedure for obtaining the DNM
follows the least-squares approach of Lilly (1992), which re-
sults in the following normal equations for determination of



the model coefficients:
M Ms; My Wiy MizNyz| [Cs Ry
Wi Mz WiiWi; WiiN; |- |Cw | = — [£5Wij]
where Mi; = avij — Bij, Wis = Nij — ¥ij» Nij = Gij — fli; and
[,;‘j is the Leonard term. A detailed derivation of the equation
is documented in the paper by Wang and Bergstrom (2005).

®3)

Tensorial Invariants and Flow Topologies

The filtered velocity gradient Aj; def U;,; can be decom-
posed into a filtered symmetric strain rate tensor S*Z-j and
skew-symmetric rotation rate tensor Qij, as Aij = S*Z-j + Qij.
The eigenvalues of flij satisfy the characteristic equation

A%+ PAaN? + Qanr + Raa =0, 4)
where Paa, Qaa and Raa are the invariants of Az—j which
take the following forms for incompressible flow:

Papn=—A;=0,

Qan=—3AiAp;= §(@i@; — 25i;5ji),

Ran=—3AjApnAni=—3(5i55kSki + 30:0;S:5).
The tensorial invariants appearing in the above equations are
the resolved enstrophy szwiwiz—Qﬁiiji7 resolved strain
product jsgzgij S'ji, resolved strain skewness i—S3:§ij§jk§ki7
and resolved enstrophy generation 6 =@ - w=w;w;S;;. Here,
w is the resolved vortez stretching vector defined as w; =@; 5'2-]-.

Chong et al. (1990) showed that when Py 0 (due to
incompressibility), the nature of the roots of Eq. (4) is deter-
mined by a discriminant defined as

Da=2IR% + QY. (6)
If D4 >0, Eq. (4) admits one real and two complex-conjugate
roots. In this case, vorticity dominates the rate of strain, the
local streamlines swirl about a point and the flow pattern is
referred to as a focus. If D4 < 0, the three roots of Eq. (4)
are real and distinct, the rate of strain dominates the vortic-
ity, and the flow pattern resembles a stagnation point. This
type of flow geometry is referred to as a node-saddle-saddle.
If D4 =0, Eq. (4) has three real roots of which two are equal,
which corresponds to two curves: Ra = £(2v/3/9)(—Q)3/?
as shown in Fig. 1. These two special curves are sometimes
referred to as the “Vieillefosse line” (Chertkov et al., 1999).
The sign of R4 can be used for a further classification of the
flow topology: in the left half of the @ 4—Ra plane (the so-
called phase plane of invariants of u; ;), the real parts of the
complex-conjugate eigenvalues or two of the three real eigen-
values are negative and the critical points are classified as
stable; in contrast, in the right half plane, the real parts of
the complex-conjugate eigenvalues or two of the three real
eigenvalues are positive and the critical points are classified as
unstable (Blackburn et al., 1996).

In our presentation of the results that follow, the invariants
Qan and Rya for Aij (as well as those for S'ij to be discussed
later) are non-dimensionalized using the wall friction velocity
u,- and kinematic viscosity v in analogy to the wall coordinate

+ zour /v for wall flows, i.e.

Ty =
QA =Qan/(W2/v)?, Rin =Ran/(ui/v)>.

(3)

(7)

Marginal Expectation of Resolved Quantities

Flow topologies related to the resolved quantities such as
enstrophy generation (&) and the rate of SGS turbulence ki-
netic energy (TKE) production (P, def =75 S;;) are investi-
gated. Since these quantities by their nature are scalars, a

1056

Unstable-focus
compressing

YN

Stable-node Unstable-node
saddle-saddle saddle-saddle

Stable-focus
stretching

/

J

Figure 1: Solution space for invariants Q 4 and R4 with curves
corresponding to constant values of the discriminant D 4.

method is needed to relate them to the invariant phase plane.
Following the example of van der Bos et al. (2002), we in-
troduce the marginal expectation (ME) for a random scalar
variable ® based on its JPDF P(Ra,Qa, ¢), ie.

®p = ®p(Ra,Qa) =/F¢‘P(RA,QA,¢)d¢7 (8)

where I' is the sample space of ® with ¢ being the sample-
space variable corresponding to . Using Bayes’s theorem,
the above equation can be re-cast as

@p = P(Ra, Qa)(®|Ra,Qn), 9)
where (®|Ra,Qa) = [ #P(¢|Ra, Qa)de is the conditional
expectation of ®. As such, the ME of the non-dimensional
resolved enstrophy generation 7 /|o| = cos(w, w) is

or = P(Ra,Qa) - {cos(@, W)|Ra,QA); (10)
and the ME for non-dimensionalized P is
Pre = P(Ra,Qa) - (Pr/(ut/v)|Ra,Qa) - (11)

RESULTS AND ANALYSIS

In this section, statistical results on turbulence topolo-
gies are presented, including illustration of the near-wall
anisotropic effect and a report of some new flow phenom-
enologies discovered using the tensorial invariant phase plane.
Numerical simulations were performed for a turbulent Couette
flow with a Reynolds number of 2600 (based on one half of the
channel width and one half of the velocity difference between
the two plates). Details of the numerical simulations can be
found in Wang and Bergstrom (2005). In the simulation, 483
nodes were used in the discretization of the computational
domain and 30 x 30 bins were used for calculating statistical
quantities such as the JPDF of the flow invariants.

Flow Topologies Related to the Invariants of Aij

Figures 2(a)—(d) illustrate the JPDF of QA and Raa for
the viscous sublayer, buffer zone and logarithmic region. A
prototypical self-similar “pear-shape” of the JPDF contours
[see Fig. 2(b)] is observed in all cases. It is evident from
the figures that the most probable state (mode) is located
at the origin. Apart from the origin, the 2-D pear-shaped
JPDF contours have a preference for the 2nd and 4th quad-
rants, indicating the prevalence of stable-focus/stretching and
unstable-node/saddle/saddle topologies, respectively. From
comparison of Figs. 2(a), (¢) and (d), it is found that the pref-
erence of the pear-shaped JPDF contour for the origin is the
most prominent in the viscous sublayer, indicating that this
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Figure 2: Contours of JPDF of invariants QXA and RXA of
the filtered velocity gradient tensor (DNM).

flow signature is not unique for (quasi-)isotropic turbulence as
is commonly reported by previous researchers.

As is apparent in the figures, there is a strong tendency
for the JPDF contour to gather around the curve (Daa = 0
for Raa > 0), forming a so-called “Vieillefosse tail” (van der
Bos et al., 2002). Similar observations were reported in the
a priori LES analysis of holographic particle image velocime-
try (HPIV) measurements of a square duct flow field by van
der Bos et al. (2002), various DNS studies of mixing layers
by Chen et al. (1990) and Soria et al. (1994), channel flow
by Blackburn et al. (1996), turbulent boundary layer flow by
Chong et al. (1998), stratified homogeneous shear flow by Di-
amessis and Nomura (2000), homogeneous isotropic turbulent
flow by Martin et al. (1998), and forced isotropic turbulence by
Ooi et al. (1999). It is very interesting to note that although
the large-scale motions of these flows differ, the statistical fea-
tures in the @ 4a—Raa phase plane are similar. This suggests
that the topological features shown in the Q aan—Raa phase
plane are self-similar not only between different layers of a
wall-bounded flow, but also between different types of flows
as well, which according to Ooi et al. (1999) and Martin et
al. (1998) indicate “a kind of universality for all turbulence
flows, be they homogeneous or inhomogeneous”.

Flow Topologies Related to the Invariants of gij

Clearly, both Qaa and Raa by definition incorporate
the combined effects of local straining and vortical rotational
processes whose influences are embodied in the four invariants:
strain product, strain skewness, enstrophy and enstrophy gen-
eration. In their pioneering work, Chen et al. (1990) studied
flow topology using the invariants of the strain rate tensor,
which excludes (in a direct sense) the vorticity information,
i.e. enstrophy and enstrophy generation from the set of in-
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variants. As such, the relation between the local flow topology
and the straining process is highlighted, which in some cases
is advantageous for clarifying flow topologies. The invariants
of the filtered strain rate tensor for incompressible flow are:

(12)
Clearly, Qsa is a measure of resolved viscous dissipation, i.e.

er = 21/5'2'3'5']‘2' = —4vQsn, (13)
and Rga is a measure of the resolved strain skewness, as well

as an indicator of the sign of the intermediate eigenvalue of
the resolved strain rate tensor, since
Zss = SikSknSni = o + 8% + 75 =3asBsys.  (14)

Here, ag > 35 > s are the three eigenvalues of S’ij arranged
in descending order. Due to continuity, it is clear that g >0
and g < 0 are valid for any nontrivial situation (the trivial
situation refers to ag =g =75 =0). Therefore, if Rga >0,
then S;4Sk,Sn: < 0 and Bs > 0, and the local structure is
sheetlike; on the other hand, if Rga < 0, Bs < 0, the local
structure is tubelike. For the most probable ratios of ag :
Bs :vs=1:1:—2 (antisymmetric expansion) according to
Lund and Rogers (1994) and Tao et al. (2002), and 3:1:—4
according to Ashurst et al. (1987) and Tsinober et al. (1992),
Bs is positively skewed in statistics, which in turn indicates
that Rga is positively skewed and the resolved strain skewness
is negatively skewed in statistics.

The discriminant for the Qsa—RgsA phase plane is
T Ria + Q%A
Since S'Z'j is a real symmetric tensor, all of its three eigenval-
ues must be real. Therefore, only the region corresponding to
Dsa < 0 in the Qsa—Rsa phase plane is realistic for flow
topological classification, which is significantly different than
that of the Q aa—Raa phase plane. According to Blackburn
et al. (1996), the Qsa—Rsa phase plane is very convenient for
visualizing the relative eigenvalue ratio of the resolved strain
rate tensor. Suppose that r, = 8s/ag, then the curves corre-
sponding to different eigenvalue ratios can be represented by

Rsa = (—Qsa)*?ra(l+ra)(1+ra+72)7%2 (16
Using the above relation, curves corresponding to ag : (s :
s = 1:1:2 (axisymmetric expansion), 2:1:—3, 3:1:—4,
1:0:—1 (2-D flow), —1:—1:2 (axisymmetric compression),
and the quasi-2-D (QTD) state of flow configuration (related
to small r4) are illustrated in Fig. 3(b).

Figures 3(a)—(d) illustrate both the 3-D and 2-D JPDF
contours of the invariants of S‘ij. The flow topology in the
logarithmic region in both Figs. 3(a) and (b), shows a strong
preference for the 4th quadrant (Rsa > 0 and Qgsa < 0),
which according to the previous discussion relates to a local
dissipative pattern and a positively skewed eigenvalue Bs. A
general tendency towards the axisymmetric expansion pattern
is observed in Fig. 3(b), especially at low JPDF value levels.
As the JPDF value increases, a state with an eigenvalue ra-
tio of 3:1: —4 becomes more probable. The above method
for visualizing the eigenvalue ratio is convenient and intuitive.
However, it is argued by the authors that it is inadequate to
establish any quantitative results on the most probable eigen-
value ratio based on the JPDF contour pattern echibited in
the Qsa—Rsa phase plane. This is because all states of high
probability cluster around the peak location, where the dif-
ferent eigenvalue ratio curves specified by Eq. (16) are hardly
distinguishable; whereas, those most distinguishable patterns
in the 4th quadrant correspond to lower probabilities.

Psa=S5ii=0, Qsa=—73SikSki, Rsa=—3%S5:kSknSn.

Dgsa = (15)
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Figure 3: Contours of the JPDF of invariants QJSrA and RJSrA
of the filtered strain rate tensor (DNM).

From Figs. 3(b), (c) and (d), it is observed that the most
probable state is located near the origin. However, there ap-
pears to be a shift of this peak location (mode) away from the
origin along the negative Qsa axis. From these three figures,
it is observed that this negative shift from the origin increases
as the wall is approached, which according to Blackburn et
al. (1996) is a consequence of the wall anisotropic effect. Right
at the wall, the boundary condition for S;; results in

Rsalypau =00 Qsalyen = =5 @1 + 83 5)lwan- (17)
Since Qsa is a direct indicator of local dissipation [see
Eq. (13)], the term near-wall dissipation shift in the Qsa—
Rsa phase plane is coined here to describe this phenomenon.
The value of Rga = 0 at the wall helps to explain the special
pattern of the projection of the probable 3-D JPDF contour
ridge in the Qsa—Rsa plane (the dash-dot-dot line) shown
in Fig. 3(d), which becomes more and more “vertical” (thus
more and more 2-D) as the origin is approached. This observed
feature is important, as it demonstrates a generic character-
istic of the mear-wall flow: namely, in the viscous sublayer
the most probable states are close to a 2-D pattern, whereas
the two limiting flow configurations, i.e. azisymmetric com-
pression/expansion, are the least probable due to their 3-D
physical nature. It is very encouraging to see such a regu-
lar and universal flow topology for the buffer zone in both
Figs. 2(c) and 3(c) with the aid of the tensorial invariant phase
plane, since the buffer zone is still considered to be one of the
most controversial flow regimes in wall-bounded turbulence.

Marginal Expectation of Resolved Enstrophy Generation o g
The resolved enstrophy generation is closely related to the
process of local vortex stretching/compression and the cas-
cade of kinetic energy dissipation. Research on enstrophy
generation using the methodology of turbulence topology in-
cludes the works of Chertkov et al. (1999) and van der Bos
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Figure 4: Marginal expectation of the resolved enstrophy gen-
eration og as a function of QX A and RX A (DNM). Positive
values: solid lines, negative values: dashed lines.

et al. (2002), who analyzed (quasi-)isotropic turbulence data
based on DNS and HPIV measurements, respectively. Gener-
ally speaking, this research methodology which relates turbu-
lence topology to enstrophy generation is still relatively new.
In this subsection, we report some interesting phenomenologi-
cal results on the resolved enstrophy generation and associated
flow topologies observed in our research.

Figures 4(a)—(b) exhibit the contours® of the ME of the re-
solved enstrophy generation g in the Q@ 4ao—RAA phase plane.
From Fig. 4(b), a “dragonfly-shaped” contour is observed in
the logarithmic layer, which is similar to the observation of
Chertkov et al. (1999) and van der Bos et al. (2002). The o
function in the invariant phase plane has two positive peaks
corresponding to a localized vortex stretching configuration.
Both positive peaks are close to the origin. The dominant pos-
itive peak in the region of Daa > 0 and Raa < O relates to
the stable-focus/stretching flow topology, and the secondary
positive peak in the 4th quadrant gathers around the right
Vieillefosse line (Daa = 0). A negative o peak is observed
in the region of Daa > 0 and Raa > 0, which relates to the
unstable-focus/compressing topology. In effect, in the buffer
and viscous sublayer regions, an additional secondary negative
peak can be also observed in the third quadrant (not shown).
The predominant positive and negative contours suggestively
form the shape of a pair of “eyes” of the “dragonfly”, with the
secondary positive peak positioned along the Vieillefosse tail
forming its “body”.

Figures 5(a)—(f) show the contours of o in the invari-
ant phase plane of S_'ij (i.e., @sa—Rsa phase plane), which
displays a very interesting pattern of a pair of “wings”: a neg-
ative wing located in the region of Dga <0 and Rsa <0, and
a positive wing located in the region of Dga <0 and Rga > 0.
The three characteristic limiting curves that separate and con-
fine the two wings correspond to: the left Vieillefosse line
Dga = 0 (axisymmetric compression), R;A =0 (2-D flow),
and the right Vieillefosse line Dga =0 (axisymmetric expan-
sion). As shown in Figs. 5(a) and (b), in the logarithmic
region, the positive peak dominates the negative one; also,
the positive wing contour has a strong tendency toward the
right Vieillefosse line which relates to axisymmetric expansion,
whereas, the negative wing shows a weak preference toward
the left Vieillefosse line which links to axisymmetric compres-

1The contour levels of the ME of the various flow quantities
shown in Figs. 4-8 have been magnified by a factor of 30 x 30.
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Figure 5: Marginal expectation of the resolved enstrophy gen-
eration o as a function of QJSFA and R;A (DNM). Positive
values: solid lines, negative values: dashed lines.

sion. Figs. 5(c) and (d) show that in the buffer region, the
negative and positive peaks are about the same magnitude
and therefore the two wings are more symmetric. No obvious
preferential topological state associated with o is observed in
the buffer zone. From Figs. 5(e) and (f), it is clear that in the
viscous sublayer, the negative peak becomes dominant, and
both wings move closer to the central 2-D line (R;“A =0). This
phenomenological observation is interesting since it indicates
the 2-D nature of the viscous sublayer, where the local vortex
compressing flow configuration is dominant and the influence
of the limiting 3-D axisymmetric expansion and compression
flow configurations on og is negligible.

Marginal Expectation of the SGS TKE Production Rate P,.g

van der Bos et al. (2002) proposed an interesting sta-
tistical technique for visualizing the forward and backward
scatters of SGS TKE flux using the invariant phase plane.
The ME for the forward scatter and backward scatter of
non-dimensionalized SGS TKE (denoted as P:“E and P, re-
spectively) can be defined by splitting Eq. (11) into two parts
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according to the sign of Py, i.e. Prp = 77:}5 + P, g, with

Py & P(Ra,Qa)-(Pr/(ut/v)|Ra, Qa, Pr > 0)
P = P(Ra,Qa)-(Pr/(ud/v)|Ra, Qa, Pr < 0).

Figures 6(a) and (b) show the net forward and backward
scatters of SGS TKE in the logarithmic region, respectively.
Both the ’P:'E and P contours show a pear-shaped pattern
and strong tendency to follow the right Vieillefosse lines of
Daa = 0. By comparing the peak values shown in Figs. 6(a)
and (b), it is concluded that the overall SGS TKE transfer
is positive, indicating a net forward scatter of TKE from the
filtered to the subgrid scales. From both figures, it clear that
the effect of backscatter predicted by the DNM is significant.
Fig. 7 shows the 2-D contours of P:'E and P . A preference
for the right Vieillefosse line of Dga = 0 is evident, which re-
lates to the local axisymmetric expansion flow configuration.
Fig. 8 illustrates the contours of PjE predicted by the DM,
which is different than those predicted using the DNM. For the
DM, the principal axes of the SGS stress tensor are strictly
aligned with those of the resolved strain rate tensor; conse-
quently, no net backscatter could be observed (i.e., P, = 0).
Since no net backscatter effect is involved, the peak value pre-
dicted by the DM in Fig. 8 is, as expected, smaller than that
predicted using the DNM shown in Fig. 6(a).

(18)

CONCLUSIONS

Turbulence flow topologies predicted by the DNM SGS
model are compared with those predicted by the conventional
DM, and reported results based on DNS and experimental
data analysis. It is concluded that within the logarithmic re-
gion (away from the walls), the DNM can successfully predict
prototypical flow topologies such as the pear-shaped JPDF
contour of the invariants of the velocity gradient tensor. It is
observed that the influence of the near-wall anisotropy on the
flow topologies is significant. For instance, the preference of
the pear-shaped JPDF contour for the origin is found to be the
most prominent in the viscous sublayer, indicating that this
flow signature is not unique for (quasi-)isotropic turbulence as
it is commonly reported in the literature. A negative shift of
the JPDF peak location is observed in the Qgsa—Rsa phase
plane, a feature that is shown to be linked directly to the wall
dissipation through a boundary condition of the invariant at
the wall, viz. Qsalwatr = _(ﬁiz + 7:4372)|1,uall/4~

In the Qaan—Raa phase plane for the logarithmic region,
the marginal expectation (ME) of resolved enstrophy gener-
ation or has two positive peaks, both close to the origin,

(b) Backscatter

(a) Forward scatter

Figure 6: Marginal expectation P,.g in the Qaa—Raa phase
plane for zJ = 77.2 (DNM).



Figure 7: Marginal expecta-
tion Prg in the logarithmic
region (DNM).

Figure 8: Marginal expecta-
tion Prg in the logarithmic
region (DM).

demonstrating a 2-D “dragonfly-shaped” pattern. The pre-
dominant positive peak is located in the region of Daa >0
and Raa <0 and is related to a stable-focus/stretching flow
topology. The region of Daa >0 and Raa > 0 relates to an
unstable-focus/compressing topology and is characterized by
a negative op peak. In the Qsa—Rsa phase plane, we dis-
covered that the op contours exhibit the shape of a pair of
“wings”: the negative and positive contours are confined by
three characteristic curves; namely, the left Vieillefosse line
Dga =0 (axisymmetric compression pattern), Rga =0 (2-D
flow pattern), and the right Vieillefosse line Dga = 0 (ax-
isymmetric expansion pattern). In the viscous sublayer, the
negative o peak becomes dominant and both wings approach
closer to the 2-D line (Rga =0) moving away from both the
left and right limiting Vieillefosse lines, reflecting the generic
2-D nature of near-wall flow.

The predicted ME for the forward and backward scatters
of SGS TKE fluxes using the DNM are examined separately.
In the logarithmic region, the ME contours of the net forward
and net backward scatters exhibit a pear-shaped pattern and
a strong tendency to follow the right Vieillefosse line (Dga =0
for Rga > 0), indicating that the SGS TKE flux is pref-
erentially associated with the axisymmetric expansion flow
configuration. The conventional DM fails to predict backscat-
ter in the tensorial invariant plane, and as expected, the peak
value of the forward scatter predicted by the DM is smaller
than that predicted using the DNM.
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