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ABSTRACT

The large-scale motions of wall turbulence are investigated
numerically using the large eddy simulation (LES) technique.
Special attention is paid to how geometrical difference affects
the large structures. For this purpose LES of plane channel
and pipe flows (Rer = 395,590, 1180) using a large analy-
sis region is conducted. It is found that in the outer layer,
the spanwise/azimuthal spacing of the large scales is stable
at 1.4 times the boundary layer thickness (roughly the same
as the channel half-width or the radius of pipe). Thus, the
number of the large motions allocating along the spanwise di-
rection remains the same throughout the outer layer of channel
flow, while its number in the pipe along the azimuthal direc-
tion changes stepwise against the wall distance. Consequently
strong interaction among the large motions occurs in pipe flow
and the streamwise size of the large scales are slightly smaller
in pipe (2 to 4 times the radius) than those in channel (3 to
5 times the half-height). The very large scales in the log layer
remarkably appear at higher Reynolds number case of both
channel and pipe flows are also noteworthy.

INTRODUCTION

It has been widely acknowledged that in wall turbulence
there exist large-scale structures of a size at least comparable
to the boundary layer thickness. In contrast to the small-scale
structures near the wall, less attention has been paid to the
large structures until recently. However, owing to the recent
study on the structures of high Reynolds-number turbulence
and their Re scaling, the outer large structures and especially
their interaction with the small scales near the wall appears
to be an important issue in the understanding of wall turbu-
lence. In fact, the Re dependence of the streamwise velocity
fluctuations near the wall could be explained as a contribution
of the outer motions to the inner structures, and evidence of
this idea has been shown, for example, by DeGraaff & Eaton
(2000), in which they successfully discovered that the stream-
wise velocity rms collapses well in inner-outer mixed scaling.

The existence of the large scales has been recognized on the
experimental data of turbulent pipe flow, which indicate an ab-
normal extent of the temporal auto correlation appearing only
in the streamwise velocity component, or the low wavenum-
ber peak of the corresponding premultiplied one-dimensional
(1-D) power spectra (Kim & Adrian, 1999). However, the
one-point measurements most frequently used in experimen-
tal studies have fundamental difficulty in describing the spatial
characteristics of large-scale structures.
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On the other hand, rapid growth of recent high-
performance computers makes it possible to apply DNS to
investigate the large structures of wall-turbulence (e.g., Del
Alamo & Jiménez, 2001). They adopted the plane turbu-
lent channel flow as an analysis model and studied the spatial
features of the large structures. It is true that the turbulent
channel flow is an ideal case and has a universal feature of wall
turbulence. But we should concern ourselves with the differ-
ence of the large structures between plane and pipe flows when
we compare our numerical results with the abundant experi-
mental results of pipe flows. The typical case with regard to
this matter may be relating to the k3 ! region (¢, o k3 ') in
the streamwise premultiplied u-spectra, which should appear
as a plateau if the region exists. This k; ! region was explained
as a self-similar structure obtained by a simple scaling concept
in the context of Townsend’s attached-eddy hypothesis (Perry
et al., 1986). While this idea has been supported by much
experimental data in the fully developed pipe flow (e.g., Kim
& Adrian, 1999 and Perry et al., 1986) and is widely accepted,
recent measurements of a pipe by Morrison et al. (2002) at
a very high Re contradict it. Concerning this matter, Del
Alamo & Jiménez (2001) reported that their DNS results of
the plane channel flow also do not show the kz 1 region.

The objective of this study is to investigate the large scale
structures of wall-turbulence typically appear in outer layer
in the context of their Re scaling and interaction with the
buffer layer turbulence. In the present work, we especially
focus on how geometrical difference affects their outer-layer
motions. The practical difficulty of studying the large-scale
structures lies in the fact that they require a large experimen-
tal setup or a computational domain at sufficiently high Re
conditions in order to properly capture their entire motions,
and this requirement has been the stumbling block to both ex-
periments and DNS for large-scale studies. Alternatively we
have adopted large eddy simulation (LES) as an analysis tool,
which will be a promising method because we can save much
computational resources to be consumed for the dissipative
small eddies.

NUMERICAL METHODS

Analysis Models

The analysis models adopted in this study are the plane
channel with the half-height of § and pipe with the radius of
R, both of which have the sufficiently long analysis region of
8md and 87 R, respectively, to capture the large scale motions



in the outer layer. The streamwise direction is supposed to be
periodic, and constant pressure gradient is imposed to obtain
statistically steady state. A periodic boundary condition is
also imposed in the spanwise direction of the plane channel.
Hereafter, x, y, and z indicate the streamwise, normal-wall,
and spanwise/azimuthal directions, respectively.

Governing Equations

The governing equations for the present work are obtained
from the incompressible Navier-Stokes equations, which is
nondimensionalized by the reference length, ¢ or R, and veloc-
ity ur = /Tw (the friction velocity) so as to make the mean
pressure gradient force as 1, and the following nondimensional
filtered continuity and momentum equations written in the
Cartesian coordinates are obtained:

ou;
k3
ou;  Ouu, op 1 d%au, ©)
2 - 4 - 1 — — Ty,
ot Ox; Oxz;  Rer Ox;0x; i Ox; “

in which an overbar denotes the grid filtering operation, and
indices ¢ = 1,2, and 3 represent the directions for z,y, and
z, respectively. Here, u; is the grid-scale (GS) or resolved
velocity, p is the GS pressure divided by the constant density,
and Re; is the friction Reynolds number given as u,d/v. The
last term of eq. (2) is the subgrid-scale (SGS) stress term,
which must be modeled. For pipe flow, the corresponding
equations written in the cylindrical coordinates are used, and
the friction Reynolds number is given as Rer = urR/v.

Discretization

We have adopted the fully conservative high-order FD
scheme for uniform Cartesian staggered grids by Morinishi et
al. (1998) and the extension of the method to the non-uniform
grids in cylindrical coordinates (Morinishi et al., 2004). All
spatial derivatives are discretized by the fourth-order FD, ex-
cept for the SGS term which is discretized by the second-order.

The third-order Runge-Kutta scheme is adopted as the time
marching method, except for the second derivative for the
normal-wall direction included in the viscous term, which is
treated semi-implicitly using the Crank-Nicolson method for
the tolerance of the time increment in the numerical simula-
tion. The fractional step method (Dukowicz & Dvinsky, 1992)
is used for the velocity-pressure coupling and the correspond-
ing Poisson equation for pressure is solved by the Fast Fourier
Transform method in the periodic directions while the septa-
diagonal method is used in the normal-wall direction. For
details of the discretization method, refer to Morinishi et al.
(1998, 2004)

Subgrid-scale Modeling

An isotropic eddy viscosity model developed previously by
Tsubokura (2001) for the dynamic procedure (Germano et al.,
1991) using FD method is adopted in this study, in which the
SGS stress and the corresponding subtest-scale (STS) stress,
Tij = urzv—u] — 5iﬁj, are modeled as follows:
—-2C % Sij, (3)

Tij — 5ij7'kk =

3

1 K =
Tij — §5ikak = _QCﬁSzjv
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Table 1: Numerical conditions of the plane channels for the
grid-resolution test: LES, Re, = 590; DNS, Re, = 550.

cases Domain size Grid number Grid spacing
Ly/8 X L,/6 Nz X N, ht ht

M 87 X 4 192 x 192 77.2 38.6

(11) 87 X 4w 256 X 256 57.9 29.0
(111) 87 X 4 384 x 384 38.6 19.3
(1v) 871 X 4w 512 x 512 29.0 14.5
(v) 87 X 4 512 x 384 29.0 19.3

DNS 87 X 4w 1536 x 1536 8.9 4.5

where S;; is the strain rate tensor, S is its magnitude given
as S = \/m, and an over-tilde denotes the test filter-
ing operation. The k and K in (1) and (2) are the SGS and
STS turbulence energy, and are modeled by the scale similar-

ity concept as follows: k = Ugty — Ugtg, K = ﬁ — g,
which was determined considering the consistency of the nu-
merical error in the dynamic procedure. In order to avoid any
instability induced by possible negative eddy viscosity through
negative C, an averaging technique proposed in the original
procedure is adopted in the homogeneous directions.

Determination of Grid Resolutions

As a preliminary test of the large scale study, we focus on
the minimum grid resolution required for the reproduction of
large scales in fully developed incompressible turbulent plane
channel flow. Because the size of the large scales in the outer
layer are comparable to the boundary layer thickness, it is ex-
pected that relatively coarse grids will be sufficient to resolve
their motions, based on the assumption that their outer mo-
tions are detached from the wall and self-organized. On the
other hand, if they originate from the small organized struc-
tures in the vicinity of the wall, the grids required for large
scales will be unexpectedly fine enough to reproduce the near-
wall dominant motions.

A moderate friction Reynolds number of 590 is adopted
at which reliable DNS data are provided by Del Alamo &
Jiménez (2003) (Re, = 550). It is acknowledged in their DNS
that the large scale motions obtain substantial energy only
in the streamwise velocity component. Thus we focus on the
ability of LES in regard to how properly it can reproduce the
premultiplied power spectra of the streamwise velocity fluc-
tuations at various grid resolutions indicated as (I) to (V)
in Table 1. At least 5 grid points are allocated through the
viscous sublayer to capture the rapid growth of the mean ve-
locity in the vicinity of the wall, and total of 65 grid points
are used for the normal-wall direction (h,} = 1.6 ~ 44.9) in all
LES tested here, while 257 grid points are used in the DNS
(h; < 6.7). Special attention is paid to a low-wavenumber
feature of the spectra in the outer layer where the large scales
remarkably appear. In all cases, the adopted domain size is
the same as that of DNS, and the only difference among each
LES is the grid resolution for the streamwise and spanwise
directions. The one-dimensional premultiplied power spec-
tra of the streamwise velocity component are shown in Fig.
1. Before focusing on the outer-layer in which large scales are
remarkably observed, let us first discuss the near-wall spectra
at yt ~ 20 where the well-known buffer-layer streaks appear
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Figure 1: The 1-D premultiplied power spectra of the stream-
wise velocity of plane channel flows: (a) & (b), near wall at
yt ~ 20; (b) & (d), away from the wall at y+ ~ 200 .

and the maximum rms of the streamwise velocity tends to be
located. The premultiplied spectra obtained by the DNS peak
at Az0 = 1.48 and A, = 0.23 as seen in Figs. 1(a) and (b).
These values are equivalent to A+ ~810and A} ~ 130 in inner
scaling, which represents the scales of the buffer-layer streaks
for streamwise and spanwise direction respectively. Unfortu-
nately, the actual LES of coarser grids such as (I) and (II)
fails to reproduce the spectral feature of DNS in the resolved
range and cutoff SGS energy seems to pile up on the resolved
scale. From these results, it seems that the grid spacing of
at least hi ~ 30 and hd ~ 20 used in (V) is indispensable
to properly capture the near-wall spectral feature. We now
look at the outer-layer spectra (y ~ 200) with the object of
the reproduction of the large scales. The DNS spectra peaks
at Agzd ~ 2.7 and A;6 ~ 1.8,.14 in outer scaling, as seen in
Figs. 1(c) and (d). These low-wavenumber energetic modes
represent the characteristic sizes of the large scales. Contrary
to the optimistic expectation that rather coarser grids such
as (I) and (IT), which failed to capture the small scales near
the wall, might be sufficient to reproduce the large scales in
this region, we see that they again fail to reproduce the GS
spectra and that they provide an underestimation of the peak
wavelength. Reproduction of the steep peak observed in DNS
in the spanwise spectrum is also unsatisfactory and only the
moderate peak can be identified at the lower wavelength than
the DNS value. This poor performance of the coarse LES was
improved by increasing the grid resolution, and (IV) and (V)
are both qualitatively and quantitatively accurate enough to
reproduce the DNS spectra.

According to the results in the context of the reproduc-
tion of the peak spectra shown above, we can say that at
least the grid resolution corresponding to (V) is necessary for
the analysis of the large scales. The plausible explanation of
the requirement of the surprisingly fine grid resolution com-
pared with the characteristic sizes of the large scales is that the
large scales originate from the near-wall motions related to the
sublayer streaks. Practically speaking, this grid resolution is
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Table 2: Numerical conditions for plane channel and pipe

flows:.

geometry Re, Domain size Grid number

Lz X Ly X L, Nz X Ny X N,

395 871 X 20 X 4o 360 x 45 x 256

plane 590 8md X 20 X 4mwd 512 x 65 x 384
1180 87w X 26 X 2.2578 1024 x 129 x 432

395 8TR X R X 2w 360 x 23 x 256

pipe 590 8mR X R X 27 512 x 33 x 384
1180 8TR X R X 2w 1024 x 65 x 432

relatively fine considering the engineering or geophysical ap-
plications of LES, but the total grid number of LES is still
about one-fiftieth of that used in the referenced spectral DNS,
and the advantage of LES for studying the large scales is still
maintained.

RESULTS

In accordance with the required minimum grid resolution,
hi ~ 30 and hj ~ 20, found in the previous section, LES of
plane channel and pipe flows at three Re, of 395, 590, and
1180 are conducted. The domain size and the adopted grid
number are summarized in table 2.

Turbulence Statistics

Figure 2 indicates the streamwise mean velocity obtained
by our LES at (a) Rer = 590 and (b)1180 in inner scaling (ur
and v); for reference, the laws of the wall, Ut = yT and Ut =
(1/0.41) Inyt +5.2, as well as the DNS data (the plane channel
at Re; = 550) obtained by Del Alamo & Jiménez (2003), is
also plotted. We cannot observe a significant difference at
the logarithmic layer between plane and channel flows, while
remarkable difference appears on the upper side of the outer
layer (y/d or y/R > 0.2, equivalent to y* > 120 at Re, =
590 and y* > 240 at Re, = 1180). This difference is more
remarkable when plotted in outer scaling (u,, and ¢ or R),
which is often called the velocity-defect law. Correspondingly,
the turbulent intensity profiles also show the similar tendency;
the difference is observed above y/§ or y/R = 0.2.

1-D Premultiplied Spectra

One-dimensional premultiplied power spectra of the
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Figure 2: Mean velocity profiles: (a), Rer = 590; (b), Rer =
1180.
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Figure 4: Turbulent intensity profiles: (a), Rer = 590; (b),
Re, = 1180.

streamwise velocity component obtained in plane channel and
pipe flows are plotted in Fig. 5 (near wall) and 6 (away from
the wall). Note that the power spectrum multiplied by the
wave number k¢, in the logarithmic plot indicates that the
area under the profile is proportional to the power or energy
included in the corresponding wavenumber range. Figure 5
shows that the spectral tendency is the same for each geo-
metrical configuration near the wall, while notable difference
appears in or above the logarithmic layer. As indicated in
Fig. 6(a), both the plane channel and pipe show a peak at
the second largest mode (\;/6 = 4m) at y*t ~ 200, which
indicates the typical size of the large scale motions. In case
of the pipe, this energetic mode is mitigated above the log-
arithmic layer (y*+ > 400), while the channel maintains this
spectral peak even in the wake region. These figures clearly
suggest that near-wall organized structures are essentially the
same between the plane channel and pipe, while outer large
scales are different between them. It also should be men-
tioned that the peak at the second largest mode suggests that
the numerical box for streamwise direction at the log layer is
not sufficiently large enough to capture the streamwise largest
motions and slightly larger structures might exist there.

SNAPSHOTS

Figures 7 and 8 indicate the grey-scale coded contours of in-
stantaneous streamwise velocity fluctuations obtained in plane
channel and pipe flows at Re; = 1180. We can observe on
the plane at y™ ~ 200 the coherent streaky structures simi-
lar to the low-speed streaks in the near-wall region. However,
their spanwise spacing is equivalent to the order of the channel
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Figure 5: 1-D premultiplied power spectra of the streamwise
velocity (yt ~ 20) at Re; = 1180: (a), streamwise; (b), span-
wise or azimuthal.
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Figure 6: 1-D premultiplied power spectra of the streamwise
velocity (y* ~ 200) at Re; = 1180: (a), streamwise; (b),
spanwise or azimuthal.

height or the pipe radius. Figure. 8 also shows that the large
lower-velocity zones (appearing as the large dark spots) align
in the spanwise and azimuthal directions, and compared with
the low-speed streaks appearing as very small black dots in the
vicinity of the wall, their size are remarkably large. It is also
evident that the large scales penetrate deep into the near-wall
region, which affects the characteristics of the near-wall re-
gion. The possible explanation of this deep penetration of the
large scale is its contribution of the Re-number dependence of
the rms of the streamwise velocity near the wall. The most
notable difference of these large lower-velocity zones between
plane and pipe flows are that , owing to the confined geometry
of the pipe toward the pole, each large structure in the pipe
seems to be interact with each other near the pole. As a result
of this interaction, the size of the large structures in the pipe
are seemingly slightly smaller than the ones observed in the
plane channel flow, as shown in Fig. 7 (y+ ~ 200)

SCALING OF THE ENERGETIC MODES

The most energetic wavelengths of plane channel and pipe
flows, at which the peak of the 1-D premultiplied spectra of
the streamwise velocity are located, are plotted in Figs. 9 ~ 12
against the distance from the wall to investigate the character-
istic size of the turbulence structures, and their dependences
on the flow geometry and Reynolds number.
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Reynolds Number Scaling

The peak wavelengths of the plane channel at three dif-
ferent Reynolds numbers are plotted in Figs. 9 and 10.
The streamwise energetic peak wavelengths collapse well by
inner scaling near the wall which decay asymptotically to
A} ~ 1000, as seen in Fig. 9(a). They are constant in the
buffer layer, then grow rapidly from y™ = 100 to 200 in the
log-law region until they reach A\, of around 3 to 124, but their
collapse in the outer layer by outer units are only moderate.
The spanwise peak wavelengths also show good collapse es-
pecially in the inner layer, as indicated in Fig. 10. In the
near-wall region, they decay asymptotically to A~ 100. Tt
is acknowledged that this wavelength is the space between
each sublayer streak, suggesting that the characteristic scale
of streaks resulting from near-wall coherent structures is an
universal phenomena. They grow in the buffer layer with
good collapse in inner scaling, and reach constant values of
Az ~ 1.4 to ~ 1.85 around yt ~ 100, which then collapse
moderately well in outer scaling. From these figures, we can
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Figure 9: The streamwise peak wavelength of the premulti-
plied power spectra of plane channel flows: (a), inner scaling
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premultiplied power spectra of plane channel flows: (a), inner
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say that the large structures obey the outer scaling and their
spanwise size is about twice as large as the boundary layer
thickness independent of the Re range tested here.

Difference between Plane Channel and Pipe Flows

To investigate the difference of the structures between
channel and pipe flows, the peak wavelength of their pre-
multiplied power spectra at Rer = 1180 is indicated in Fig.
11. No significant difference can be found in the inner layer
(y+ < 100,y/6 < 0.08). Both channel and pipe flows have
very large streamwise elongated structures (Az/d ~ 12) in the
middle of log layer (y* ~ 300,y/6 ~ 0.25), then they be-
come smaller in the outer layer (y/é ~ 0.4), which is shown
in Fig. 11(a). Compared with that of channel flow in the
outer layer (Ayz/d = 3 ~ 5), the elongated structure is slightly
smaller in pipe flow (Az/d = 2 ~ 4). The spanwise size of the
corresponding large structures in channel flows maintains the
same in or above the log layer, while the jagged profile of the
pipe for the azimuthal peak wavelength is remarkable, which
is indicated in Fig. 11(b).

Azimuthal Structures

range tested here, which is shown in Fig. 12. We can ex-
plain the jagged pattern by plotting the energetic mode (peak
of the premultiplied spectra) as the peak angle against the wall
distance, and the pattern comes to be stepwise as indicated
in Fig. 12(b). Here Ay is given as 27/n, in which n is inte-
ger indicating the number of large scale structures allocated
along azimuthal direction. In the Fig. 12(b), Ag is 27/4 below
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premultiplied power spectra of pipe flows.

y/R=0.3,2n/3aty/R=0.3~0.6,2n/2at y/R=0.6 ~ 0.8,
and 27/1 above y/R = 0.8. It is important to note here that
at the position where shift of the azimuthal number of the
large structures occurs, the azimuthal spacing of each struc-
ture can recover 1.4R, such as y/R = 0.3 where the azimuthal
spacing of three structures is 2w X 0.7R/3 ~ 1.5 and y/R = 0.6
where the spacing of two structures is 2w X 0.4R/4 ~ 1.3. As
indicated in Fig. 11(b), the characteristic spanwise spacing of
the large structures in channel flow is 1.49 in and above the log
layer, the lateral spacing of 1.4 times the boundary thickness
may be a universal feature of the wall turbulence in the outer
layer.

CONCLUSIONS

The findings of the present study can be summarised as
follows: An unexpectedly fine grid spacing of hi ~ 30 and
h ~ 20 in the streamwise and spanwise directions is required
to properly capture the 1-D premultiplied power spectrum and
its peak at the lower wavenumber in the outer layer where large
scales remarkably appear. This result indicates an apparent
strong relation between the near-wall small scales and the large
scales in the outer layer; In the inner layer of both channel
and pipe flows, the streamwise and spanwise peak wavelength
of the premultiplied spectra collapse very well near the wall
in inner scaling, which indicates that there is not remarkable
difference of the near-wall feature between channel and pipe
flows; In the log layer around y+ ~ 300 of both channel and
pipe flows at Rer = 1180, very large streamwise elongated
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structures of the size comparable to the half of the numerical
domain (87 times the channel half-height or the radius of the
pipe) exist, which may indicate still larger domain size is re-
quired: In the outer layer above y/§ = 0.3, rather smaller large
structures than in the log layer exist, but their streamwise size
is slightly smaller in pipe flow (Az/R = 2 ~ 4) than those in
channel flow (A /6 = 3 ~ 5). The spanwise/azimuthal spacing
of the large structures may be independent on the Reynolds
number, and is stable at A\, /d or A\,/R = 1.4.
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