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ABSTRACT

Besides a simplified treatment of chemistry, many existing
turbulent combustion models also use simplified diffusion pro-
cesses (Hilbert et al., 2004). Differential and thermal diffusion
effects are only included in recent DNS of turbulent combus-
tion, for example in de Charentenay and Ern (2002) and show
mainly local influence on the flame structure. Since for non-
premixed test cases exact modeling of the mixing process is a
prerequisite of correct combustion predictions, the goal of our
work is to further investigate the effects of detailed diffusion,
modelled at different levels of precision, on turbulent mixing
in the non-reacting case.

Motivated by this, DNS of temporally evolving, turbulent
compressible shear layers with gradients of species and tem-
perature have been performed.

The species are called active scalars because they influence
the flow via the density due to their different molecular weights
and via the transport coefficients like heat conductivity and
diffusion coefficients.

Two different levels of approximation for the species dif-
fusion fluxes and the heat flux are used and their effects are
investigated. A quantity of special interest in this paper is the
scalar dissipation rate as it is directly related to the reaction
rate in combustion and therefore important for combustion
modeling, for example in LES.

The first section of the paper describes the configurations
and the initial parameters of the simulations. Then, the
Navier-Stokes and species transport equations including de-
tailed or simplified diffusion are presented. A self-similar state
from which mean profiles and statistics are taken is defined in
the following section. Next, mean profiles of diffusion flux
and heat flux are analyzed. With the help of the diffusion
flux, a mean Schmidt number is defined and its profile is eval-
uated which allows to assess the approximation of a spatially
After this, the
influence of the diffusion description on mean profiles, instan-
taneous fields and pdfs of the scalar dissipation rate or related
quantities is investigated. Finally, conclusions are drawn.

constant Schmidt number for each species.
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SHEAR LAYER CONFIGURATION AND INITIAL PARAME-
TERS

Fig. 1 shows the configuration of the shear layer. All test
cases are 3D with =z and y denoting the streamwise and span-
wise directions and z denoting the transverse direction of the
planar shear layer. The upper stream (index 1) is pure oxy-
gen while the lower stream (index 2) is a mixture of hydrogen
and oxygen with mass fractions Y, chosen in such a way that
the ratio of the molecular weight for the mixture between this
stream and the upper stream is 1:2. Greek indices denote the
species.

In the first two test cases, denoted Ogz-Ha-1-dd with de-
tailed diffusion and Oz-Hg2-1-sd with simplified diffusion, the
temperature of the upper stream (77 = 586.30 K) is two times
the temperature of the lower stream (T2 = 293.15 K) in order
to have equal density (p1 = p2 = 0.66 kg/m?). Simplified
diffusion means the neglection of thermal and cross diffusion
effects (see following section).

In the second series of test cases, denoted O2-Ha-4-dd with
detailed diffusion and Oz-H2-4-sd with simplified diffusion,
a mean density gradient is present: The temperature of the
lower stream (T = 586.30 K) is two times the temperature of
the upper stream (T3 = 293.15 K) which results in a density
ratio of 4:1 (p1 = 1.32 kg/m3, p2 = 0.33 kg/m?2).

These two series of test cases allow to compare the influ-
ences of detailed and simplified diffusion on quantities that
are constitutive for mixing and combustion. The importance
of these effects can be assessed depending on which stream is
the hotter one, the stream with the lighter molecules or the
other one.

The turbulent velocity and the nearly constant (p1 = p2 &
10° Pa) pressure field of another shear layer are used for
initialization. This shear layer with constant density was com-
puted previously for a Reynolds number

based on the momentary vorticity thickness d,5. Au de-
notes the velocity difference. The reference density is prey =
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Figure 1: The schematic configuration of the shear layer
Table 1: Geometrical parameters for the simulations. The

computational domain has the dimensions Ly, Ly and L. with
Nz, Ny and N grid points, respectively.

Lz/éref
86.25

Ly/‘sref
21.50

LZ /‘sref
43.16

Nz x Ny x N,
512 x 128 x 256

(p1+ p2) /2. The reference dynamic viscosity pr.s is evalu-
ated in the middle of the shear layer. The convective Mach
number

Au

Ma, =
c1+c2

@)

is 0.11 for the test cases O2-Hs-1 and 0.10 for the test cases O-
Hj-4, reflecting the low Mach number situation in combustion
devices like combustion chambers.
speeds of the streams. The temperature and the density are
initialized by a hyperbolic-tangent profile and the species mass
fractions are computed via the ideal gas law.

c1 and cy are the sonic

Grid and domain sizes are the same for all test cases and
are given in table 1. The domain sizes are based on a reference

length

Rew‘()
Rewyb

Jref = 5u,b ’ (3)

computed with the initial Reynolds number Re, 0 = 640 of
the shear layer computation from which the turbulent velocity
field is taken. The domain sizes are comparable to those which
Pantano and Sarkar (2002) have used for their DNS of a shear
layer with a density ratio of 4. The grid-spacing of all test
cases is constant in z- and y-directions. In the z-direction,
approximately the inner third of the domain has a constant
grid-spacing with Az, = 0.126 - §,.5 while the stretching
in the external parts is 3 %. The boundary conditions are
periodic in z- and y-directions and nonreflective in z-direction.

NAVIER-STOKES AND SPECIES TRANSPORT EQUA-
TIONS AND THEIR NUMERICAL INTEGRATION

The compressible Navier-Stokes and species transport
equations are solved in a pressure-velocity-entropy-species for-
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mulation (Sesterhenn, 2001):
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Pressure, velocity and entropy are denoted respectively by p,
u; and s. The density is p, the sonic speed ¢, the viscous stress
tensor 7;; and the universal gas constant R = 8.314 J/(kg
mol). Wy is the molecular weight of species . Polynomial
expressions (Gardiner, 1984) are used to compute the enthalpy
ha and entropy sq of each species and the specific heats of the
mixture to determine their ratio +.

The species diffusion flux Y, V,; with the diffusion velocity
Vi is evaluated as

olnT

YoVoi = Z Yo D, aﬁdﬁz cheaz W
i

B

®)

with the diffusion vector

2%,
o

dgi = + (Xp = Yp) 5~ alnp ®)
where X is the mole fraction of species 8. The transport
coefficients, namely the flux diffusion matrix D3 and the
thermal diffusion vector 84, are evaluated with the help of the
program EGIib (Ern and Giovangigli, 1995) that is integrated
into our code. It incorporates the local temperature, pressure
and species’ composition to compute the transport coefficients.
In addition, the heat flux

thaya ai _)\ o —PZGQ o

requires the partial thermal conductivity A\’ which is also given
by EGlib. This program offers the possibility to use different
levels of approximation for the species diffusion fluxes and the
heat flux. The most detailed description is given by eq.(5)
and eq.(7). It takes into account the thermodiffusion effects
given by the terms with 6, as well as cross diffusion effects
represented by Dog. In the simplified description, thermodif-
fusion is neglected and the Hirschfelder-Curtiss approximation
(Hirschfelder et al., 1954) for the species diffusion coefficients
in the mixture is used neglecting cross diffusion effects. A
correction velocity is considered to ensure mass conservation.
Radiation effects are neglected in both descriptions of the heat
flux.

The integration of equations (4) is performed using sixth
order compact central schemes for the spatial derivatives and
a third order low-storage Runge-Kutta scheme for time inte-
gration. The primitive variables are filtered all the 20 time
steps to prevent spurious accumulation of energy in the high-
est wavenumbers using a sixth-order compact filter.
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Figure 2: Dimensionless growth rate of the momentum
thickness, x: Og-Ha-1-sd, +: Oa-Ha-1-dd, O: Oz-Hz-4-
sd, x: Og-Ha-4-dd

The code is parallelized and the simulations were performed
on up to 128 processors of the supercomputer Hitachi SR8000-
F1 of the Leibniz-Rechenzentrum in Munich (Germany). Each
computation required up to 24500 CPUh.

THE SELF-SIMILAR STATE

All computations are performed over times that are long
enough to reach a self-similar state (Pantano and Sarkar,
2002). In fact, after an initial transient, an approximately
constant dimensionless growth rate
= 2 /oo pu”w”%dz (8)

polAud J_o Oz
for the momentum thickness is established which depends
on the density gradient (fig. 2). Quantities with an over-
bar, like p, are Reynolds averaged quantities, quantities with
Primes and
double primes indicate the respective fluctuations. The non-
dimensional time is

a tilde, like @, are Favre averaged quantities.

t-Au
T =

J'ref (g)
with the physical time t. The differences in growth rate
between the respective simulations with detailed and with
simplified diffusion are small. In qualitative agreement with
Pantano and Sarkar (2002), we notice a drop in the growth
rate for the test cases with density gradient.

The fact that the growth rate remains constant over a cer-
tain period of time allows the definition of an intermediate
self-similar state at which enough vortex structures are present
in the domain to neglect the influence of the finite domain size.
Figure 11 shows the instantaneous hydrogen mass fraction for
such a state at 7 = 128.

Pantano and Sarkar (2002) suggest the non-
dimensionalization by the variables &g, po and Au.
This is done in fig. 3 for the scalar variance

S
ym — YY" (10)
P

of Oz-Ha-4-sd. Here and in the following denote Y = Yp,
and V; = Vg, ; etc. The relaxation to a self-similar state
is visible. The profiles are shifted towards the side of the
lower density because the so-called dividing streamline has
moved there, which can be explained by the mean-momentum
conservation (Pantano, 2000).
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Figure 3: Instantaneous profiles of scalar variance, O2-Ha-
4-sd, o: T =88, M: T =125, O0: 7 = 154, *: 7 = 161, x:
T=168, +: 7 =176
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Figure 4: Instantaneous profiles of scalar dissipation, O2-
Hj-1-sd, 0: 7 =41, M: 7 =83, 0: 7 =114, *: 7 =121, x:
T =129, +: 7 =137

Table 2: Dimensionless time and Reynolds number at the be-
ginning (index: B) and end (index: E) of the self-similar state

O2-Hs-1-sd (dd)  Ogz-Ha-4-sd (dd)

B 114 161
B 156 176

Re,p 11181 (10766) 13680 (14140)

Re, 14058 (12973) 14793 (15525)

A collapse of the profiles for the self-similar state is observed
as well for the mean scalar dissipation rate

(11)

which appears in the transport equation of the scalar variance
(for example Og-Hp-1-sd in fig. 4) .

The beginning and end of the so defined self-similar states
are given in table 2 along with the Reynolds numbers

O

Rey, = Re, -
6ref

(12)

at these times. Due to the fact that the initial turbulent veloc-
ity field originates from a shear layer with constant density, it
takes longer for the shear layers with density gradient to reach
the self-similar state.

All mean profiles in this paper are averaged, both in time
over the self-similar state and in space over the two homoge-
neous directions. The samples from which pdfs are built are
taken from self-similar states.



Figure 5: Components of the mean hydrogen diffusion flux,
O9-Hy-1, +: total (dd), x: diffusive part (dd), O: ther-
modiffusive part (dd), B: total (sd)

COMPONENTS OF DIFFUSION FLUX AND HEAT FLUX

In the detailed description of the diffusion, the diffusion flux
has two parts: The diffusive part which is the first term on the
right hand side (RHS) of eq.(5) and the thermodiffusive part
(Soret effect) which is the second term and gives the species
diffusion induced by temperature gradients. In the simplified
description, the Soret effect is neglected. In the heat flux,
eq.(7), the diffusive part (third term on RHS), namely the
Dufour effect, is likewise only retained in the detailed descrip-
tion of the diffusion. The conductive part (second term) and
the diffusive part (first term) are present in both descriptions,
however, the last one with the Hirschfelder-Curtiss approxi-
mation in the simplified description.

Fig. 5 shows the different parts of the hydrogen diffusion
flux for O2-Ha-1-dd. Due to mass conservation, the oxygen
diffusion flux has the same amount, but opposite sign. The
Soret effect contributes up to 10 % in the interior of the shear
layer. It is stronger on the hydrogen side and enhances the
diffusion of the light hydrogen molecules towards the hot oxy-
gen stream. In Oz-Ha-1-dd where the stream with the lighter
molecules is also the hotter one, the direction of the ther-
modiffusive heat flux changes and its importance (up to 7 %)
decreases (fig. 6).

In general, the Dufour effect in the heat flux (fig. 7 and
fig. 8) is smaller than the Soret effect. But in O-Ha-1, as the
diffusive part and the conductive parts have opposite signs
and not too different sizes, the influence of the Dufour ef-
fect on their small sum can be considerable (for example at
z/dg = 1.5). However, high temperature gradients, like they
are expected in combustion, enhance the negative conductive
part which diminishes the importance of the diffusive and ther-
modiffusive parts even though the latter one is expected to
increase somewhat, too. The positive sign of the diffusive
heat flux is due to the fact that at the same temperature the
specific entropy of hydrogen, whose diffusion velocity is posi-
tive (fig. 5), is higher than that of oxygen. In the mean heat
flux of O2-H-4 (fig. 8), the conductive and diffusive parts
are both mostly positive. Therefore, the influence of the ther-
modiffusion decreases. The change in sign of the conductive
heat flux around z/8y = 0.2 is due to an unsteadiness in the
slope of the mean temperature profile.

THE SCHMIDT NUMBER

A common simplification in combustion modeling is to as-
sume a spatially constant Schmidt number

I

Se= —
pD

(13)
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Figure 6: Components of the mean hydrogen diffusion flux,
O2-Ha-4, +: total (dd), x: diffusive part (dd), O: ther-
modiffusive part (dd), B: total (sd)
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Figure 7: Components of the mean heat flux, O2-Ha-1, +:
total, x: diffusive part (dd), *: conductive part (dd), O:
thermodiffusive part (dd), M: total (sd)
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Figure 8: Components of the mean heat flux, Oa-Ha-4, +:
total, x: diffusive part (dd), *: conductive part (dd), O:
thermodiffusive part (dd), M: total (sd)

for each species with D denoting the diffusion coefficient of the
respective species and p the dynamic viscosity. The diffusion
flux according to Fick’s law is then given by

oY

811-
_ pn oY
"~ pSc oz;

YV,=-D

(14)

If we insert our detailed or simplified diffusion flux YV;, we
can compute a mean Schmidt number
w 0Y
pY'V; 8z;

(15)

Having only two species whose diffusion fluxes and mass frac-
tion gradients have opposite sign but the same amount, the
two species have necessarily the same Schmidt number in or-
der to guarantee mass conservation. Fig. 9 shows this mean
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Figure 9: Schmidt number according to eq.(15), averaged
for the self-similar state, x: Oa-Ha-1-sd, +: Oz-Ha-1-dd
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Figure 10: Schmidt number according to eq.(15), averaged
for the self-similar state, x: Og-Ha-4-sd, +: Oa-Ho-4-dd

Schmidt number for O2-Ha-1 in the centre of the shear layer.
For the simplified diffusion, it varies between 0.21 and 0.35.
The detailed diffusion decreases the Schmidt number by up
to 14 % on the hydrogen side but has little influence on
the oxygen side. The effect of the detailed diffusion on the
Schmidt number of Oz-Ha-4 is different: It increases in the
10). As shown in the
previous section, the fact that the hotter stream contains the
lighter molecules, decreases the influence of the thermodiffu-
sion. Therefore, the changes in Schmidt number are not as
pronounced as in Oz-Hp-1. However, the Schmidt number is
not constant in transverse direction either, which rules out a
realistic combustion simulation with such an assumption.

whole centre of the shear layer (fig.

INFLUENCE OF DIFFUSION ON INSTANTANEOUS FIELDS
AND MEAN PROFILES

Figure 11 shows the instantaneous hydrogen mass fraction
field for a self-similar state of Og-Hz-1. One can see that
there are local differences in the isolines. However, the large
structures are the same in both test cases and there are no
differences visible in the corresponding mean profile in all test
cases (not shown). The influence on the mean profiles of other
quantities like the scalar dissipation rate (for example for O3-
Hj-4 in fig. 12) is small as well.

PDFS OF SCALAR GRADIENTS AND SCALAR DISSIPA-
TION RATE

The influence of the diffusion description on the mean scalar
dissipation rate was found to be small. However, in com-
bustion, the instantaneous scalar dissipation rate plays an
important role as its local maxima correspond to regions of
intense reaction. In addition, very large deviations from the
mean scalar dissipation rate can cause local flame extinction.
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Figure 11: Instantaneous mass fraction field of Ha, top: Oaz-

Hj-1-sd, bottom: Og-Hg-1-dd, 7 = 128 , z-z-plane in the
middle of the domain, isolines with increment 0.01 shown
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Figure 12: Mean scalar dissipation rate, x: Oa-Ha-1-sd,
+: Og2-Ho-1-dd

Figure 13: Instantaneous magnitude of the scalar gradient
oYy,

oz,
in the middle of the domain

normalized with 4y, O2-H2-1-sd, 7 = 128, z-2-plane

Scalar gradients and scalar dissipation rate share many fea-
tures as the latter is computed from the gradients of the Favre
scalar fluctuations (eq.(11)). Fig. 13 shows the instantaneous
magnitude of the hydrogen gradient. The field is very inter-
mittent with large values that do occur but with a very low
frequency.

The high intermittency can also be seen in the pdfs of the
scalar gradients. The pdfs of the scalar derivatives in trans-
verse direction (samples taken from the centre of the mixing
layer, from six planes around 7/§7ma$ = 0.5) are shown in fig.
14. The differences between the respective test cases with sim-
plified and detailed diffusion are predominantely found in the

-
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Figure 14: Pdf of the transverse scalar derivative nor-
malized by its variance o, centre of the shear layer, X:
QOg-Ha-1-sd, +: Og-Ha-1-dd, O0: Og-Hg-4-sd, *: Oa-Ha-
4-dd
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Figure 15: Pdf of the transverse temperature derivative
normalized by its variance o, centre of the shear layer, X:
Og-Hz-1-sd, +: Og2-Hg-1-dd, O: Ogz-Hg-4-sd, *: Og-Ha-4-
dd

Table 3: Maximal value of the scalar dissipation rate

Og-Hs-1-sd (dd)
63.2 (52.1)

O2-H3-4-sd (dd)
48.3 (46.9)

(€Y /&) man

tails of the pdfs. The skewness of the pdfs can be related to
sharp scalar fronts (Holzer and Siggia, 1994), (Pumir, 1994).
These ramp-cliff events result from the transit of fluid lumps
along the imposed gradient from the low-scalar region towards
the high-scalar region and vice versa (Gonzalez, 2000).

The fact that the sign of the skewness is related to the
mean gradient can be seen from fig. 15 which shows the pdfs
of the transverse temperature derivative: In Og-H2-1 where
the mean temperature gradient is positive, the skewness is
positive. In Og-H2-4 where the direction of the mean tem-
perature gradient is opposite, the sign of the skewness also
changes.

The high intermittency of the scalar gradients leads to a
high intermittency of the scalar dissipation which is confirmed
by its pdf, for example in fig. 16 where rare large values
appear. The description of the diffusion has an influence on
the largest appearing value in both series of test cases: The
maxima is increased by using the simplified diffusion, even by
21 % in Og-Ha-1-sd. The exact values are given in table 3.

CONCLUSIONS

Summing up, the influence of the diffusion description in
DNS of turbulent shear layers with species and temperature
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Figure 16: Pdf of the scalar dissipation, centre of the shear
layer, x: Og-Ha-1-sd, +: O2-Ha-1-dd

gradients is predominantely instantaneous and local. The tur-
bulent fluctuations appear to filter out to a great extent these
effects when considering mean quantities which was also ob-
served by de Charentenay and Ern (2002) for premixed flames.
Nevertheless, they are still visible, for example when regarding
the mean Schmidt number. Their importance increases when
light molecules like Ho are next to hot zones. Local changes
by the diffusion, for example of the scalar dissipation rate,
are found to be quite strong. Increases of the instantaneous
scalar dissipation rate can lead to significant changes in flame
behaviour like local extinction. Therefore, it seems to be im-
portant to retain as far as possible detailed diffusion effects in
combustion simulations.
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