A K-OMEGA ANALYSIS OF TURBULENT SUPERSONIC CHANNEL FLOW DNS DATA
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ABSTRACT

Statistical modeling of turbulent supersonic channel flow is
considered on the basis of direct numerical simulation (DNS)
data. First, the DNS data are studied within the frame of a
turbulence model, this means the model parameters are
calculated such that the turbulence model predictions agree
with corresponding DNS data. This representation of DNS
data is used to analyze the structure of the turbulence model
considered for different Reynolds and Mach numbers. It is
shown that standard modeling assumptions (e.g., regarding the
structure of the turbulence frequency equation) are
inapplicable to the flows considered. New closure models are
developed, therefore, which result in a turbulence model that
is optimized for a class of channel flows.

INTRODUCTION

Most of the simulations of turbulent flows are performed
within the frame of Reynolds-averaged Navier-Stokes
(RANS) methods. The application of more general probability
density function (PDF) methods to reacting flow simulations
enables the exact treatment of important processes, as, for
example, chemical reactions (Pope, 2000; Fox, 2003; Heinz,
2003a). The reason for the predominant use of RANS and
PDF methods is given by the fact that their computational
costs are much lower than those of large eddy simulation and
filter density function methods. However, the relative
simplicity of RANS and PDF methods is also the reason for
some significant problems, which limit their accuracy.

A first problem arises from the fact that there are good
concepts available to model the evolution of velocity and
scalar fields, but all these models have to be combined with a
transport equation for the turbulence frequency ® (or
dissipation rate € = k ® of the turbulent kinetic energy k)
which determines the characteristic time scale T = 1 / © of
turbulent motions. Unfortunately, the basis for constructing an
equation for o is weak because the most important term in this
equation, the standardized source rate S, is unknown (Pope,
2000; Wilcox, 1998).
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A second problem is related to the optimization of the
performance of turbulence models (Pope, 1999). The relative
efficiency of turbulence models mainly arises from the fact
that turbulence model parameters (as, e.g., Cw see below) are
introduced via the parametrization of correlations of turbulent
velocities and scalars which appear as unknowns in turbulence
models. Originally, such model parameters were assumed to
be constant (Launder, 1990), but many investigations
indicated significant shortcomings as a consequence of this
assumption. This concerns, in particular, the modeling of wall-
bounded flows, which is relevant to most of the applications.
It turned out that the performance of turbulence models for
such flows can be significantly improved by introducing
varying turbulence model parameters, so that the damping
effect of walls can be taken into account. However, concepts
applied previously to handle this question are hardly
supported by DNS data (Rodi and Mansour, 1993).

A third problem concerns the development of solutions for
the two problems described above (or, more general, the
development of turbulence models) with regard to variable-
density flows, which is relevant to turbulent combustion
calculations (Friedrich, 1999; Chassaing et al., 2002).
Compressibility effects that were observed in such flows may
be differentiated into dilatational and structural effects.
Dilatational compressibility effects of about 10% were
observed in homogeneous shear flows (Sarkar, 1995), but
their relevance to wall-bounded flows appears to be extremely
low (Friedrich, 1999). In contrast to that, structural
compressibility effects (i.e., changes of the dimensionless
anisotropy tensor due to a reduction of the turbulent kinetic
energy redistribution) were found to have a very significant
effect on the production and dissipation of turbulence in
homogeneous shear flows (Sarkar, 1995), which requires
corresponding modifications of turbulence models (Heinz,
2003b). With regard to wall-bounded flows there is certainly
the need for further investigations of the significance of these
effects and of appropriate ways to incorporate them in
turbulence models.



Fig. 1. A sketch of the channel flow considered. h refers to the
half channel height. Mean velocity and scalar profiles appear
only in wall-normal direction X,.

The three problems described above will be addressed here
by adopting recently obtained DNS data of supersonic channel
flow at different Reynolds and Mach numbers (Foysi et al.
2004). The investigations will be performed in the following
way. In a first step, the DNS data are considered within the
frame of a turbulence model, this means its parameters will be
calculated such that the predictions of the turbulence model
agree with the corresponding DNS data. In a second step, the
spatial distributions of turbulence model parameters obtained
in this way will be used to derive parametrizations that may be
applied in turbulence models. The suitability of such
approximations is then investigated by applying them in
simulations and comparing the results with DNS data.

DIRECT NUMERICAL SIMULATION

Compressible flow of air through a channel of infinitely
large plates (with a wall distance of 2 h) is considered, see
Fig. 1. The flow is driven by a uniform body force. No-slip
and impermeability conditions are applied to the velocity field
at the walls, and periodic boundary conditions are used in
stream- and spanwise directions. Both channel walls are
cooled and kept at constant temperature so that there is heat
transfer out of the channel allowing supersonic fully-
developed flow. A passive scalar is injected at the lower wall
and removed at the upper wall (Foysi et al. 2004).

The flow dynamics are described by the compressible
Navier-Stokes equations for the mass density p, velocity U; (i
=1, 3), temperature T and mass fraction m of a passive scalar,

Dp
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Here, D/ Dt =08/ ét + Uy 8/ 0x, and s = (28%S%)"2,
where S;d represents the deviatoric part of the rate-of-strain
tensor Sy = (OU; / Ox + OUy / 0x;) / 2. §; represents the
Kronecker delta and the sum convention is applied throughout
this paper. The pressure p is given by the thermal equation of
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state p = p R T, where R refers to the gas constant. In equation
(1b), a force f = 1, / h is introduced (t,, represents the wall
shear stress) which replaces the ensemble-averaged pressure
gradient O<p>/ 0x,.

The closure of the equations (1b)-(1d) requires the
definition of molecular properties. For the dynamic viscosity
we use u =, (T / T,)07, where p,, and T,, refer to wall
values of viscosity and temperature, respectively. The Prandtl
number is Pr = 0.7 and the Schmidt number Sc = 1.0. The
ratio y = ¢, / ¢, of specific heats at constant-pressure and
constant-volume, respectively, is given by y = 1.4, and the
gas constant R = ¢, — ¢, = 287 J / (kg K). This implies ¢, =y R
/(y-1).

All the details of the solution of the equations (1a)-(1d)
may be found elsewhere (Foysi et al. 2004). The stationary
ensemble (Reynolds) and mass density-weighted (Favre)
means considered below were obtained by averaging over the
homogeneous stream- and spanwise directions. The ensemble
mean of any quantity Q is denoted by <Q> whereas an
overbar refers to a mass density-weighted mean, Q = <pQ>/
<p>.

Simulations were performed by adopting the boundary
conditions described above for three sets of the friction
Reynolds number Re, bulk Reynolds number Re, and Mach
number M,,. These parameters are defined by

Py U.h _ Pouoh _Yo

= — Reo _—, MO _=—
They may be seen as dimensionless measures for the friction
velocity, bulk velocity and sound velocity at the wall. These
velocities are given by

h
ut= T_w, uO:%JdXZﬁl’ aw=\/ﬁ. (3)
va
0

In these expressions, p,, is the wall mass density and p, is the
bulk mass density which is defined in correspondence to u,.
The values for Re;, Re, and M, considered in this way are
presented in Table 1, and characteristic simulation data are
given in Table 2. The IL data agree well with DNS data of
Moser et al. (1999).

As may be seen in Table 1, the cases IL, CL and CH differ
by growing Reynolds and Mach numbers Re,, Re, and M.
However, these parameters do not reflect local flow
characteristics. This may be seen by considering the local
Reynolds number Re and Mach number M,

Uy T
I,

Re, @

M= 4)

Re=—,
v

Here, ﬁl is the mean streamwise velocity, a = (y R T)UZ
refers to the mean speed of sound, and Vv = <u>/ <p> is the
mean kinematic viscosity. The corresponding curves of Re
and M are given in Figs. 2a-b. These figures show that the
local Reynolds numbers of IL and CL and the local Mach
numbers of CL and CH are basically the same. Hence, the
comparison of IL and CL shows the Mach number effect
whereas the Reynolds number effect follows from the
comparison of CL and CH.



Case Re, M, Re, Re, M,
IL = incomp., low-Re 3300 04 181 2820 03
CL =comp.,low-Re 3400 22 556 6000 3.0
CH = comp., high-Re 6100 2.2 1030 11310 3.5

Table 1. The centerline Reynolds number Re,, centerline
Mach number M, friction Reynolds number Re, bulk
Reynolds number Re, and Mach number M,,.

The turbulence may be characterized by the turbulence
Reynolds number Re;, turbulence Mach number M, and
gradient Mach number M,. These numbers are defined by

k2 SA,

Re, =—, M, ) 5)
ev a a

Here, k = wu; / 2 refers to the turbulent kinetic energy
(turbulent velocity fluctuations are denoted by u; where i = 1,
3) and ¢ is the dissipation rate of k. € is often considered as the
sum of solenoidal (g,) and dilatational (€4) contributions, € = g
+ g4. However, there is no need for doing this here because
dilatational contributions are very small: one finds g4/ g, <
0.001. The characteristic mean shear rate S = § is used in
the definition of M,, and A, is a characteristic length scale of
turbulence in the direction of shear. A, is defined by A, = x (h
— Ix, — hl), where ¥ = 0.4 refers to the von-Karman constant.
The corresponding curves for Re;, M; and M, are given in
Figs. 2c-d. These figures reveal features which correspond to
those given in Figs. 2a-b: The turbulence Reynolds numbers
of IL and CL and the turbulence Mach numbers of CL and
CH are very similar. By adopting Re, = (20 Re; / 3)1/2 for the
relation between Re; and the Taylor-scale Reynolds number
Re,, one finds 25 < Re, < 44 (except very close to the walls),
which is of the same order as values given with regard to
corresponding investigations of homogeneous shear flows.
The turbulence Mach number M, and gradient Mach number
M, are small compared to values observed in homogeneous
shear flows (Sarkar, 1995).

Case N, N, N; Li/h L,/h 1IL;/h
IL 192 129 160 9.6 2 6
CL 512 221 256 47 2 47/3
CH 512 301 256 6m 2 47/3

Case Axy* AXyt i AXy* ax Axz*

IL 9.12 1.02 4.21 6.84
CL 13.65 0.89 9.38 8.91
CH 37.89 1.27 13.35 16.85

Table 2. Simulation data for the IL, CL and CH -cases
considered. N;, N, and Nj are the number of grid points in X;-,
X,-, Xs-directions. L, L, and L; are the corresponding domain
lengths. Ax,*, AXx,* and Ax;* refer to the node distance
normalized on the viscous length scale &, = v, / u, (the
minimal and maximal values of Ax,+ are given).
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Fig. 2. DNS data for the (a) local Reynolds number Re, (b)
local Mach number M, (c) turbulence Reynolds number Re;,
(d) turbulence Mach number M, and gradient Mach number
M, against the normalized wall-normal coordinate x, / h (IL:
—— CL:——CH: ----).

Basic flow characteristics are given in Fig. 3. The
normalized production P / (S k) = luu, | / k and inverse
dissipation S k / € = S 1 of turbulent kinetic energy k are
shown in Figs. 3a-b. In homogeneous shear flows, both the
quantities P/ (S k) and S t© were found to be primarily affected
by structural compressibility effects: they scale with the
gradient Mach number (Heinz, 2003b). For the wall-bounded
flows considered here, the influence of structural
compressibility effects is much lower. Compared to the IL
case, P/ (S k) is somewhat smaller for CL. This finding agrees
with the trend observed for homogeneous shear flows, but this
effect is very small. With regard to S 7 there is no observable
compressibility effect. In contrast to that one finds for both P/
(S k) and S t a stronger Reynolds number effect: the
normalized production P/ (S k) and dissipation rate € / (S k)
increase.

Corresponding features for the production-to-dissipation
ratio P / € of turbulent kinetic energy may be observed in Fig.
3c: there is hardly a compressibility effect but a higher
Reynolds number has a stronger effect (the plateau region is
more pronounced, this means a higher Re implies a larger
local-equilibrium region). Alternatively to the time scale ratio
S 1, one may consider a similar length scale ratio (which may
be seen as a characteristic eddy length scale) £« = T k’2/ (2 h)
to asses the relevance of compressibility effects. Theoretical
estimates suggest /x ~ 1/ 3 (Heinz, 2003a). Fig. 3d shows that
this estimate agrees well with the values observed here. /s is
affected by both Reynolds and Mach number effects.
Compressibility leads to a somewhat more homogeneous
spatial distribution of /.« (a higher near-wall peak and lower
centerline value) whereas a higher Reynolds number has the
opposite effect.
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Fig. 3. DNS data for the (a) normalized production P/ (S k) of
k, (b) normalized inverse dissipation S k/ € = S 1, (¢)
production-to-dissipation ratio P / € of k and (d) characteristic
eddy length scale /..

A K-OMEGA ANALYSIS OF DNS DATA

The DNS data described in the previous section will be
considered now within the frame of a turbulence model, i.e.,
the turbulence model parameters will be calculated such that
the model predictions agree with the corresponding DNS data.
There are several ways to realize such an analysis. The
averaging of the equations (la)-(1d) reveals that one has to
provide closures, for example, for the Reynolds stress tensor,
turbulent heat and mass flux. Such closures can be obtained
on the basis of transport equations for these quantities, or, by
the further reduction of these transport equations to algebraic
expressions for these quantities. The latter way, which
represents the natural first step of such an analysis, will be
applied here.

In particular, we will apply a k-o turbulence model.
Compared to a k-€ model, this model has the advantage that it
can be applied well into the viscous sub-layer, while the k-¢
model (with wall functions) requires the first grid point away
from the wall to lie in the log layer (Fox, 2003; Wilcox 1998).
By adopting algebraic approximation for turbulent fluxes
(Pope, 2000; Fox, 2003; Heinz, 2003a), the transport
equations for the ensemble-averaged mass density <p> and
mass density-weighted velocities U, , temperature T and
mass fraction ™, respectively, are given by

Dt ~{P)Su- (62)
% B é afk (<p>+pr)S, - a«p)(;)za(:l)kw)
[, o)
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Here, D / Dt=08/dt+ U, o/ 0x and <p>=<p>R T.Pr,
and Sc, refer to the turbulence Prandtl and Schmidt numbers,
respectively. For the turbulent viscosity pp we apply the
parametrization ur = C, <p> k / o. Here, C, is a parameter
that has to be calculated and ® = 1/ t = € / k refers to the
turbulence frequency. It is assumed that the turbulent kinetic
energy k and @ obey the equations

Dm
1 d
= (6d)

DE_1 0 it | & o2k o ()
Dt (p) OX Pr, ) Ox, ®

Do_1 0 phr |00 g 2 (7b)
t <p>6xk Pr, )ox,

Here, Pr, and Pr, are Prandtl numbers. S, refers to the source
rate in the turbulence frequency equation, which is usually
parametrized by the expression (Wilcox, 1998)

C S2
N

S, =0, -,
®

o, and o, are parameters that have to be calculated. C, S?/ o2
represents the modeled production-to-dissipation ratio of
turbulent Kkinetic energy, see equation (7a). Regarding the
structure of the equations (7a)-(7b) it is worth noting that the
mean dilatation is negligible for the flow considered. In
correspondence to the negligible influence of dilatational
dissipation effects one finds that the contribution of the
pressure dilatation Iy = (p/p)'S,," is extremely small: we
have ITT, / (<p> €))! < 0.008.

By adopting the DNS data presented above in the equations
(6b)-(6d) and (7a), one can calculate the model parameters C,,
Pr,, Sc, and Pry, respectively. To calculate Pr, and S, we have
only one relation available: equation (7b). Thus, we assume
(in consistency with the treatment of Pr,, Sc, and Pr, described
below) that Pr, is constant. Equation (7b) can be applied then
for the calculation of S, in dependence on values chosen for
Pr,.

The model parameters calculated in this way are shown in

Fig. 4. C,, which is often approximated by Cu = 0.09 (Pope,
2000; Wilcox, 1998), shows significant variations with the
normalized wall distance x, / h. The Mach number increase
implies a somewhat higher standardized turbulent transport
efficiency C,, which appears to be plausible. The Reynolds
number increase has a significant effect: the CH plateau is
much more pronounced than for the IL and CL cases. This
behaviour is similar to the features found for the production-
to-dissipation ratio P/ € and S 1, see Fig. 3.
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Fig. 4. DNS data for the turbulence model parameters (a) C,,
(b) Sc, (¢) Pry, (d) Pr, and (e) C, / Pr. Pr, S, is shown
according to (7b) in (f), where two values for Pr, are applied:
Pr, =0.6 and Pr, = 0.9.

The results found for the dimensionless numbers Sc,, Pry
and Pr, reveal the following. The effect of compressibility is
small with regard to Sc, and Pr,, but there is a relevant
influence on Pr: the stronger coupling of the transport of
momentum and heat in compressible flows hampers,
therefore, the standardized turbulent energy transport
efficiency C,, / Pr,. The Reynolds number has a similar effect
on Pr; and Pr; their values are closer to unity, this means the
difference between the turbulent transport of turbulent kinetic
energy and temperature to the turbulent momentum transport
becomes smaller. The effect of the Reynolds number on Sc, is
smaller than its effect on Pr, and Pr,, which may be related to
the fact that the IL and CL values for Sc, are already close to
unity.

Pr, S, is shown according to (7b) where Pr, = 0.6 and Pr,,
= 0.9 are applied (which corresponds to an appropriate range
of variations). A relevant (and somewhat surprising) finding is
that the compressibility effect on Pr, S, is rather small, this
means compressibility does not affect the generation
mechanism of turbulence frequency. In contrast to that, the
Reynolds number increase has a significant structural effect:
the source rate distribution becomes smoother. This feature
agrees again well with similar findings for the production-to-
dissipation ratio P/ g, time scale ratio S T and C,.
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Fig. 5. DNS data for C, are plotted (with the same line coding
as above) in (a) against the turbulence Reynolds number Re;
and (b) turbulence intensity i. Pr, S, is plotted in (c) against
the production-to-dissipation ratio P / € of k, where Pr, = 0.9
and Pr, = 0.6 are applied. In (d), Pr, S, is shown against x, /
h, where the approximation Pr, S = (0.34 — 0.54 1) / 1022 is
used.

TURBULENCE MODELING

The findings obtained for the turbulence model parameters
can be used as guideline for the development of a turbulence
model, which requires parametrizations of model parameters
in terms of quantities that are available in simulations. Such
an analysis reveals that the use of the effective value Pr, = Pr;
= Pr, = Sc, = 0.9 for the dimensionless numbers in the
temperature, turbulent kinetic energy, frequency and scalar
equations is well justified (Heinz et al., 2005). No support is
found for the usual practice of modeling C,, and S,: C,, does
not scale with the turbulence Reynolds number Re;, and the
model (8) disagrees with the DNS results, see Figs. (5a) and
(5¢). With regard to C, one finds instead that the
parametrization C, = 0.16 exp(— [i / 0.09]?) works very well
(see Fig. 5b), where i (2 k / 3)Y2/ U, refers to the
turbulence intensity. An analysis of (7b) shows that Pr, S,
may be well approximated by Pr, S, = (0.34 — 0.54 1) / 1,022
(Heinz et al., 2005), where t« = (1, / p)/2 1 / (2h) represents a
dimensionless time scale. Fig. 5d shows the corresponding
variation of Pr, S,.

The FLUENT code (Fluent, 2003) was adopted to realize
flow simulations with the turbulence model described above
(all the details may be found in Heinz et al. (2005)). As may
be seen in Fig. 6, the performance of the resulting turbulence
model is very good: there are hardly differences to the DNS
results. With regard to the variations of S it is worth noting
that the use of a constant value S, = 0.75 still results in good
model predictions: the deviations between model results and
DNS are stronger, but the structures of k and € are still well
represented.
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Fig. 6. A comparison of DNS data (solid lines) with model
predictions. For the three cases considered, the normalized
mean streamwise velocity, temperature, mass density and
scalar are given in Figs. (a) against the normalized wall-
normal coordinate X, / h. The model predictions are only
shown for Pr, = 0.9 (line ——) because there is no difference
to the corresponding results for Pr, = 0.6. The DNS data and
model predictions for the normalized turbulent Kinetic energy
k and its dissipation rate € are given in Figs. (b), where the Pr,
= 0.9 results are compared to corresponding Pr, = 0.6 (line —
— —) results.

CONCLUSIONS

This analysis results in the following conclusions. Mach
number effects on the turbulence characteristics considered
are small. A Reynolds number increase has a stronger
influence: it causes larger flow regions that may be considered
to be in a local equilibrium. The relevance of both Reynolds
and Mach numbers on the turbulence model considered,
however, is insignificant: constant Prandtl numbers and
parametrizations of S, and C, which are hardly affected by
Reynolds and Mach number variations may well explain the
structure of the flows considered. Nevertheless, standard
modeling assumptions regarding the structure of the
turbulence frequency equation and variation of model
parameters were found to be inapplicable to the flows
considered. Thus, new closure models were developed. The
result is a turbulence model that is optimized for a class of
channel flows.
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