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ABSTRACT

A hybrid three-step approach is applied to simulate the
flow noise generated by a high-speed subsonic round jet with
D =25 mm and M = 0.86. The computations are performed
in a 2D-axisymmetric co-ordinate system. An average flow so-
lution obtained from RANS is used to construct a stochastic
turbulent velocity field. The acoustic source terms resulting
from this fluctuating velocity field are subsequently used for
the computation of the acoustic intensity in the far field by
solving the axisymmetric linearized Euler equations. All sim-
ulation results are compared with the experiments of Lush
(J. Fluid Mech., 1971 Vol. 46, pp.477-500). Further, the re-
peatability of the method is evaluated and the effect of some
important parameters to the SNGR such as the number of
modes, the spectral energy profile and the wave number sam-
pling on sound intensity are investigated.

INTRODUCTION

In recent years a lot of effort has been spent on the sim-
ulation of aero-acoustic noise. This aero-acoustic noise can
be categorized into broadband noise and tonal noise. Tailor-
made simulation methods exist for both these noise categories.
Several prediction methods have been proposed for broad-
band flow induced noise. In the present paper an engineering
method for predicting broadband noise is presented as will
be discussed in more detail. The paper concentrates on the
study of jet noise, which is a representative example of flow-
generated broadband noise.

In the Stochastic Noise Generation and Radiation (SNGR)
method, originally presented by Karweit (1991) and Bechara
et. al. (1994), a random velocity field is generated by a fi-
nite sum of discrete Fourier modes based upon averaged data
of the flow field. In a further development, Bailly et. al.
(1995) add a time dependent term in these Fourier modes.
Billson et. al. (2003) solve a convection equation for the time
filtered turbulent velocity field in each time step in order to in-
clude convection effects. In the SNGR method, the generated
random velocity field is used to determine the aero-acoustic
sources for acoustic perturbation. Thereby, the Euler equa-
tions, which are linearized around a mean flow, are considered
as an appropriate wave operator. Furthermore, it is assumed
that the turbulent field is not influenced by the acoustic waves.
To summarize, calculations associated with SNGR methods
may be discerned in three steps:

1. A Reynolds-Averaged Navier-Stokes solution (RANS),
e.g., closed with a k—¢ turbulence model, provides time-
averaged information of the flow field.

2. An isotropic turbulent velocity field based on random
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Fourier modes is generated using the data obtained from
the previous step.

3. In the last step the Linearized Euler Equations (LEE),
with unsteady source terms induced by the fluctuating
velocity field, are solved.

The SNGR method provides a low computational cost for
CAA simulations. However, this method overpredicts the
acoustic sound intensity when it is applied to a free jet. Fur-
thermore, the reconstruction of the turbulent velocity field
which has a significant effect on the far field noise, is a crucial
step in the SNGR method. Therefore, the aim of this work
is to assess the sensitivity of the far field noise to different
parameters used to generate the turbulence field.

The paper is organized as follows. First, a method to
generate a turbulent velocity field is introduced. Next, the
two-dimensional axisymmetric LEE is discussed to gather with
its numerical implementation. The numerical scheme and
boundary conditions employed to solve the two-dimensional
axisymmetric LEE are described. Subsequently, the set-up
and results of the reference simulation obtained from RANS
are discussed. The effect of different parameters on the far-
field noise results are further elaborated in the successive
section. Finally, conclusions are summarized in the last sec-
tion.

STOCHASTIC TURBULENCE MODELLING

A method to simulate a space-time stochastic turbulent
velocity field has been developed by Bailly et. al.(1995). To
this end, an isotropic turbulent field is constructed as a finite
sum of discrete Fourier modes, i.e.,

N
Ui(x,t) =2 Zﬂn coslkn.(x — tU.) + ¥n + wntlopn. (1)

n=1

where Uy, ¥y, and oy, are the amplitude, phase, and direction
of the nt" Fourier mode, respectively. Moreover, U, is the
local convection velocity and wy, is the angular frequency of
the n** mode. The angular frequency wy, is randomly selected
with a Gaussian probability density function, i.e.,

exp[— (w — wOn)Q
wonV 2w 2w§n

], with won, = u,kn .

)

where the wave number k, =|| k, |. Further, v ~
(2k/3)1/2 is the estimated turbulent velocity, which is ob-
tained from RANS. The wave vector ky, is chosen randomly on
a sphere with radius k. Figure 1 shows a sketch of the geome-
try. Assuming incompressibility of the turbulent velocity field,

P(wn) =



ky.on = 0 for all modes in frequency space.The probability
density functions used to generate the random distributions
for k,, and o), are presented in Table 1.

Table 1: Probability density functions

P(Son) = 1/(277) 0< pn <27
P(n) =1/(27) | 0<¢pn < 2r
P(ayn) =1/(2n) 0<an <27
P(0n) = (1/2)5n(6) | 0<0n<n
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Figure 1: Schematic of the wave vector k,, and the perpendic-
ular vector of o,

The Von Karman-Pao spectrum is employed to simulate
the energy spectrum for isotropic turbulence

2k (k/ke)*

k
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E(k) = A kn

p(—2 (3)

where k,, = €1/4=3/4 is the Kolmogorov wave number. The
parameters A and k. determine the shape of the spectrum and
the distribution of energy over different wave numbers. The
integral of the energy spectrum over all wave numbers should

be equal to the total turbulent kinetic energy.

E:/OOE(/c) dk
0

The numerical constant A can be obtained from Equation
(4) combined with an infinite-Reynolds-number assumption,
leading to A = 1.453. The parameter k., is calculated assum-
ing that the turbulent length scale equals the integral length
scale L

(4)
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where
'3
L=f—, (6)
€

the parameter fr, is a factor of order unity, introduced here
for the sake of later convenience.

The spectrum FE(ky) is discretized into N points with a
minimum wave number k1 and maximum wave number kp.
In this paper both linear distribution and logarithmic distri-
bution are used. The selection of k1 and kn will be further
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discussed later. The amplitude Uy, of each discrete mode is
related to the energy spectrum E(ky), i.e.,

Un = v/ E(kn) Ak, (7)

where Ak is the spacing of the wave number distributions.
Further, it is clear that

N
k=) ul.

n=1

(®)

LEE SOLVER

The SNGR method relies on the fact that linearized Eu-
ler equations are considered as an appropriate wave operator
for acoustic perturbations. Typically, different methods are
presented in the literature to linearize the Euler equations
(Bachara, 1994, Bailly, 1995, Billson, 2002), leading to differ-
ent source terms. In this research, LEE with the source terms
described by Bailly (1995), are employed as wave operator.
These equations in 2-dimensional axisymmetric co-ordinates
and written in conservative form are used in this research
(Mesbah et.al., 2004). The last step of the SNGR method,
is solving LEE. Hence, a code is written to solve the LEE
for axisymmetric case. All spatial derivatives are discretized
by a seven-point finite difference scheme, corresponding to
the Dispersion-Relation-Preserving (DRP) scheme of Tam
et. al.(1993). The artificial selective damping is employed to
eliminate spurious numerical oscillations (Tam, 1995). For the
time integration, the second-order five-stages Low-Dispersion-
Dissipation Rung-Kutta scheme of Bogey et. al.(2004) is used.
The outflow and radiation boundary conditions of Tam (1997)
are implemented at the boundaries. In order to correspond to
the axisymmetric LEE, these boundary conditions are slightly
altered here (Mesbah et. al., 2004).

SET-UP AND RESULTS OF THE REFERENCE SIMULA-
TION

A high-speed subsonic jet with Mach number M = 0.86,
and nozzle diameter D = 25 mm , is simulated using the
above described SNGR method. This setup corresponds to the
experiment presented by Lush (1971), which was used before
as a point of reference for SNGR validation (Bailly, 1994,1995).
In the following subsections some aerodynamic and acoustic
results will be discussed.

Flow Results

The mean flow solution is obtained from a RANS simula-
tion, using a k—€ model. This simulation is performed using
the CFX4.3 solver.! The computations are performed for the
axisymmetric case on a domain with size 5D x 20D. Figures 2
(a) and (b) show the mean velocity U in the jet direction and
the turbulent kinetic energy, respectively. The presented re-
sults do well agree with results in the literature (Bailly, 1994).

Acoustic Results
As already mentioned in the first section, the aim of this
research is the assessment of different parameters in SNGR

LOFX International, AEA Technology, Harwell, Didcot, Oxon.,
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Figure 2: (a) U-velocity component (%) , (b) Turbulent ki-
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methods. Therefore, first a reference simulation is performed
using the same set—up as presented by Bailly (1995, 1999). In
these references the source region is limited to points where
the turbulent kinetic energy k> O.SEmM. The lower and
upper wave number are k1 = kemin/5 and ky = 27/7Ax,
respectively, with ke, the smallest value of ke over the
source volume. The wave number range is discretized using
N = 30 modes. Figure 3 shows the sketch of the acous-
tic computational domain. The calculations are performed
on an axisymmetric domain which extends 20D x 20D. The
mesh has a constant mesh size Az = Ar = 1.53 x 1073 m.
The time step At = 1.2 x 10~6 seconds, corresponding to a
CFL number of 0.5. The computation covers a time inter-
val T = 3.84 x 10~3 seconds, which corresponds to 3,200
time steps. The analysis is performed over the last 1,500
time steps of the computation. The acoustic signals are
recorded at locations R. = 19.5D (centered at the jet exit)
and 0 = 15°,20°,...,90° (see Figure 3).
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Figure 3: Sketch of the acoustic computational domain

For reference, the acoustic intensity Ly, is defined as

Ly =10log(—)  (dB), (9)

Iref
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where I,.. 5 = 10712 (%’g) and

[=P, \JUZ V2 (). (10)

In case the recorded signal is situated in the far-field, equa-
tion (10) can be approximated by

(11)

~
%
ls

U=

In order to compare the results with Lush’s experimental
data (Lush, 1971), the measured acoustic intensity in equa-
tions (10) and (11) is scaled with (120D/19.5D)2. As can
be appreciated from Figure 4, the simulation overpredicts the
measurement with approximately 7 dB. Similar studies using
the SNGR methodology likewise show overpredictions of the
generated far field sound, roughly corresponding to 10% of the
experimental sound level (Bailly, 1995, Billson, 2003).
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Figure 4: Sound intensity at different angles . The simula-
tions are performed with N = 30, k; = ﬁ%, kn = 72A—"z,
fr = 1, Source region =£— > 0.3. (—):Reference simu-

nax

lation. (-e-):Sound intensity averaged over 20 SNGR simula-
tions. (—):measurement.

ASSESSMENT OF DIFFERENT PARAMETERS IN THE
SOURCE-GENERATING ALGORITHM

The effect of some parameters such as the energy spectrum
and the extent of the source region on the far field sound were
investigated in an earlier study (Mesbah et. al., 2004). It was
shown that a variation of the random-number series causes a
scatter in results. Furthermore, the results indicated that the
sensitivity analysis should be extended to more parameters in
order to define the effect of each parameter on the far field
noise precisely. In the present paper the following parameters
and properties are investigated:

e the repeatability of the method,

e the number of modes N by which the spectral energy
profile is discretized,

e the spectral energy profile,

e the wave number sampling.



Repeatability of the method

The effects on sound intensity due to a variation of random
number series is investigated by using 20 simulations. Figure
(4) shows the sound intensity at different angles 6 and the
average over twenty different random SNGR realizations. It
can be seen that the average is clearly much smoother than
the individual SNGR results. As such, a trade off between
computational cost and accuracy exists. Figure 5 presents the
absolute value of the deviation from the mean value at each
observation point for different number of simulations. The
deviation is estimated by using the Student distribution with
a confidence interval of 95%. It can be seen that the sound
intensity at # = 40, 60 and 80°, has the lowest deviation (
= 0.4 dB) from the mean value and is not influenced by aver-
aging over more simulations. Further, a reduction in deviation
with approximately 0.5 dB, is observed when the number of
simulations used for averaging increases from 4 to 20.
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Figure 5: Deviation from mean intensity value

Number of modes N

It is important to quantify how many modes should be
included before N-independent results are obtained. In order
to quantify this, simulations are performed for 30, 90, 180 and
360 modes. The effect of N on the far-field sound intensity for
the average over 20 simulations is presented in Figure 6. It is
observed that the sound intensity increases when the number
of modes NNV increases from 30 to 90. The increase varies from 2
dBat = 15° to 1dB at § = 85°. Furthermore, by increasing
N from 90 to 360, the sound intensity decreases so that the
obtained results for N = 360 is similar to the results for N =
30. However, the gap with experimental results remains 7 dB.
It is not expected to drastically lower this gap by increasing
the amount of modes.

Spectral energy profile

The effect of the energy spectrum on the far field noise is
studied by Billson (2003) and Mesbah (2004). It is observed
that increasing the length scale factor fr (see equation (6))
from 1 to 6, results is a decrease of the acoustic sound in-
tensity. In order to investigate these trends more rigourously,
variations of the amplitude of each mode are displayed for a
typical source point in Figure (7). It can be seen that ke
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Figure 6: Average of sound intensity for different mode num-
ber

(the wave number in which the spectrum has a maximum
value) decreases and that the shape of spectrum becomes
sharper for increasing values of fr,. Note that for f;, = 6 and
6 < 30°, far-field assumption is only approximately valid and
small differences exist between the sound intensity evaluation
according to equations (10) and (11). In principle, this dif-
ference can be removed by using a larger simulations domain.
However, in order to correctly capture the sound intensity,
equation (11) is used to evaluate the results. Figure (8) shows
the results for fr, = 6 and N = 30, 90, 180, 360. The pre-
sented results are obtained by averaging over 4 simulations for
each number of modes. As can be seen, similar to the results
presented in Figure (6) for f;, = 1, increasing the number of
modes has a nonlinear effect on the acoustic sound intensity.
The difference between N = 30 and N = 90 roughly amounts
to 4 dB. Further, increasing N from 90 to 360, decreases this
difference to 1 dB. Table 1 presents the summation of the cal-
culated kinetic energy of all wave numbers for different modes
and different spectral profiles. The data is normalized with
the total energy integrated over the entire selected source re-
gion. The results show that the higher the change in energy
contents, the higher the change in sound intensity is for differ-
ent number of modes. However, the trend of increasing energy
content with increasing number of modes (for fr = 6) does
not necessarily result in an increase of sound intensity. As
such it can be concluded that there is a non-linear relation
between energy contents and sound intensity. Furthermore, it
should be noticed that when the spectrum has a pronounced
maximum , i.e. f; = 6, more modes should be employed to
calculate the energy accurately. As such one can conclude that
in this case also the sound intensity is much more sensitive to
changes in number of modes

Table 2: Percentage of the calculated energy. The wave num-
ber has a linear sampling

30 90 180 360
fr =1 100.32 | 100.10 | 100.05 | 100.02
frL = 70.29 96.80 100.04 | 100.02
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Figure 8: Sound intensity at different angles 6. fr, =6

The wave number sampling

For the implementation of the SNGR method, a linear or
logarithmic sampling of the wave number can be employed.
When a logarithmic sampling is used, the amplitude of the
modes at the low wave numbers are suppressed while the am-
plitudes of modes at the high wave numbers are amplified due
to the increasing Ak, in equation (7) for higher wave num-
bers (Billson, 2003). However, the logarithmic wave number
sampling can calculate the energy with reasonable accuracy
when the spectrum has a pronounced maximum. In this sec-
tion simulations for fr, = 1 and f;, = 6 are performed using
a logarithmic sampling and compared to simulation with a
linear wave number discretization. Table 2 presents the per-
centage of calculated kinetic energy of all wave numbers for
different modes and different spectral profiles. It is seen that
for fr, = 1, the linear discretization results in a more accurate
energy computation than the logarithmic one. In contrast,
with the logarithmic discretization the energy for fr, = 6 is
more precisely estimated compared to the linear discretization,
especially when a low mode number is employed.

Estimated acoustic intensity for fr, = 1 and f;, = 6 are
presented in Figure (9) and (10), respectively. A comparison
between Figure (9) and (6) for fr = 1 indicates less varia-
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Table 3: Percentage of the calculated kinetic energy by Loga-
rithmic sampling wave number

N 30 90 180 360
fi=1 | 102.17 | 100.59 | 100.28 | 100.13
fi= 101.56 | 100.29 | 100.12 | 100.05

tion in sound intensity due to variation in N, compared to the
simulation when a linear sampling is used. Furthermore, the
obtained results for N = 360 for both samplings are almost
identical whereas the difference in results for N = 90 amounts
to 5 dB. Results exhibit a non-monotonous variation when the
number of modes increases. The results from this section and
previous sections reveal that both the wave number sampling
and the contained energy of each mode have a significant effect
on this non-monotonous behavior. In order to further inves-
tigate this behavior, more simulations for different number of
modes should be performed.
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Figure 9: Logarithmic sampling of wave number for fr, =1
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Figure 10: Logarithmic sampling of wave number for fr, =6



CONCLUSIONS AND FUTURE STEPS

An application of an engineering method which combines
stochastic turbulent field with computational fluid dynamic
to a near sonic two dimensional axisymmetric jet is presented.
A RANS solution provides the time-averaged mean flow field.
Based on this mean flow solution, a stochastic turbulent ve-
locity field is generated. This turbulent field is then used to
generate the source for a LEE solver. The solution of this
LEE system eventually provides the far-field broadband noise.
Further, acoustic intensities in the far field are computed by
solving the LEE numerically.

In the present study, the SNGR setting selected by Bailly
et. al.(1999) is considered as a reference. This reference sim-
ulation overestimates the acoustic intensity roughly by 7 dB.
A sensitivity analysis was performed on the effect of some
SNGR parameters (Mesbah et. al., 2004) in order to inves-
tigate this inconsistency. In the present paper, this study
is further extended and the effect of properties such as re-
peatability of the method, number of modes, spectral energy
profile and wave number sampling on the sound intensity are
investigated. Several conclusions can be summarized. The
repeatability of the method can be improved by averaging
over various simulations. Moreover, the deviations from mean
value are presented for averaging over different number of sim-
ulations that helps to trade off between computational cost
and accuracy. The results show that increasing the number
of modes has a non-monotonous effect on acoustic intensity.
The calculated energy for different spectral-energy shapes in-
dicates that high number of modes should be employed in
order to calculate the energy accurately when the spectrum
has a pronounced maximum. Analysis of the wave number
sampling and the variations in spectral-energy shape by in-
creasing the integral length scale factor fr, reveals that energy
of higher wave numbers has a significant effect on the acous-
tic intensity. In order to further investigate this non-linear
behavior more simulations for more wave numbers should be
performed. This is the subject of future research.
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