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ABSTRACT

The least square projection method is used for obtaining op-
timal EARSMs for different incomplete sets of basis tensors.
The possible singular behaviour depending on the choice of the
basis tensors has been investigated. It is demonstrated that
many of the incomplete representations, expressed in general
3D mean flows, have singularities in some specific flows, such
as general 2D mean flows or more specifically, strain and/or
rotation free 2D mean flows.

The different representations are investigated by comput-
ing fully developed rotating pipe flow. It is demonstrated
that EARSMs containing basis tensors of odd powers higher
than one, of the mean velocity gradients, do indeed predict
a parabolic mean azimuthal velocity profile. The predcitions
made by the incomplete representations deviate significantly
from those by the complete representations, and the actual
choice of basis tensors as well as the model parameters have a
significant effect on the predictions.

INTRODUCTION

An explicit algebraic Reynolds stress model (EARSM) pro-
vides an interesting level of modelling by synthesizing the
advantages of two-equation eddy-viscosity based models and
full differential Reynolds stress models (DRSMs). While an
EARSM has a constitutive relation that is explicitly depen-
dent on the mean velocity gradients as an eddy viscosity based
model and therefore not being too computationally cumber-
some, the actual formulation is based on the full DRSM equa-
tions and hence, more of the flow physics can be incorporated.
The EARSM itself is achieved by representing the solution of
the implicit algebraic Reynolds stress model relation (ARSM),
see Rodi (1976), in terms of a set of basis tensors. For a gen-
eral flow five such independent basis tensors are needed to
achieve a complete representation. In the present work we
have used the least square based projection method, see for
instance Jongen and Gatski (1998), which makes it possible to
use fewer than five tensors. This representation is then opti-
mal in a least square sense. Several representations based on
different sets of basis tensors are discussed below.

In order to test the performance of the different represen-
tations, computations of fully developed turbulent rotating
pipe flow have been performed. This particular case has been
chosen on the basis of constituting a flow with a strong 3D
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character which is dependent on one spatial coordinate only
and hence being relatively easy to implement. Rotating pipe
flow has been studied by for instance Pettersson et al. (1998),
Jakirli¢ et al. (2002), Grundestam et al. (2005) and Imao et
al. (1996). This flow case has two characteristic features. The
first is the increasingly more laminar-like axial velocity profile
due to the increased axial rotation of the pipe. The second is
the parabolic profile of the azimuthal velocity. Since this test
case is strongly three-dimensional, the particular choice of ba-
sis tensors has a significant effect on the predictions of these
two features, especially the parabolic shape of the azimuthal
velocity profile, why this test case should be of particular in-
terest in a study like this.

Governing equations

Fully developed rotating pipe flow is a 3D mean flow which is
dependent on one spatial coordintate only, r, in a cylindrical
coordinate system (r, 0, z). The mean velocity flow field is con-
strained to the axial and azimuthal directions. The Reynolds
averaged Navier Stokes equations for the azimuthal and axial
mean velocities are given by
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In the present work the Reynolds stresses, u;u;, are evaluated
using an explicit relation (EARSM) between the normalized
mean strain and rotation rate tensors
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and the Reynolds stress anisotropy, a;; = Uz, /K — 20;5/3
where 7 = K /e is the turbulence time-scale.
An EARSM is derived from the transport equation for the
Reynolds stress anisotropy which in a nonrotating inertial
frame of reference reads
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in cartesian tensor notation. D/Dt is the advective derivative
defined as D/Dt = 9/dt + U;0/0x; in cartesian coordinates.



Tij1 = Uit u; + (Pusdj; + Pu;d;)/p represents the total diffu-
sion of the Reynolds stress components. Tl(K) is the diffusion
of the turbulence kinetic energy, K = W;u;/2, and is given
by Tl(K) = T3;/2. The dissipation rate tensor, ¢;5, and the
pressure strain rate tensor, Il;;, need to be modelled while
the Reynolds stress production P;; and the turbulence kinetic
energy production P can be expressed explicitly in a;;, K,
Sij and €;;. The pressure strain rate and dissipation rate
anisotropy, e;; = &;5/¢ — 203;/3 (¢ = €4;/2), tensors can be
lumped together and the most general quasilinear model reads
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in boldface matrix notation in which P/e = —{aS}, where {}

denotes the trace and I is the identity matrix. The production
of the Reynolds stresses normalized with the dissipation rate,
can be expressed as
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The modelled transport equation of the Reynolds stress
anisotropy can now be written

D
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The relations between the A and C-coefficients are
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An EARSM is based on the weak equilibrium assumption,
Rodi (1976), which amounts to neglecting the advection and
diffusion of asj, i.e. the left-hand side of (7). This yields a
purely algebraic relation

2
Na=—-A;S + (a2 — Qa) — Az(aS + Sa — g{aS}I) (9)
where N = As +A4€.

The curvature correction proposed by Wallin and Johans-
son (2002) has been used in conjunction with all EARSM
representations. This contribution is derived from the advec-
tion of the Reynolds stress anisotropy and can be written as

—7(aQ™ — Q(Ma) (10)
where (") represents the local rotation rate of the flow. In-
stead of neglecting the Lh.s. of (7) it is replaced by (10) which
leads to an alternative algebraic approximation of the trans-
port equation for a;;. This yields a systematic improvement
of the weak equilibrium assumption in that it gives an ap-
proximation of the neglection of the advection of a;; in a local
streamline-based system. For fully developed rotating pipe

flow, the correction exactly represents the advection and can
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With the present modelling, the correction (10) can easily be
included through the transformation

Q-Q*=Q - ALOQ(T) (12)
In the following, * has been omitted for simplicity. To close
the system of equations, the high- Re K —w platform by Wilcox
(1988) is used. The platform equations are described in ap-
pendix.

EARSM FORMULATION

To reach a complete EARSM formulation, (9) can be formally
solved, see e.g. Gatski and Speziale (1993) and Wallin and Jo-
hansson (2000). The procedure used here is based on the least
square method and is outlined below. This method has previ-
ously been used by for instance Jongen and Gatski (1998), to
derive EARSMs. The least square method has the advantage
of allowing representations that are not based on a complete
set of basis tensors. Since the Reynolds stress anisotropy has
five independent components for a full 3D mean flow, a com-
plete representation needs five independet basis tensors. If
fewer than five tensors are used, the representation will still
be optimal in a least square sense in terms of the chosen tensor
basis.

The idea is to expand the Reynolds stress anisotropy in
terms of the chosen basis tensors as

M
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The expansion, (13), is then used in the ARSM-equation, (9),
to form the system of equations for the EARSM-expansion
coefficients {8;}. The system of equations is then achieved
by forming the inner product of the corresponding ARSM-
equation with each and everyone of the M basis tensors. By
following for instance Jongen and Gatski (1998), it is realized
that the system of equations is given by
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Where the inner product is given by
(A,B) = A B (15)

which is equal to {AB} if either A or B is symmetric. (14)
hence constitutes a system of M linear equations (in terms of
N) for the M unknowns, {8; = a;/ao}. By using Cramer’s
rule, o = det(D®), can be obtained. D® are M x M ma-
trices given by
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As pointed out by Jongen and Gatski (1998), a necessary con-
dition for a representation to exist is that the basis tensors
are linearly independent. Otherwise the denominator of the
expansion coefficients, ag, becomes zero.

In addition to solving (14), a polynomial equation for N has
to be solved. This equation will be of varying order depending



on how many basis tensors that are used and whether the mean
flow is 2D or 3D. In the present work, the 2D mean flow form
of N is used as an approximation.

The basis tensors, motivation

The basis tensors used are conveniently based on the strain
and rotation rate tensors, (17) and (18) respectively. For ro-
tating pipe flow, the mean strain and rotation rate tensors
evaluated in a non-rotating frame of reference, read

0 abp _ Up  dU-
T qU, U dr T dar
I R
v, 0 0
dr
0 _dUp _ Up _dU.
T dr r dr
Q@ = S| et 0 0 (18)
4 0 0
dr

Basis tensors often used for EARSM representation are
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As ag; itself, the basis tensors (19) are symmetric and trace-
less. Severel authors have used the whole set or subsets of (19)
to represent the solution of the ARSM equation, (9). Depend-
ing on the modelling assumptions, if for instance A2 = 0 or
not, 3D representations are conviniently expressed in a various
number of basis tensors, see for instance Gatski and Speziale
(1993), Taulbee (1992) and Wallin and Johansson (2000). It
is however possible to choose a set of five basis tensors and ex-
press any extra basis tensors in terms of these five, see Taulbee
et al. (1994).

As mentioned above, one of the most characteristic features
of turbulent rotating pipe flow is the parabolic shape of the
azimuthal velocity, Uy, profile. To be able to predict a Uy-
profile that deviates from solid body rotation, the consitutive
relation must dictate a nonzero a,g for solid body rotation.
This was realized by for instance Hirai et al. (1988), Wallin
and Johansson (2000) etc. The basis tensors having a nonzero
ré-components are T TG TO) and T, In fact, it
can be readily shown that basis tensors of odd powers have a
nonzero rf-component. However, by inspecting (17) one can
draw the conclusion that for solid body rotation, S;¢ = 0, and
hence an EARSM using only T of these four basis tensors
will indeed predict solid body rotation. A tensor containing S®
can be reduced using the Caley-Hamilton theorem to IIgS/2
(since IIIg = 0 for this particular case) and therefore do not
itself give a deviation from solid body rotation. Hence, to be
able to achieve a parabolic Uy-profile, at least one of the basis
tensors T®) T(®) and T(19) has to be used in the EARSM
representation. Thus it is not necessary to include cubic ten-
sor bases in order to capture the parabolic azimuthal velocity
profile as long as T(10) is used.

In order to solve the ARSM equation exactly for 2D mean
flows, two or three basis tensors are needed depending on
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whether Az = 0 or not. If Az = 0 using the basis {T(}), T}
solves (9) exactly. If Az # 0, either T(® or T() must be
included in order to achieve the exact solution of (9) for 2D
mean flows. The least square projection method described
above does, however, allow choosing a set of basis tensor that
is not complete. With this in mind, we have chosen to include
TM and T in all EARSM representations studied in the
present work in order to have the same 2D mean flow formu-
lation as Wallin and Johansson (2000) when A2 = 0. In this
way, use can be made of the consistency efforts in their work.

Something important to keep in mind is that while any five
basis tensor set would give a complete representation of the
solution to (9) and hence in some sense be exact, every such
representation cannot give the same predictions. By using a
tensor basis that does not include T(5), T or T<10), the
corresponding EARSM will predict solid body rotation and
not the parabolic profile predicted by an EARSM including
any of these bases.

EARSM representations

Due to the amounts of algebra generated, the EARSM repre-
sentations are not listed here. An EARSM representation is
referred to by listing the number of the basis tensors within
curly brackets. For instance, {146} means the representation
based on {T), T® T®)} The EARSMs derived are divided
into two different categories, those with As = 0 and those with
Az # 0. The latter have the subscript 4,. Two sets of model
parameters have been used, [Ag = —0.72, A1 = 1.2, A3 =
0,A3 = 1.8, A4 = 2.25] and [Ag = —0.8,4; = 1.22, Ay =
0.47, A3 = 0.88, Ay = 2.37]. The first parameter set have
been adopted from Wallin and Johansson (2002). The second
comes from the linearized version of the SSG-model (Speziale
et al. (1991)) proposed by Gatski and Speziale (1993). N is
evaluated by deriving and solving its governing equation for
2D mean flows for the respective EARSM-representation. In
all cases this implies solving a third order polynomial equa-
tion. The following representations are prioritized in this
paper: {14}, {124}, {134}, {145}, {146}, {1410} (based on
TM, T® and TAD), {1469}, {145} 4, and {124} 4,. Other
representations that have been derived are {134} 4,, {146} 4,
and {1469} 4,. The WJ-EARSM ({13469}), Wallin and Jo-
hansson (2002), is also discussed and used as a comparison. So
is the EARSM based on all ten basis tensors, {all} 4, , derived
by Gatski and Speziale (1993). These representations do in
fact correspond to the exact solution (in terms of N) of the
ARSM-equation for a zero/nonzero As respectively.

The derived representations are simplified as far as possible
concerning common factors in the denominators and numera-
tors. Still, although many of the derived 3D representations
have singularities in the 2D mean flow limit or for certain
types of 2D mean flows, they do have nonsingular 2D for-
mulations that can be achieved by successive application of
the 2D mean flow invariant properties, IV = 0, Illg = 0 and
V = IIsIlq /2, in combination with cancelling common factors
in the denominator and numerator of the 3D representations
coefficients. From this perspective it is hence important to
make a distinction between the 2D mean flow behaviour of a
3D representation and the reduced 2D form of that particular
representation. Table 1 shows when different 3D representa-
tions are singular in some generic 2D mean flows. As indicated
in Table 1 some of the representions are singular for 2D mean
flows that are strain or rotation free, IIg = 0 and Il = 0
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Table 1: Singular behaviour of different 3D representations

respectively. The case of having IIg = 0 is relatively easy to
handle since it follows from (9) that a;; should go to zero. Hav-
ing a singularity when IIg = 0, on the other hand, might be a
bit more troublesome since this might cause division by zero
without necessary implying a zero Reynolds stress anisotropy.
Note that the exact solutions to (9), {13469} and {all} 4,, are
nonsingular for the flow types discussed. It should be pointed
out that these situations are just three of assumably many
possible singular flow types.

The problem with singularities, for some representations
in the 2D mean flow limit and for some others in a shear or
rotation free 2D mean flow, seems to emanate from the fact
that the basis tensors are no longer linearly independent for 2D
mean flows. This can be avoided if the denomintor (ag) of the
3D representation can be factorized and the vanishing factors
can cancel with the same factor in the numerators (¢;). From
this perspective the representation {13469} works very well
since the denominator can be shown to always be well behaved
without any singularities. The representation {all} 4, is also
free of singularities for the situations in table 1. However, the
denominator of this representation is rather complicated and
might be singular for other flows.

PREDICTIONS OF FULLY DEVELOPED ROTATING PIPE
FLOW

Computations of fully developed rotating pipe flow have been
performed for rotation numbers Ro = Uy(R)/U, = 0, 0.5 and
1. Up(R) is the azimuthal velocity of the wall and U, is the
mean axial bulk velocity. The model predictions are compared
to the experimental data by Imao et al. (1996). The flow
predictions made by the different representations, vary signif-
icantly, see figures 1-3. Several of the representations make
identical predictions, as explained in the caption of figure 1.
Important to remember is that nonrotating pipe flow is a 2D
mean flow why several of the 3D representations, see table 1,
are singular and are hence not shown for Ro = 0. For the
nonrotating case, the representations having a zero/nonzero
Ag respectively, are almost indistinguishable. Due to general
singularity problems, some of the representations in table 1
are not shown.

The computed axial velocity profiles normalized with the
mean bulk velocity, U, /Uy, are shown in figure (1). From this
point of view, {124} 4, and {all} 4, perform very well and the
predictions are in good agreement with the experiment, while
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Figure 1: Normalized mean axial velocity, U, /U,. Represen-
tations: {124}, {134} and {14} (——) (thick); {145} and {146}
(—); {1469} and {13469} (—) (thick); {1410} (——); {124} 4,
(--+); {145} 4, (—); {all}a, (---) (thick); experiments by
Imao et al. (o).

{1469} and {13469} show a decent qualitative behaviour, al-
though predicting a too flat profile in the center of the pipe
for Ro = 1. The effect of rotation predicted by {124} is far
too drastic compared to the experiments. For {145}, {145} 4,
and {1410}, on the other hand, the U.-profiles are affected
very little by the increased rotation.

The representations containing up to quadratic basis ten-
sors are unable to predict the parabolic shape of the normal-
ized Up-profile, see figure 2, as discussed above. Here, {1469}
and {145} 4,, are in best agreement with the experiments.
{145} and {1410} make similar predictions of the Up-profile
and deviate too much from solid body rotation. {all}a,
gives a deviation from solid body rotation that is too small
compared to the experiments. The predictions of {1410} il-



Figure 2: Azimutal mean velocity, Up/Us.
figure 1.

Legends as in

lustrates that a parabolic mean azimuthal velocity profile can
be obtained with an EARSM containing a fifth order instead
of a cubic basis tensor.

The computed profiles of the turbulence kinetic energy nor-
malized with the mean bulk axial velocity, K/UZ2, are shown
in figure 3. The representations {124} and {124} 4, do not
agree very well with the experiments in comparison to the
other representations. {124} shows a too dramatic decrease
in K when the rotation is increased from Ro = 0.5 to Ro = 1.
{all} o, and {124} 4, has a tendency to overpredict the turbu-
lence intensity in the center of the pipe for the rotating cases.
This is also the case, although more modest, for {145} 4, and
Ro = 1. The representations {145} and {1410} show a rather
peculiar behaviour close to the wall for Ro = 1.

DISCUSSION / CONCLUSIONS

The least square projection method provides a straightforward
way to derive an EARSM representation using an arbitrary set
of basis tensors. However, singularity problems can arise. If
the denominator of the representation coefficients cannot be
factorized properly (i.e. having a common factor with the nu-
merator) singular behaviour occurs when the characteristics
of the flow make two or more of the basis tensors linearly
dependent, see also Jongen and Gatski (1998). This is the
case for many of the commonly used representations which,
as demonstrated above, have a singular behaviour either for
general 2D mean flows or strain or rotation free 2D flows. This
is something that can cause problems in general CFD codes
where the 3D mean flow representation is implemented and
the flow at some location approaches the state where the con-
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Figure 3: Turbulence kinetic energy, K/ sz. Legends
figure 1.

stitutive relation becomes singular. However, it is not solely
a matter of division by zero but rather having both a zero
denominator and numerator. Therefore the singularity can
in principle be addressed by considering the limiting value of
the representation as the singularity is approached. This has
not been considered in the present study. Nevertheless, these
issues have to be considered when a new representation is im-
plemented in a general CFD solver.

Another, perhaps more positive, aspect of the projection
method is that the order of the polynimial equation for N can
be reduced by using fewer basis tensors. Still, the equation
for N is of third order for a representation with two basis
tensors and increases with one order for every additional basis
tensor that is included unless the expansion coefficients can
be factorized. Factorization is unfortunately not possible for
many of the representations.

For the rotating pipe flow, it is obvious that the choice of



basis tensors has a significant effect on the predictions. For
instance, by including either T®G), T®) or TAO 4 velocity
profile that deviates from solid body rotation is achieved. It
is somewhat surprising that the biggest difference between
{124} 4, and {all} 4, is the small deviation from solid body
rotation that {all} 4, shows. It is also clear that the choice of
model parameters play an important role. This is indicated
when comparing {145} with {145} 4, and {124} with {124} 4,,
for instance. But also {all} 4, and {13469} of course. Despite
that some representations based on incomplete basis tensor
sets, make better predictions than the complete representation
from some perspectives (e.g. comparing {145} 4, and {all} 4,
for Up), there is nothing that indicates that this should hold
generally. The complete representations capture indeed the
physics of the ARSM-equation most accurately while the dif-
fences compared to the incomplete representations are purely
an offspring of projecting the solution on an incomplete ten-
sor basis. Therefore, the advantage of, for instance, {145} 4,
over {all} 4, for Uy is purely coincidential and any shortcom-
ings of the complete representations should be addressed the
underlying modelling or the weak equilibrium assumption.

Finally, one could conclude that although the least square
projection method provides a convinient method of repre-
senting tensors in terms of chosen basis tensor, many of the
EARSM representations obtained are too complicated and
perhaps even ill behaved to be of practical use.

APPENDIX. THE K —w - PLATFORM

The K and w equations are given

DK P_ct+D (21)
R e

Dt K

ow w

5 = aEP — Bw? + D, (22)

P = —e{aS} is the turbulence energy production and D rep-
resents the diffusion. Here, the diffusion model proposed by
Daly and Harlow (1970) has been adopted. For the present
flow case, this model takes the form

1 K K

D = —3 {r (u-{—cs—urur) 8—} (23)
r or € ar

D, = lg {r (qucwEurur) a—w} (24)
ror 5 or

for K and w repspectively. The model parameters used are
¢s = 0.11 and ¢, = 0.11, g* = 0.09, a = 5/9 and 8 = 3/40.
The dissipation rate is given by ¢ = g* Kw.

References

Daly, B.J. and Harlow, F.H., 1970, “Transport equations in
turbulence”, Phys. Fluids, 13, 2634-2649.

Gatski, T.B. and Speziale, C. G., 1993, “On explicit algebraic
stress models for complex turbulent flows”, J. Fluid Mech.,
254, 59-78.

Grundestam, O., Wallin, S. and Johansson. A.V., 2005, “Ob-
servations on the predictions of fully developed rotating pipe
flow using differential and explicit algebraic Reynolds stress
models”, Submitted to Euro. J. Mech. B/Fluids.

970

Hirai, S., Takagi, T. and Matsumoto, M., 1988, “Predictions
of the Laminarization Phenomena in an Axially Rotating
Pipe Flow”, J. of Fluids Engineering., 110, 424-430.

Imao, S., Itoh, M. and Harada, T., 1996, “Turbulent charac-
teristics of the flow in an axially rotating pipe”, Int. J. Heat
and Fluid Flow, 17, 444-451.

Jakirli¢, S., Hanjali¢, K. and Tropea, C., 2002, “Modeling
Rotating and Swirling Turbulent Flows: A Perpetual Chal-
lenge”, AIAA Journal, Vol. 40, No. 10, pp 1984-1996.

Jongen, T. and Gatski T.B., 1998, “General explicit alge-
braic stress relations and best approximation for three-
dimensional flows”, Int. J. Engineering Science, 36, 739-
763.

Pettersson, B.A., Andersson, H.I. and Brunvoll, A.S., 1998,
“Modeling Near-Wall Effects in Axially Rotating Pipe Flow
by Elliptic Relaxation”, AIAA J., 36, 1164-1170.

Rodi, W., 1976, “A new algebraic relation for calculating the
Reynolds stresses”, Z. Angew. Math. Mech, 56, 219-221.

Speziale, C.G., Sarkar, S. and Gatski, T.B., 1991, ”Modelling
the pressure-strain correlation of turbulence :
dynamical systems approach”, J. Fluid Mech., 227, 245—
272.

an invariant

Taulbee, D.B., 1992, “An improved algebraic Reynolds stress
model and corresponding nonlinear stress model”, Phys.
Fluids, A4, 2555-2561.

Taulbee, D.B., Sonnenmeier, J.R. and Wall, K.M., 1994,
“Stress relation for three-dimensional turbulent flows”,
Phys. Fluids, 6, 1399-1401.

Wallin, S. and Johansson, A.V., 2000, “An explicit algebraic
Reynolds stress model for incompressible and compressible
turbulent flows”, J. Fluid Mech., 403, 89-132.

Wallin, S. and Johansson, A.V., 2002, “Modelling streamline
curvature effects in explicit algebraic Reynolds stress tur-
bulence models”, Int. J. Heat and Fluid Flow, 23, 721-730.

Wilcox, D. C., 1988, “Reassessment of the scale-determining
equation for advanced turbulence models.”, ATAA J., 26,
1299-1310.





