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ABSTRACT

Non-linear eddy-viscosity schemes can potentially return
better predictions than linear schemes in flows with complex
strains, including flow separation and impingement and three-
dimensional boundary layers. In their study of separated flow
over a 2D hill, Abe et al. (2002) tested numerous models,
and identified the non-linear EVM of Abe et al. (2003) as
performing the best. The model was proposed in two forms:
one based on solving an & equation (denoted AJL-¢), and one
in which an w equation provided the lengthscale (AJL-w). The
present work has further tested the model forms proposed by
Abe et al. (2003) in a range of challenging flows. The e-
based scheme is found to perform more reliably, and a number
of modifications have been proposed to broaden its width of
applicability.

INTRODUCTION

It is well known that linear eddy-viscosity models do not
reproduce many of the features found in flows with complex
strain fields. Stress transport schemes have the potential to
perform much better, but at a greater computational cost. For
this reason there has been significant interest in the use of non-
linear eddy-viscosity schemes that can be applied to flows with
complex strains, including flow separation and impingement
and three-dimensional boundary layers.

In their study of separated flow over a 2D hill, Abe et
al. (2002) tested numerous models, and identified the non-
linear EVM of Abe et al. (2003) as performing the best. In
the present work modelling refinements to the AJL-¢ are pro-
posed. First, the original AJL model is briefly described then
the present modifications are detailed. Results with the mod-
ified AJL-¢ model and the two original variants of the AJL
model are shown for two different skewed flows, accelerating
boundary layers, and impinging flows.

THE ABE ET AL. (2003) MODEL

This model is based on an exact inversion of an algebraic

*Corresponding author, now with the Health and Safety
Laboratory, Harpur Hill, Buxton, Derbyshire SK17 9JN, UK
Mike.Deevy@hsl.gov.uk

959

stress model (ASM) in two-dimensions. Hence, the constitu-
tive equation is reduced to the following

aij = P17Sij + B2 (UikSkj — Sir ;)

. 1
+B37%(Si1 Skj — gsklskl‘sij) (1)

Although the model is based on an inversion of an ASM, only
the form of the resulting nonlinear tensorial expression and the
relative sizes of the terms are used: the functions employed for
the coefficients have been tuned by reference to a number of
theoretical and practical flow configurations. The turbulent
timescale, rate of strain and rotation tensors in equation (1)
are
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The near-wall

where S = \/Sijsij/Q and Q = Qijﬂij/Q.

damping term f, uses the following function:
fuw(A) = exp[—(n*/A)?] (8)

where n* is the non-dimensional wall distance defined as n* =
uen/v (n is the wall normal distance and u. is the Kolmogorov
velocity scale). Abe et al. (1997) found this form of near-wall
damping brought about significant improvements in separated
flows. The quadratic terms are as follows:

Ba = (1 — fu(26))85" + fu(26)85” (9)



Bs = (1— fu(26))85" + fu(26)85> (10)

where
B = Cpe f2Cp /2 (11)
B = Cpe? f20p (1 + f52)/2 (12)

and feo = —fr1fr2{l + ngcufu%(ﬂ — S)}. The constants
¢y, and Cp are tuned to represent correctly equilibrium wall
turbulence and homogeneous shear flow. The response of the
anisotropy components has been tested in a number of fun-
damental flows (Abe et al., 2003), showing that realizability
is maintained. However, the quadratic terms become zero as
the wall is approached, where the EASM assumptions become
untenable. The following terms are included to account for
near-wall anisotropy:
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is defined as 74 = {1 — fw(15)}E + fu(15){¥2}. There is
also the following additional near-wall term in the constitutive
equation:

Yw = 1.5, Cy = 0.5. The near-wall timescale

1
aj; = a;j — Cwa(ze)i(didj — dydi6;;/3) (15)

where a;; is the anisotropy tensor defined in equation (1) and

N; al,
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In contrast to most eddy-viscosity models, the AJL model
does not use a single eddy-viscosity in both the constitutive
equation and the turbulence transport equations. Instead, the
eddy-viscosity employed in the diffusion terms of the latter is

defined as
k2

Vt :Cﬂfﬁ'? (17)

which does not include damping due to strain rate and vortic-
ity. The k-equation can be written as follows:

{(+2)
v+ —
Ok
Versions of the AJL model have been developed with two
different lengthscale determining equations (¢ and w). Both
models use the same constitutive equation and k-equation,
as described above, which therefore enables one to investigate
the relative strengths and weaknesses of the ¢ and w-equations

with fewer unrelated differences between models that tend to
confuse matters. The e-equation can be written as follows:

{(+2)

The w-equation is based on a transformation of the above e-

equation:
{(os

The high-Reynolds-number forms of the coefficients are re-
tained from the e-equation, although the near-wall damping
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terms are slightly different. A cross diffusion term is retained
from the transformation (together with a function that ensures
it is only active away from a wall) to remove the freestream
sensitivity problem often associated with w equations.

MODELLING REFINEMENTS

After examining a number of test cases, two key features
have been incorporated into the AJL-¢ model. Firstly, the fol-
lowing near-wall gradient production term has been included
in the € equation, in order to give the desired sensitivity in
flows with strongly varying near-wall strains:
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Secondly, the following differential lengthscale correction is
introduced to the ¢ equation:

2
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dledy = ¢;[1 — exp(—Be Ret)] + Bec;Rey exp(— B Ret) (26)
and

¢ = 2.55,B: = 0.1069, St = SiijkSki/(SnlSnl/2)3/2 (27)

The above is a modified form of the lengthscale correction pro-
posed by Raisee (1999), and is included to particularly aid the
prediction of stagnating flow regions. Further improvements
in stagnating flows were obtained by introducing an additional
contribution to Cp, designed to reduce this coefficient in re-
gions of strong normal straining:

1
Cp = 3 3
L+ 2[R0 502 + 32 203 5 (02 — 52)fp + SS
(28)
where
5SS = 0.141 max(k/e+/(7S — 3.333),0.0))1/(512)  (29)

Finally, the terms 7, and By in the constitutive equation were
modified as follows:

Yu = 1.5(0.740.3f,(15)) , Buw = 0.25(0.740.3f,,(15)) (30)

in order to improve numerical stability in near-wall regions
with strong and rapidly-varying strain rates.

COMPUTATIONAL RESULTS

The resulting scheme has been tested in plane channel and
equilibrium boundary layer flows. For these flows there is a
negligible difference between the results with the original AJL-
¢ model and this new version. Jang (2004) has reported that
the modified scheme performs equally as well as the original
AJL-£ model did in the separated flow over a 2D hill. Below,



the modified AJL-¢ model is tested in flows involving skewness,
acceleration and impingement.

SKEWED SHEAR FLOWS

The DNS of Howard and Sandham (2000) is a fully devel-
oped channel flow (Re,; = 180) in which both walls are given
a sudden velocity perpendicular to the flow direction, creating
a shear-driven three-dimensional wall layer. The challenging
feature of the flow development is that the DNS data show an
initial decrease of the peak shear stress and turbulence energy
levels. There is a subsequent recovery in both quantities as the
flow realigns and returns towards a fully developed state. Fig-
ure 1 shows the shear stress —uw+t profile at non-dimensional
times ¢ = 0.0, 0.3, 0.4 and 1.0. For early times (¢t < 0.3) the
shear stress reduces by up to 40% around y+ = 30. It then
begins to increase near the wall as the flow realigns (from
t = 0.4), until by ¢t = 1.0 it has returned to levels similar to
those of the original 2D channel flow.

Neither of the original AJL forms capture any of the shear
stress response shown in the data, whereas the modified form
does, at least to a certain extent, predict the decrease and
subsequent growth of —wwT. One finding of the study was
that it was only models that did include a near-wall gradient-
production type of term in the lengthscale-governing equation
which could return even qualitatively correct results in this
case.

Kannepalli and Piomelli (2000) carried out an LES of a
related flow. This was a zero pressure gradient boundary
layer (at Reg = 1,100) in which a section of the wall moved
in the spanwise direction with velocity equal to that of the
freestream. Figure 2 shows the mean velocity profiles at a
number of streamwise locations on and after the moving sec-
tion of wall (normalized with a reference displacement thick-
ness, 0y, corresponding to 1% of the moving wall length). In
this case one can see a clear velocity ‘deficit’ region caused by
changes to the shear stress. Results with the three versions
of the AJL model again show that only the modified AJL-¢
scheme predicts profiles that are broadly in line with those of
the LES data. Figure 3 show the shear stress uv/Us for the
three versions of the AJL model. Only the modified AJL-¢
model broadly captures the changes in shear stress seen in the
LES.

Figure 4 shows the skin friction in the streamwise direction
for the case with zero spanwise shear (W, = 0.0). Figure 5
shows ¢y for the case with spanwise velocity equal to that
of the freestream (W, = 1.0). The qualitative changes in
spanwise skin friction seen in the LES data are reproduced
at least to some extent by the modified AJL-¢ model. The
other two versions of the model show an incorrect response to
the spanwise shear. Figure 6 shows the spanwise skin friction,
whose magnitude sharply increases as the shear is introduced.
The modified AJL-¢ model returns the results closest to the
LES, although the magnitude is still overpredicted.

SINK FLOW BOUNDARY LAYERS

The direct simulations of Spalart (1986) provide a simple
test case in which the performance of turbulence models un-
der strong acceleration can be assessed. Sink flows can be
characterised by the acceleration parameter K, defined by

K =v/U? (dU—m>

. (31)
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where v is the kinematic viscosity and z the streamwise coor-
dinate.

Figure 7 shows the mean velocity profiles for four differ-
ent acceleration parameters, ranging from zero up to a very
strongly accelerated case with K = 2.75 x 10~%. The DNS
data show that the mean velocity profile tends to ‘lift’ above
the line of the log-law as K is increased. Both versions of the
model using an e-equation return broadly the correct response
to acceleration. In contrast, the AJL-w model shows the op-
posite trend to the DNS data, with the mean velocity profile
lying below the log-law line at the higher acceleration param-
eters. This failure to predict the changes in mean velocity
is caused by overprediction of the turbulent shear stress and
skin friction coefficient. Figure 8 shows shear stress for two
different acceleration parameters. The modified AJL-£¢ model
returns the correct profile at both acceleration parameters. In
contrast, the AJL-w overpredicts the shear stress.

IMPINGING FLOWS

The axisymmetric impinging jet involves a number of dif-
ferent flow phenomena, and as such provides a useful test case
for the assessment of the proposed model. Figure 9 shows the
predicted Nusselt number from a jet impinging on to a flat
plate from a height of 2 jet diameters at Reynolds numbers
of 23,000 and 70,000 (experiments of Baughn et al., 1992).
The original AJL-e scheme returns reasonable results for the
lower Reynolds number case, but predicts too high levels of
Nusselt number for the Re = 70,000 case, as a result of pre-
dicting near-wall turbulence levels which increase too rapidly
as the wall jet develops. The modified AJL-¢ model performs
much better, and successfully captures the shape of the Nus-
selt number profile at both Reynolds numbers (although the
magnitude is slightly overpredicted at the higher Reynolds
number). The improvements are mainly due to the inclusion
of the lengthscale correction in the ¢ equation and the mod-
ification to the constitutive equation designed to reduce the
turbulent viscosity in regions of strong normal straining. Fig-
ures 10 and 11 show Nusselt number profiles for discharge
heights of 4 and 6 jet diameters. The modified AJL-¢ model
captures the changes in profile shape for the different heights
quite well, although the shape of the profile for Re = 70,000,
H/D = 6.0 is not in such good agreement with the experi-
mental data as other cases.

Figure 12 shows corresponding mean velocity profiles for
the impinging jet at at H/D = 6 and Re = 70,000. Profiles
are shown at radial distances of 0, 0.5 and 2.5 diameters from
the jet centreline, and the modified AJL-¢ scheme is seen to
capture the peak velocity more reliably than the other models
tested.

CONCLUSIONS

Abe et al. (2002) identified the AJL nonlinear EVM’s as
producing the most promising results in flows over curved sur-
faces. Refinements have been made to the e-based variant
of this scheme in order to improve its performance in flows
exhibiting strong near-wall skewing and impingement. The re-
sulting model has been shown to return significantly improved
results in a number of flows.
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Figure 1: Streamwise shear stress in skewed channel flow
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Figure 9: Nusselt number profile in the impinging jet at Re =
23,000 and Re = 70,000 (H/D = 2.0)
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Figure 10: Nusselt number profile in the impinging jet at Re =
23,000 and Re = 70,000 (H/D = 4.0)
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