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ABSTRACT

A flow structure based triple-product correlation model
developed by Nagano and Tagawa (1990) has been expanded
to three-dimensional turbulent flows. Three-dimensional
turbulent boundary layer data obtained away from the vortex
in a wing-body junction flow are analyzed to calculate the
contributions from eight velocity octants to the stresses and
higher order products. The analysis showed that the sweep and
ejection modes dominate the flow physics of the shear stresses
and some triple products, while the interaction modes are
negligible away from the wall. These results are used to
extend Naganao and Tagawa’s model to obtain correlations
between triple products in three-dimensional turbulent
boundary layers (3DTBL).

INTRODUCTION

Reynolds averaged Navier-Stokes equations require
modeling of the triple products among other terms. Many
turbulence diffusion models used in CFD codes, such as the
models Daly-Harlow (1970), Hanjalic-Launder (1972), Mellor-
Herring (1973), and Lumley (1978), can be found in the
literature. These models use the shear stresses, the gradient of
the shear stresses, turbulent kinetic energy dissipation rate and
the turbulent kinetic energy values to express the triple products.
Experimental testing of these models such as given by Schwarz
and Bradshaw (1994) for a three-dimensional turbulent
boundary layer (3DTBL) by Lemay et al. (1995) in a
manipulated 2DTBL show that some of these models (Daly-
Harlow and Mellor-Herring) are in good agreement only above
y'~150. These models require the turbulent-kinetic energy
dissipation rate term as input, which results in large errors
between the prediction and the data (Olcmen and Simpson,
1997).

The main motivation behind the current work was to gain
more insights to the structure of the triple products and to obtain
equations among the triple products that can simplify the
turbulent diffusion modeling used in Reynolds-Averaged
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Navier-Stokes equations. An analysis based on the work by
Nagano and Tagawa (1988, 1990) has been applied to data
obtained at seven stations in a wing-body junction flow
(Figure 1) to investigate extending their analysis to three-
dimensional (3D) flows.

DESCRIPTION OF THE FLOW

The data used here were obtained at Virginia Tech in
1995. The wing shape used in the study had a 3:2 elliptical
nose and NACA 0020 tail joined at the maximum thickness t =
7.17 cm. The approach nominal reference velocity of air flow
was 27.5 m/sec (Rey=5940) (Figure 1).

In a wing-body junction flow the approach wall
boundary layer separates from the wall and rolls towards the
wing/wall junction to generate a vortical structure near the
nose of the wing. This vortical structure wraps itself around
the wing to generate a horse-shoe vortex, which with the
pressure gradient generated by the wing results in a highly
three-dimensional flow field. In the study a three-simultaneous
velocity component LDV probe (Olcmen and Simpson,
1995b) was used to obtain time dependent velocity
information at seven stations. The data were next processed to
obtain the six Reynolds’ stresses, ten triple products and the
fifteen quadruple products, as well as the contributions from
eight octants to each of these quantities.

The station locations were located outside the
horseshoe vortex and at each station data were obtained at
thirty logarithmically spaced points by traversing the probe
perpendicular to the wall. In this paper the data are used in
wall-stress coordinates where the x axis is along the wall-
shear-stress  direction on the tunnel wall pointing
downstream and the y axis is perpendicular to the wall.
Figures 2 and 3 show the U and W mean velocities and the
shear stresses obtained at selected stations.



Table 1: Definition of the octants and the signs of the
fluctuating velocity components in different octants..
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The flow field around this particular wing is extremely
well documented; detailed references for the flow data used in
this study and data for other Reynolds numbers are discussed
in papers by Olgmen and Simpson (1990, 1995, 2001), and
Simpson (1996, 2001). All data including surface pressure
measurements and surface oil-flow visualizations are presented
by Olgmen et al. (1995a, 1995b).

Definitions of the Octants

A conditional averaging technique was employed to
calculate the Reynolds-averaged contributions from fluctuating
velocity products to the overall Reynolds averaged velocity
product. The octants are defined using the signs of the fluctuating
velocity components and are given in Table 1. The octants
resulting in positive #v value are named the interaction octants
(octants, 1, 3, 5 and 7), while the other octants are named the
sweep-ejection octants.

Reynolds-averaged mean velocity components were
calculated using the inverse of the local instantaneous velocity
magnitude as the weighing factor in order to reduce the bias error
in the data. The mean velocity components were then subtracted
from the time series data to obtain the fluctuating velocity in
time. Fluctuating velocity components with the specified
combination of the signs were next used to calculate the
contributions from each octant using the same weighing factor
used for the mean velocities.

EXTENSION OF NAGANO AND TAGAWA (1988, 1990)
MODEL FOR THREE-DIMENSIONAL FLOWS

The Nagano and Tagawa model is based on a non-
Gaussian three variable joint probability distribution expressed
as an infinite series truncated at a chosen order. Nagano and
Tagawa chose to include up to the fourth order velocity products
in their analysis. The defined joint probability distribution
equation is next used to calculate the individual octant
contributions to each second and third order product, as a linear
function of various Reynolds-averaged second, third and fourth
order products. The model and data comparison requires
reduced octant contributions from the measured data and the
reduced Reynolds-averaged second, third and fourth order
velocity correlations to insert into the model. In the following
section the extension of the model to three-dimensional flows is
discussed.
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Model Description

The statistical model developed by Nagano and Tagawa for
a 2DTBL with a passive scalar field uses a non-Gaussian three
variable joint probability distribution to calculate velocity
products. The joint probability function, P ( 4% ) is also
defined using measured second and higher order products. The
model uses the correlation coefficients rather than the actual
value of the products. All of the velocity products were
nondimensionalized with the respective powers of the normal
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stresses 3~ ,v~ , w”~ , (€g. u~v was divided (3~ \/ y* ), and is

shown as, 429 =y 2v (2 \/? ). Following their derivation
and using the same notation the extension of their model to
three-dimensional flows can be described as follows:
The Fourier transform of the joint p.d.f, y, can be
written as,
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function, y, can be expressed in terms of my, using,
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Using the expressions for the y obtained in terms of m,q and
the kg one can calculate the following relations between my,
and Ky,
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On the other hand the y equation expressed in terms of kg can
be further written as

wm;)=exp(-§(§-’+n-’+¢-’)) >

par=
Equations relating the kq, and C,, can be expressed using the
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y equation written in terms of kp, and expanding it into series
including the third order terms in the expansion
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exp(x)=]+x+%+%, and equating the terms from the

equation written in terms of C,g.. The Cpq, related to ky, can be
expressed in terms of the m,,, which are the measured Reynolds
averaged velocity products including the fourth order terms. The
process results in the following relations:
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Substituting the C,, in the y equation and by taking the inverse
Fourier transform of the resulting equation the probability
density function is expressed.
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Using this probability function the m,, can be now calculated.

The fractional contributions from each octant to a higher order
product can be calculated using
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The equation for fractional contributions is rewritten as:
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RESULTS AND DISCUSSION
Structural models for third order products

The Nagano Tagawa method which was extended to
three-dimensional flows shows that the octant contributions
both to the second and third order products are functions of the
second, third and fourth order products in general.

The next step in extending Nagano and Tagawa’s
analysis is examination of the contributions from different
octants to see if the derived equations represent the data. Figure
4 shows a good agreement between the experimental and the
modeled contributions to each of the ten triple products and the
eight octants for station five. While only station five is shown,
the other stations show good agreement with the model also.

In this study the first relations between the triple products
were obtained by equating the equations for the octants of each
of the second order products that closely matched each other as
observed from the data: octant 1 was equated to octant 7, octant
3 to octant 5. Additionally, octant 4 was equated to octant 6,
and octant 2 to octant 8, although this was observed to be true
only in limited regions of the profiles. More relations were
obtained by iteratively summing each of the relations with each
other to systematically check every available combination of
relations and observing their match with the experimental data,
although most of the relations were not justified. This process
yielded over 3,500 relations and only one relation was found to
fairly resemble the data. This relation is given below:

T —min =i 02— 107 e (= )i =0
2 2 3

Figure 4 also shows that the sum of the contributions to
each of the triple products from the interaction octants are
nearly negligible. Thus, a second set of relations was
obtained by summing the equations for the interaction
octants of the triple products and equating to zero. In other
words, for each triple product, the first, third, fifth, and
seventh octant equations were added to each other. The ten
triple products were used to find ten relations in terms of
only triple products. These relations were then used to
calculate each triple product and were compared with the
measured data. It was determined that seven of those
relations yielded good agreement with measured data. The
seven relations were found from the equations for the triple

products %29 , 4% , @ @b, avw, P, and ¥, and
these relations are listed below in the order of the triple
stress model equations used to obtain them.
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Figure 5 shows the comparison between triple product data

and results from the seven equations expressed for #27 , #° ,
3 Ard AR A2 A3 L .
a3 LUV, uwvw P29 R » triple products in the order of the

equations at stations 2, 5, and 7. Therefore, the first equation was
> -

solved for #%% ,in terms of #%> and #° , the second equation

for #%9 , and so on. For the 7%V , next the experimental data

for 792 and the #°> were used to obtain a profile and this profile

was compared to the experimental #>9 data. These equations
could also be used to solve for the other triple product terms.
The figure shows that the model and the data agree fairly well.
The accuracy of each equation is directly related to the
magnitude of the sum of the interaction octants. For many of the
triple products, data below y+ of 50 shows significant interaction
octant contributions. Thus, the relations show more deviations
from data in that region.

Additional relations were derived by using algebraic
manipulations of the above relations to express each of the triple
products as a function of only one other triple product. As an

example, #°0 =-0.6833 #° can be obtained from relations 1,
A2~ 3

3and4, u“v =-0.51488 #3  can be obtained from relations 1,
4 and 7. Such relations did not give better results than the
previously expressed relations.

CONCLUSIONS

The models developed by Nagano and Tagawa are
expanded to include three-dimensional flows. Contributions from
each of the eight octants obtained for each of the ten triple
product correlations show that the contributions from the
interaction mode octants (octants, 1, 3, 5, 7) are much smaller in
magnitude than the sweep/ejection mode octant contributions.
The model developed was successful in expressing the
contributions to each octant using the second, third and fourth
order fluctuating velocity correlations. The observations such as
that the interaction mode contributions are small and that the
Nagano-Tagawa model could be used to express the
contributions from different octants for a triple product was used
to derive relations among the triple products. These derived
relations were compared to the available experimental data with
success.
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Figure 1: Schematic figure of the wing-body junction. The
dots show the measurement locations. Full arrows in wall-
stress direction. Empty arrows in free-stream direction.
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Figure 2. U and W components of the velocity presented in
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Figure 4. Non-dimensional triple products, Nagano-Tagawa
model predictions for each octant, contributions from each
octant, contributions from interaction and sweep/ejection
octants for ten triple products presented for Station 5. Symbols
show experimental data, octants 1 through 8, O, W, [J, A,V
V¥V, A, ®. Solid lines following the symbols show octant
contribution predictions using model. Thick-solid line shows

the non-dimensional triple product.

Dashed line shows

contributions from sweep/ejection octants modes. Dot-dash line
shows contributions from interaction modes.
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Figure 5. Comparison between the seven models and
the experimental data for Stations 2, 5 and 7.
Experimental data for station 2, 5, and 7 are shown by,
o O, and, O respectively. Lines together with, +
symbol show the model predictions. Equations used to
obtain the plotted triple product is shown in the figure.





