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ABSTRACT

Direct numerical simulation (DNS) of fully-developed tur-
bulent flow in elliptical ducts is performed. The mean cross-
stream secondary flows exhibited by two counter-rotating vor-
tices which are symmetrical about the major ellipse’s axis.
The mean flow characteristics and turbulence statistics have
been obtained. The variation of the statistical quantities such
as the Reynolds stresses and turbulence intensities along the
minor axis of the elliptical cross-section were found to be sim-
ilar to plane channel data. The turbulent statistics along
the major axis was found to be inhibited by the secondary
flow transferring high-momentum fluid from the duct’s center
towards the wall. The instantaneous velocity fields in the near-
wall region revealed structures similar to the ”streaks” except
in the vicinity of the major axis endpoints where significant
reduction of the turbulent activity due to the wall transverse
curvature effect was found.

INTRODUCTION

Direct numerical simulation (DNS) has been recognized
as a powerful and reliable tool for studying turbulent flows.
Numerous studies showed that results obtained by DNS are
in excellent agreement with experimental findings, if they
are reliable (Moin and Mahesh, 1998). DNS-based studies
are advantageous to experimental methods in that a practi-
cally unrestrained, far more detailed study of the flow field
structure can be achieved. Another, perhaps even more im-
portant advantage is that DNS allows exposure of new im-
portant physical mechanisms of turbulence production and
self-sustainability. However one major difficulty that arises
with a numerical investigation of turbulent flow is the pres-
ence of a vast, continuous range of excited scales of motion
which must be correctly resolved by numerical simulation. An-
other principal restriction is that most DNS-based works have
focused on simple-geometry flows. For wall-bounded turbu-
lent flows, the majority of successful DNS-based simulations
dealt with simple geometry cases such as a pipe and a straight
square duct (Gavrilakis, 1992; Huser and Biringen, 1993; Mad-
abhushi and Vanka, 1993; Eggels et al., 1994; Nikitin, 1994,
Nikitin, 1997). Discretization of Navier—Stokes equations in
the vicinity of complex geometry boundaries is the most diffi-
cult problem for numerical simulating flow problems. The use
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of boundary-fitted, structured or non-structured grids solves
this problem, but implementing such grids leads to low-order
numerical algorithms which involve high-cost computer time,
are memory consuming, and cannot be efficiently used for
DNS.

An alternative approach is based on the immersed-
boundary (IB) method as introduced by Peskin (1972). 1B
methods were originally used to reduce the simulation of com-
plex geometry flows to that defined on simple (rectangular)
domains. This can be illustrated if we consider a flow of an
incompressible fluid around an obstacle 2 (S is its boundary)
placed onto a rectangular domain II. The flow is governed by
the Navier—Stokes and incompressibility equations with the
no-slip boundary condition on S. The fundamental idea be-
hind IB methods is to describe the flow problem, defined in
II — Q, by solving the governing equations inside an entire
rectangular II without an obstacle using simple rectangular
(cartesian or cylindrical) meshes, which, generally speaking,
do not coincide with the boundary S. To impose the no-slip
condition on an obstacle surface S (which becomes an internal
surface for the rectangular domain wherein the problem is for-
mulated), a source term f (an artificial body force) is added to
the Navier—Stokes equations. The purpose of the forcing term
is to impose the no-slip boundary condition on the xg-points
which define the immersed boundary S.

IB-based approaches differ by the methods used to intro-
duce an artificial force into the governing equations. Refer-
ences of different immersed-boundary methods can be found
in Balaras (2004) and Moin (2002). For example, a ”direct
forcing” approach was suggested by Mohd-Yusof (1997) for nu-
merical schemes using spectral methods. Fadlun et al. (2000)
and Kim et al. (2001) developed the idea of ”direct forcing” for
implementing finite-volume methods on a staggered grid. Kim
et al. (2001) contributed two basic advances for introducing
direct forcing when using immersed-boundary methods. One
was a new numerically stable interpolation procedure for eval-
uating the forcing term, and the other advance introduced a
mass source/sink to enhance the solution’s accuracy.

The main advantages of IB methods are that they are based
on relatively simple numerical codes and highly effective al-
gorithms, both of which result in considerable reduction of
required computing resources. The main disadvantage, how-
ever, in using simple computational meshes is the difficulty



in resolving local regions with steep (sharp, abrupt) varia-
tion of flow characteristics. These are especially pronounced
for high-Reynolds number flows. In addition, in order to im-
pose the boundary conditions, numerical algorithms require
that the node velocity values should be interpolated onto the
boundary points because the boundary S does not coincide
with the gridpoints of a rectangular mesh. Finally, due to the
time-stepping algorithms used in ”direct forcing” IB methods
the no-slip boundary condition is imposed with O(At?) accu-
racy. Therefore, implementation of IB methods to simulate
turbulent flows requires careful monitoring to avoid possi-
ble contamination of numerical results arising from inaccurate
boundary conditions.

Our present study is based on the direct forcing approach
suggested by Kim et al. (2001). In this paper, we applied
the IB method for DNS of fully-developed turbulent flow in
ducts with an elliptical cross-section.! An elliptical pipe is
a slight modification of a classic pipe and the simplest type
of non-circular ducts. To the best of our knowledge, Cain
and Dufly (1971) are the only authors to have presented ex-
perimental data on turbulent flow in elliptical ducts. As in
other non-circular ducts, the flow is peculiar by developing
secondary mean motions in the plane perpendicular to the
streamwise flow direction known as secondary flows of the
Prandtl’s second kind, and created by generating the mean
streamwise vorticity due to the anisotropy of the Reynolds
stresses. Such motions are an intrinsic feature of turbulent
flow in non-circular ducts and do not take place in a plane
channel or a circular pipe. Despite the fact that the secondary
velocity in non-circular ducts is only 1-3% of the stream-
wise bulk velocity, secondary motions play a significant role
by cross-stream transferring momentum, heat and mass (De-
muren and Rodi, 1984). The development of turbulent closure
models that can reliably predict turbulence-driven secondary
flows in non-circular ducts is currently unfeasible due to a lack
of detailed experimental data. DNS can provide the necessary
data, however reported DNS-based studies only relate to tur-
bulent flow through straight ducts of square cross-section. To
the knowledge of the authors, ours is the first study to perform
a DNS of turbulent flow in elliptical ducts and to report the
results of DNS calculations. Our results support the recent
trend to employ immersed-boundary methods formulated on
rectangular meshes as a tool for simulating turbulent flows.

NUMERICAL METHOD
We consider an incompressible fluid forced by pressure dif-

ference to move through an elliptical duct

G=A{(z,y,2): 22/a®+y?/b? <1, 0< 2< L,}. (1)

Fully-developed flow in a duct is governed by the Navier—
Stokes equations

2] A
- —(uV)u+vViu—-Vp+k P , (2)
ot pL.
subjected to the incompressibility constraint
V-u=0, (3)

where u = (uz, uy, uz) is the velocity field, p is the kinematic
pressure, v is the kinematic viscosity, and k is the unit vector

! The suggested numerical algorithm can be used for simulating
flows in ducts of arbitrary cross-section.
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in the z-direction. We imply the no-slip boundary condition
at the wall and periodic boundary conditions in the stream-
wise z direction. In Eq. (2), we split the pressure gradient
into two terms, where, due to the implied periodicity, the first
(Vp) does not contribute to the overall pressure drop. In or-
der to maintain a constant flow rate o, the pressure drop is
determined by the value of Ap(t), which is obtained at each
time instant from the constraint

// u(z,y, z,t)dedy = Qo = const.
Q

In Eq. (4), Q denotes the duct’s cross-section, and the integral
does not depend on z due to incompressibility.

Numerical solution to the system of equations (2-3) was ba-
sically obtained by using the IB approach suggested by Kim et
al. (2001). The only difference is that instead of using a time-
advancement scheme of Rai and Moin (1991) we employed the
algorithm suggested in (Nikitin, 1996). Both schemes exploit
third order accurate explicit Runge-Kutta methods for con-
vective terms and second order accurate implicit methods for
viscous terms; thus, overall accuracy of both schemes is of
second-order in time.

Following the IB approach, we solve the governing equa-
tions in a three-dimensional computational rectangular do-
main II

(4)

MI={(z,y,2): |z| <A, |y <B,0<z<L,, A>a, B>b},
(5)
which includes a duct with an elliptical (but can be, generally
speaking, arbitrary) cross-section. We used the second-order
accurate finite-difference discretization on a rectangular mesh
incorporating the concept of staggered grids. The Poisson
equation for the pressure is solved by fast direct methods us-
ing the fast Fourier transform in the z-direction and the cyclic
reduction method in the (z,y)-plane (Swarztrauber, 1974).

The numerical procedure can be described as follows. Start-
ing with some initial three-dimensional velocity field, the gov-
erning equations are integrated in time until a statistically
steady state is reached. Then the mean flow and turbulence
statistical quantities are obtained by further time-advancing
and averaging both in time and along the homogeneous z-
direction?. As a result of this averaging procedure is that the
mean fields depend on z and y.

In this paper, the presented results of the calculated ve-
locities and turbulence intensities are normalized by the bulk
velocity, U,. The ellipse’s major semiaxis, a, is the charac-
teristic length; I = v/ur and ur = (?w/p)l/2 are the wall
length and shear-velocity units, respectively®. For the fully-
developed flow, the mean wall shear stress, T, is balanced by
the mean pressure drop, Ap, and defined from

)
=7

D
Tw = Ap—h

4L’ (©)

Dy,
where Dy, is the hydraulic diameter, and 2 and P, are the
duct (ellipse) cross-section area and perimeter length, respec-
tively.

2In this paper, () denotes averaging in time and over the
streamwise direction. For convenience, an upper case letter =
is used for Z = (£). A quantity & means an instantaneous fluctu-
ation of &, ie., £ = (£) + ¢'.

SFor £1, the subscript T denotes that a quantity £ is normal-
ized by the wall units.



Case EP2 EP5
b/a 0.67 0.5
Dy /a 1.59 1.30
Reaq 7547 9252
Rep, 6000 6000
Nz x Ny 200 x 160 200 x 160
N, 256 256
at 256 312
b+ 171 156
L./Dy, 6.0 6.0
L} 2453 2431
nt 1.3 1.6
At mas 3.7 4.5
R} min 1.1 1.0
Ry maz 3.1 2.8
ht 9.6 9.5
AL s 4.8 4.9
At 0.37 0.16
CFL 0.69 0.32
Tovur/a 60 60

Table 1: Elliptical duct runs parameters.

ELLIPTICAL DUCT: DNS RESULTS

In this paper, geometrical and computational domain pa-
rameters are scaled on the length of the ellipse’s major semi-
axis a. Two elliptical ducts were considered*: b/a = 0.67 and
b/a = 0.5. The simulations were carried out for Rep, = 6000,
where Rep, is the Reynolds number based on the bulk veloc-
ity Up and the hydraulic diameter Dy, defined in (6). Simu-
lation parameters are summarized in table 1. The wall unit
scales are defined by the mean wall shear stress T, (6). The
cross-stream grid refinement tests were performed in order to
exclude possible non-physical contamination of the results due
to the employed numerical method. The finest computational
mesh includes 8.192 x 108 grid points, 4.84 x 108 of them in-
side an elliptical duct for cases EP2 and EP5. The size of the
smallest computational cell is about one viscous length unit
in the domain cross-section and less than 10 viscous lengths
in the streamwise direction. The mean grid width is defined
as At = (hfhfRI)1/3.

The length of the computational domain is L,/Dp = 6,
and averaging in time and in the axial direction can be con-
sidered quite adequate, in particular for the simulations with
Tavur/a > 100. This is because distributions of mean flow
properties become symmetric with respect to the ellipse’s prin-
cipal axes’.

Mean flow properties are summarized in table 2. Cy is the
friction coefficient computed from the DNS data and A(CYy) is
its relative deviation from the correlation based on Blasius’ law
when it is applied for non-circular ducts by using the hydraulic
diameter

Cf = 0.0791Re;%?%,

Dy, ReDh = UmDh/I/.

(7)

Figure 1 shows the mean streamwise velocity U, contours for
wide and narrow pipes. The corresponding values of U. /Uy
are 1.29 and 1.27. The cross-stream mean secondary flow,

4Hereafter, the ducts with b/a = 0.67 and b/a = 0.5 are re-
ferred to as "wide” and "narrow”, respectively.

5In this paper, all time-averaged statistics are obtained by us-
ing averaging over the four quadrants.
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Run EP2 EP5
Cy 0.00917  0.00908
A(Cy) 2.1% 1.0%
Ue/Us 1.29 1.28
vt 19.00 18.96
max,/U2 +U2/U,  0.0104  0.0135
max|u’|rms/Up 0.195 0.197

Table 2: Elliptical duct runs: global characteristics

Figure 1: Contours of U; (a) -
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Figure 2: Mean secondary flow contours; (a) - EP2, (b) - EP5.
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Figure 3: Mean streamwise velocity distribution along the
lines perpendicular to the wall; (a) - EP2, (b) - EP5.

which develops in non-circular ducts, affect the cross-sectional
distribution of the mean streamwise velocity. The cross-flow
streamlines of a secondary flow coincide with the contours of
the stream function ¢ (z,y) defined by U, = 9¢/0y, Uy =
—0Y/0x (Uy and Uy are the cross-stream components of the
mean velocity vector). Figure 2 shows the streamlines of the
secondary flows which appear as two pairs of counter-rotating
vortices®. The secondary vortices transfer low-momentum
fluid toward the pipe center along the minor principal axis
of the ellipse. Vice versa, the high-momentum fluid moves to-
wards the wall along the major axis.

Figure 3a shows that the streamwise velocity U, profile,
normalized by the mean shear velocity, is nearly azimuthal
symmetric. For a narrow elliptical pipe, figure 3(b) shows
that the velocity distributions along the principal axes are
different, but the profiles along the radiuses with 6 = 7/4 and
3m/8 and that along the minor axis practically coincide. This
suggests that the mean streamwise velocity is universal for

SFigure 2 shows a secondary flow in the first quadrant. A
similar distribution is seen in the remaining three quadrants.



Figure 4: Mean streamwise velocity logarithmic profile along
the minor (open circles) and major (squares) axes; dashed line
- scaling on the local shear velocity. (a) - EP2, (b) - EP5.

Figure 5: The Reynolds stress (a, b) and correlation coefficient
(c,d) of w/, and ul; (a,c) - EP2, (b,d) - EP5. For legend see
figure 3

w/4 < 6 < /2, where the wall curvature is much less than for
0 < 0 < w/8. To verify this, in figure 4 the logarithmic plots of
the streamwise velocity U, scaled with the mean shear velocity
are shown along the minor and major axes. For a wide ellip-
tical pipe (figure 4a), both profiles practically coincide over
the interval 20 < dt < 100, indicating very pronounced loga-
rithmic profile. For a narrow pipe, the profiles in figure 4(b)
show logarithmic regions with different slopes. In addition,
the velocity distribution along the major axis exhibits a lin-
ear profile U = d* over 0 < d+ < 10, which is wider than
that observed in turbulent pipes and channels. This suggests
that possible flow laminarization took place in the vicinity
of the major axis endpoints, a point which deserves further
comments. Figure 5 shows the Reynolds shear stress (u/,u’)
distributions scaled with the mean shear velocity u- and the
correlation coefficient (u,u},)/(Un,rmstz,rms). The subscript
n stands for the outward-pointing normal direction to the wall.
Therefore, (u,u,) = (uzul) and (uyu’) for = 0 and 7/2,
respectively. According to figure 5, it can be seen that there
is good agreement between the Reynolds shear stress profiles
for 0 = 7/4, 37/8 and 7/2 with those in a circular pipe. This
means that in the region 7/4 < 8 < /2, the Reynolds stresses
are not affected by the wall curvature and therefore the mean
wall shear T, is a correct scale.

Figures 6-7 show the turbulent intensities normalized by
the wall shear velocity. The plots clearly show the suppres-
sion of turbulence along the major axis. For a circular pipe,
Eggels et al. (1994) discussed the transverse curvature ef-
fect as a possible mechanism of turbulence suppression, when
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Figure 6: Normalized turbulence
Uz,rms/Ur. For legend see Fig. 3.

Figure 7: Normalized turbulence intensities near the wall,
Un,rms/Ur. For legend see Fig. 3.

the sweep events” are inhibited due to the transverse curva-
ture. For an elliptical pipe, the transverse curvature effect
is more significant leading to considerable reduction of tur-
bulence intensities along a major axis. The distribution of
the correlation coefficient (u,u!,)/(un,rmstz,rms) along minor
and major axes, presented in figures 5(c, d), exhibits consid-
erable differences for d+ > 20. Notwithstanding that the
Reynolds shear stresses (u/u’,) measured along the major axis
(figure 5) are considerably lower than those observed in pipe
and channel turbulent flow, the streamwise velocity profile is
in good agreement with the velocity universal logarithmic law
(figure 4). In endeavor to understand that, we write the equa-
tion for the mean streamwise velocity

U, oU, L A(ulul)

ox ox 8_y

82U, 9%U,
Ty ox? + oy? |’
This is the standard Reynolds-averaged Navier—Stokes equa-
tion for the streamwise force-momentum balance, where the
first and third terms describe the contribution of the cross-
stream secondary flow. Each of the four terms of the left-hand
side of (8) represents a different mechanism of the stream-
wise momentum fluxes. The cross-stream turbulent and sec-
ondary flow momentum transport result in redistribution of
the streamwise velocity. To observe the influence of each
of these mechanisms, we performed the following numerical
experiment. For the given Uz, Uy, (ugul), (uju’) fields,
U,-velocity field was obtained from (8) with only the sec-
ondary flow transport (i.e., the second and the fourth terms
are omitted) or, vice versa, only with the turbulent trans-
port (i.e., the first and the third terms are omitted). In both
simulations, the pressure drop Ap in (8) corresponds to the
turbulent flow with Rep, = 6000. Figure 8 shows the re-
sults of this numerical experiment for a narrow pipe, where

N Olugu’)
9y

+U, oU,

_ Ap
pL-

(8)

“Carrying of high-speed fluid towards the wall followed by the
energy transfer to the longitudinal and circumferential compo-
nents
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Figure 8: U,-velocity contours.
(b) - "no-secondary flow”.

(a) - ”only-secondary flow”,
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Figure 9: Balance of terms in U,-equation (8) along the axes;
(a) - major axis, Uy = 0, solid line - U,0U/dz, (b) - minor
axis, Uy = 0, solid line - UydU,/dy; (a) and (b): dashed -
ulu’,)/dx, dot-dashed - A(uyu’)/dy, squares - all terms.

the streamwise velocity field normalized by the centerline ve-
locity is shown. From figures 8(a,b), we can see that these
mechanisms play, apparently, opposite roles. In both cases,
the resulting velocity field differs considerably from the actual
velocity distribution presented in figure 1(b). From figures 1(b)
and 8(b), the "no-secondary flow” field almost does not affect
the isovels’ patterns in the near-wall region for 7/4 < 6 < /2,
but changes the flow along the major axis, transferring the
low-momentum fluid towards the center. On the contrary,
according to figures 1(b) and 8(a), the ”only-secondary flow”
significantly changes the isovels’ pattern transferring the high-
momentum fluid towards the wall along the major axis and the
low-speed fluid towards the center along the minor axis.

For comparison, figure 9 shows the terms of (8) in the near-
wall region for a narrow pipe. The momentum transport along
the major axis is described by the first two terms in (8), where
the first term represents the convection of the mean stream-
wise high-momentum fluid towards the wall. From figure 9(a),
the first two terms in (8) are of the same order of magni-
tude, which indicates that the secondary flow along the major
axis contributes significantly to the total balance. When we
compare the turbulent fluxes of momentum, d(ulu,)/dz in
figure 9(a) to A(uju’)/dy in figure 9(b), we can see that the
reduced turbulent flux along the major axis is compensated
by the induced secondary flow. This might explain why the
velocity profile along the major axis replicates the universal
logarithmic profile. The third and the forth terms in (8) rep-
resent the momentum transport along the minor axis towards
the center. According to figure 9(b), the low-momentum fluid
transport along the minor axis by the secondary flow is neg-
ligibly small. In the near-wall region 0 < d*+ < 10, the total
contribution of the momentum transport along the major axis
came out to be much less than that along the minor axis. This
reduction results in the linear profile U} = d+.

The elongated ”streaks” of alternating low- and high-speed
fluid generated near the wall are a noteworthy feature of
wall-bounded flows. It is commonly held that the near-wall
streaks have a crucial role in turbulence production. The
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Figure 11: Correlation function Q. ; solid line - d* = 10,
dashed line - d* = 20, dot-dashed line - d* = 30, dot-dot-
dashed line - d* = 50.

mean spacing between the streaks in the near-wall region is
usually obtained from the two-point autocorrelation function
of the streamwise velocity with separations in the spanwise
(in our case, azimuthal) direction, Q. (As). It is well-
accepted that the half mean streak spacing is the separation
A where the minimum (negative) value of Qu/z ul, s reached.
The spanwise spacing between the streaks for a channel flow
is AT ~ 80 + 120 in wall units for moderate Reynolds num-
ber flows. Contours of the streamwise velocity component at
the circumferential surface distanced at d* = 10 to the wall
are plotted in figure 10. Dark and light colors mark high- and
low-speed streaks corresponding to u/, > 0 and u/, < 0, respec-
tively. In the vicinity of the major axis endpoints (marked by
6 = 0, 2m), the streaks are less pronounced which is in-
dicative of turbulence attenuation by the transverse curvature
effect (figure 10). Figure 11 shows the two-point spanwise (az-
imuthal) autocorrelation function Q, ./ (As) for different dt.
As can be observed, the estimating the mean streak spacing
yields AT ~ 100.

SUMMARY

Fully developed turbulent flows in non-circular ducts seem
relatively simple as they are unidirectional, but they are ac-
tually quite complicated because secondary mean motions
develop in the cross-stream plane. These motions are driven
by generated mean streamwise vorticity due to the anisotropy
of the cross-stream Reynolds stresses. They are an intrinsic
feature of turbulent flow in non-circular ducts and play a sig-
nificant role by cross-stream transferring momentum, heat and
mass. An accurate prediction of secondary flows is still diffi-
cult for existing turbulent closure models owing to the lack of



comprehensive experimental data. Reported DNS-based data
on secondary flows have been restricted to the case of a duct
with a square cross-section.

We considered ducts with an elliptic cross-section. Al-
though an elliptical duct is simply a modification of the classic
circular pipe, it incorporates the main features of flows in non-
circular ducts. To validate the numerical procedure, DNS of
turbulent flows through a circular pipe has been carried out.
The results showed good agreement with experimental findings
and numerical results reported in the literature. Two elliptical
ducts were considered with b/a = 0.67 and b/a = 0.5 (a and
b are the ellipse’s principal radiuses). The Reynolds number
was set to Rep, = 6000, based on hydraulic diameter Dj
and bulk flow velocity. The mean streamwise velocity profiles
and the turbulence statistics were in good agreement with the
known near-wall turbulent characteristics. Cross-stream sec-
ondary motions are exhibited by two pairs of vortices which
transfer low-momentum fluid towards the duct center along
the minor axis. Vice versa, the high-momentum fluid moves
toward the wall along the major axis. The maximum inten-
sity of the secondary flows was found to be 1% and 1.4% of
bulk velocity for wide and narrow ducts, respectively. Despite
this small value, secondary flows play a role comparable with
Reynolds stresses for developing the mean velocity profile.

The mean flow characteristics, the Reynolds stresses and
turbulence intensities along the minor axis of the elliptical
cross-section were found to be similar to plane channel data.
The turbulent statistics computed along the major axis is in-
hibited by the secondary flow transferring high-momentum
fluid from the duct’s center towards the wall.

The near-wall distributions of turbulence intensities were
studied in detail and showed the significant reduction of tur-
bulent activity in the near-wall region of the major axis end-
points. Moreover, the instantaneous velocity fields in the
near-wall region revealed structures similar to the ”streaks”,
except in the vicinity of the major axis endpoints. This can be
attributed to sweep events of carrying high-speed fluid towards
the wall, which are inhibited by the wall transverse curvature
effect.
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