Modelling of turbulent heat transfer to fluid at supercritical pressure
using adaptive mesh generation
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ABSTRACT

A solution adaptive local mesh refinement method has been
developed within a structured grid system for mixed
convective heat transfer to fluids at supercritical pressure
which has very significant localised distortions due to strong
variation of properties. The adaptive mesh refinement method
developed was able to achieve a solution accuracy better than
one achieved using a very fine fixed-mesh grid but with only a
small fraction of the CPU time. This paper describes the key
strategies employed in the method developed. Simulations of
experiments are presented and discussed.

1. INTRODUCTION

Considerable interest in heat transfer to fluids at
supercritical pressure has recently been stimulated by the
active consideration of using fluids at supercritical pressure in
a number of new applications (Pitla et al, 1998). These
include supercritical pressure water oxidisation systems for
waste processing, proposals for the use of carbon dioxide at
supercritical pressure in a new generation of air-conditioning
system for cars and refrigeration systems, cooling systems for
super-conductors, liquid hydrogen-oxygen rockets, and the
development of supercritical water-cooled nuclear reactors
(Koshizuka et al., 1995).

The important characteristic of fluids at supercritical
pressure which makes them of particular interest is that their
physical properties vary rapidly with both pressure and
temperature. For example, when the temperature changes by
0.5°C near the pseudo-critical temperature, the specific heat
(cp) may change by 600%, the thermal conductivity by 50%,
and, density and viscosity by 50% (see Figure 1). Such strong
variation of thermal properties, often coupled with strong
buoyancy effect, can cause very significant localised
distortions of the flow and turbulence, resulting in local flow
reversal, flow laminarisation or reversed transition (Jackson,
2001). The modelling becomes particularly difficult as the
pressure of the working fluid approaches the critical value,
when the variation of properties is most dramatic. Very fine
grids are often needed in order to resolve the detailed structure
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and property variations locally. It can sometimes become too
costly to be economically variable for routine calculations.
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Fig. 1 Properties of CO, at 7.58MPa

Non-uniform coordinates are frequently used when there is
need for increased mesh resolution in certain regions of the
computational domain. This is usually done prior to the
solution of the governing differential equations to be carried
out based on the knowledge of the user on the particular
problem concerned. The solution adaptive mesh generation
method has been increasingly more often used in the recent
past to utilize the mesh more effectively. In this method, the
mesh distribution and/or the number of meshes are adjusted
during the iteration based on the information of the latest
solution to achieve more accurate results. For situations with
significant local flow distortions present, this can be essential.

There are two basic strategies for solution adaptive grid
generation, i.e., redistribution and local refinement. In the
redistribution approach, mesh points are re-distributed from
regions of relatively small error to regions of large error
(Dwyer et al., 1980). In the local refinement, extra mesh
points are added locally on top of the base mesh structure in
regions of relatively large error (Berger and Oliger, 1984;
Chen et al., 1997; Ilinca and Pelletier, 1998). Lee and Yeh



(1994a, 1994b) developed a hybrid adaptive gridding
procedure which combines both the redistribution and local
refinement grid methods. More detail can be found in
Thompson (1999). The present adaptive grid method is based
on the local refinement.

In the study reported in this paper, we aimed at developing
a solution adaptive mesh generation scheme for turbulent
convective heat transfer to fluids at a pressure near the
pseudo-critical value. The new scheme enables a high
accurate solution to be achieved for ‘difficult problems’
identified in earlier studies (He et al., 2004) at a reasonable
computational cost.

2. METHODOLOGY

The solution adaptive mesh generation scheme developed
was based on a multi-level, multi-block, local refinement
approach in the framework of a structured mesh. One of the
key features of the scheme was the methodology used for
defining the regions where mesh refinement was required. In
order to deal with the particular complexity of the flow and
thermal fields, a flexible, multi-sensor approach for
identifying the large error regions for mesh refinement was
developed. The key steps can be described as follows: a
number of sensor parameters are first chosen based on the
problem to be solved; these are used separately to identify
regions of refinement (each sensor parameter has its own
criterion); the individual regions are then combined to define
the overall region(s) of refinement for the level. For the
particular problem concerned, we used axial velocity gradient
in directions parallel and perpendicular to the main flow
stream and the curvature of the spatial distribution of the axial
velocity (second derivatives) to identify the large error regions
related to significant local flow variations. For a flow
involving fluids at supercritical pressure, one important issue
is the uncertainties associated with the sharp variations of
thermal properties near the pseudo-critical temperature. This
causes not only large errors in the solution but often also the
instability of the solution. In response to this, we have
introduced a third sensor parameter, the spatial gradient of a
chosen thermal property (specific heat).

The solution of the discritized equations is first solved on a
relatively coarse grid. Regions of larger errors are then
identified based on this initial solution and mesh refinement is
then automatically carried out. For turbulent shear flows, it is
clearly highly beneficial to have a non-uniform coarse mesh to
start with. As a result, the gradient sensor functions (i.e., the
velocity gradient and specific heat gradient) need slight
modification:, similar to the equidistribution function used for
mesh-redistribution method, the sensor function used in the
current study was expressed as (du/dy)dy to take into account
the effect of the current mesh sizes.

Figure 2 shows the solution-adaptive mesh refinement
procedure adopted in the current study. This method starts
with a coarse mesh which covers the entire computational
domain, based on which an initial (Level 1) calculation is
carried out. This is followed by identification of large error
regions, and refinement of mesh in those regions. Solution
has then been obtained for those refined regions. If necessary,
further mesh refinement will be automatically carried out, and
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solution obtained, and so on. The local grid refinement
method generally involves the following important issues,
which will be discussed next: i) error estimation (to detect the
areas to be refined), ii) grid generation (to create the fine grid),
iii) data structure (to manage the grid hierarchy), and iv)
interpolation (communications between the various levels).

iter=1

Fig.2 Dynamic-adaptive-mesh solution procedure

The newly developed scheme was implemented in an ‘in-
house’ finite-volume based CFD computer code SWIRL. The
QUICK and the SMART scheme were used for discretising
the convection terms for velocity and scalar variables
respectively. The SIMPLE scheme was used for coupling the
pressure and the velocity fields. The NIST Standard Reference
Database 23 (REFPROP) Version 7 was used for calculating the
temperature and pressure dependent properties of carbon dioxide.

2.1 Error estimation

2.1.1 Solution sensors. The first important step of
adaptive grid generation is to identity regions where mesh
refinement is necessary. Suitable solution sensors are needed
for this purpose. Velocity derivations are often used to form
flow sensors (Lim, et al. 2001). For the mixed convection
problems we are dealing with, it has been found that a
combination of the velocity gradient and the second derivative
of the velocity was most suitable for use in identifying regions
of strong flow distortions and was used in the current study.
In addition, the spatial gradient of specific heat was chosen to
identify the regions of large thermal property variations. This
parameter can not be replaced by the temperature gradient due
to the sharp changes in gradient near the pseudo-critical
temperature. Since the base (coarse) mesh used was non-
uniform, the variations of the flow sensor parameters across
the control volume were used, i.e., for example, (du/dy)Ay,

(ICp/hy) Ay, and (Fu/Hh?) Ay.

2.1.2 Identification of regions for mesh refinement.
There are at least two strategies for identifying regions of
mesh refinement: setting up a threshold for the solution sensor
or specifying the percentage of area for mesh refinement. The
latter has been adopted. With a user specified percentage of
area for refinement, the code will automatically find the range



of the variants of the sensor parameters and set up a threshold
appropriate for the required percentage of area for refinement.
Regions with values of sensor parameters greater than this
threshold will be flagged for refinement. It is worth noting
that although the solution adaptive grid generation can gain
mesh refinement ‘automatically’ based on the latest solution
with minimum user-interference, it is still necessary at the
beginning of solution that the user specifies a strategy for
mesh refinement including the percentage of area for mesh
refinement based on the types of problems concerned and
level of accuracy required.

2.2 Optimisation of blocks for mesh refinement

The grid points identified above can occupy very irregular
regions and some points may be detached but only with a
couple of grids between them. These irregular regions and
scattered points need to be clustered together to form the final
blocks for mesh refinement. A fine balance in efficiency,
economics and accuracy will need to be considered when
deciding the strategy for the block definition. In the current
study we cluster grid points which are only one un-flagged
point apart to the same block. In addition, we always make
blocks of mesh refinement rectangular to simplify the coding,
see Figure 3. The refinement of mesh was carried out by
simply splitting the coarse mesh in the middle (Figure 4).

Level 1

egion 2

Level 1

Level 2 Level 3

Fig. 4 Sublevels and refinements
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2.3 Data structure

Data are stored in four-dimensional arrays, i.e., ¢ (I, J, NB,
NL), where ¢ is the variable, such as velocity, turbulent
kinetic energy, etc, I and J are the local index of the grids, NB
is number of block, and NL is level of refinement. This
method of data storage is certainly not most efficient in terms
of the usage of memory, but is clearly simple and easy to
program and debug.

AL J,NB,NL)=(x,y,block,level)
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Fig. 5 Data structure for 3-level adaptive grid system
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Fig. 6 Linear interpolation in staggered grids (Level 1 to 2)

2.4 Exchange of information between levels

The improvement of the accuracy and efficiency of the
solution can only be achieved if the exchange of information
between different levels of refinement and the iteration
between the levels are suitably carried out. In the strategy we
adopted, the various blocks are treated as inter-connected sub-
computational domain and the solution from any particular
block is passed to its neighbouring blocks (often of different
level of refinement) through setting out boundary conditions at
the interface, which involves interpolation. For example,
when the block ‘level 1’ is being solved, the interfaces of this
block with block ‘level 2(a)’ and block ‘level 2(b)’ are seen as
fixed-value boundaries and these boundary values are
calculated from solutions of level 2 (a) and (b). When
solution for level 2(b) block is carried out, the boundary
values at the interface between level 1 and level 2(b) are



obtained from level 1, the boundary values at interface level
2(b)-level 3(c) are obtained from level 3(c) solution, etc. Both
linear and quadratic interpolations have been implemented in
the code. Illustration of the interpolation process for axial
velocity is shown in Figure 6. The results presented in this
paper used the linear interpolation.

3. RESULTS

The new scheme developed has been used to simulate an
experiment on convection heat transfer to carbon dioxide in a
vertical pipe at supercritical pressure (Weinberg, 1972). The
stainless steel test section, of an internal diameter of 19mm
and total length is 3.667m, was directly heated by passing
electricity through it. The working fluid, carbon dioxide,
flowed upwards from bottom to top. Cases which had
previously been found ‘difficult’ to simulate by He et al.
(2004) using conventional fixed grid method have now been
selected for study. Table 1 shows the conditions used for the
simulations.

Table 1: Initial conditions of experiments

(o l 9w . .
Test T, (°C) (W/m?) Rein Boi,
Run 1 10 15100 30061 3.25E-5
Run 2 10 21900 30061 4.71E-5

* 1) Pseudo-critical temperature is 32.2 °C at 7.58MPa
Gr
2) Bo = ———=——=— : Buoyancy parameter
Re3425 p, 0.8

3.1 Simulation 1 (Run 1)

Figure 7 shows the distribution of the axial velocity in the
entire computational domain in a 3-D presentation for a
typical case. It can be seen that the flow is significantly
distorted from the initial profile immediately after the
introduction of heating at approximated 1.2 m from the flow
entry on the left. In particular, a fairly localised peak occurs
near the start of heating at a location very close to the wall.
Another issue which arose in this case was that the bulk
temperature was lower than the pseudo-critical temperature
but the wall temperature was above it. Therefore, the thermal
properties varied particularly significantly in certain part of
the computational domain, which could not be pre-determined.

Fig. 7 Axial velocity profiles with refined regions (Run 1)

As an example, Figure 8 shows the value of one of the
solution sensors, (du/dy)Ay. The regions of large ‘errors’ are
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clearly shown. When such values are greater than a threshold
at a grid point, the point is flagged for refinement. The same
procedure is carried out for other solution sensors as well.
The mesh which has eventually been used in the solution of
this case (2-level adaptive calculation) is shown in Figure 9.
There are two blocks at level 2 which were automatically
formed based on level 1 calculation. One is in near the wall
which suitably embraces the region in which the pseudo-
critical temperature lies (and therefore the specific heat varies
most sharply) and the other covers a region immediately after
heating starts, where significant axial velocity distortion
occurs.

30 plot (dey)
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Fig. 9 Adaptive grid generation — 2 levels (Run 1)

Figure 10 shows the comparison of wall temperature
calculated using a fine mesh (182x122), a coarse mesh
(106x62) and an adaptive mesh (with a base mesh of 106x62).
It can be seen clearly that the results from the adaptive mesh
have been improved a) to be closer to the results obtained
from the fine mesh and b) to have much smoothed variations,
even better than fine-mesh results when 3-level adaptive
method was used (see 3-level calculation in the enlarged
figure). The wiggles in the axial variation of the wall
temperature exhibited in the coarse mesh results are thought to
be caused by the fact that the big variations of thermal
properties near the pseudo-critical point could not be properly
resolved. Figure 11 shows contours of the ¢, variations near
the pseudo-critical temperature for the coarse (106x62), fine
(182x122), and 3-level adaptive mesh cases. Near the pseudo-
critical temperature, mesh resolution can significantly affect
the temperature profiles predicted because of the very steep



variations in thermal properties in a narrow temperature band.
It can be seen from Table 2 that the computational time used
by the adaptive mesh method is significantly less than that
used by the solution using the fine mesh.
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Fig. 11 Cp variations (Run 1)
Table 2: Calculation time (CPU/CPUcoarse)
Fine Coarse Adaptive | Adaptive
Model | Test | usoxiony | (106x62) | Qlevels) | Glevels)
LS Run 1 17.0 1.0 1.95 2.02
Run 2 6.80 1.0 1.75
V2F Run 2 9.60 1.0 2.50
AKN Run 2 7.00 1.0 3.80
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Fig. 13 Wall temperatures using adaptive grid method



3.2 Simulation 2 (Run 2)

Figure 12 shows prediction of the wall temperatures in Run
2 with a ‘coarse’ mesh using several turbulence models, i.e.
LS (Launder-Sharma, 1974), V2F (Behnia, 1998), AKN (Abe-
Kondoh-Nagano, 1994), LB (Lam-Bremhorst, 1981), and WI
(Wilcox, 1988). It can be clearly seen that significant
oscillations occur in the predicted wall temperatures. These
are deemed to be caused by inadequately capture of the sharp
variations of thermal properties near the pseudo-critical point.
For this case, V2F model clearly performs better than others,
then LS and AKN models. Those three models were chosen
for calculations using adaptive grid. It can be seen from
Figure 13 that all three models performed well with adaptive
grid method and the results show very close to calculations
using ‘fine’ mesh grids but with much less CPU time (Table 2).
However, there is a big difference between model results and
experiment which shows the incapability of current turbulence
models in predicting the physical processes in the experiment.
This is no surprise as the physical behaviour is extremely
complicated in these experiments as discussed by Jackson
(1989, 2001). The flows and turbulence were influenced by
combined effects such as supercritical effects, buoyancy
influence, property variations, and entry effect, etc. Detailed
analysis of the performance of turbulence models is beyond
the scope of this paper.

4. CONCLUSIONS

A solution adaptive mesh generation scheme with a flexible
multi-sensor approach designed for dealing with flow
problems with complex local variations in the flow and/or
thermal fields has been developed and implemented in an ‘in-
house’ computer code.

The newly developed scheme together with some particular
implementation issues was described. The evaluation of the
efficiency of the scheme was discussed based on comparisons
with benchmark solutions of extremely fine-meshes as well as
experimental data. The cases studied involved heat transfer to
CO, at pressure 76 bar in a vertical tube with very strong
effect of buoyancy. It has been shown that, in comparison
with calculations using a very fine mesh, the accuracy of the
results obtained using the new adaptive mesh scheme was very
similar, but the computational time used was only a small
fraction.
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