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ABSTRACT

Large-eddy simulations (LES) of a continuous tundish flow
are carried out to investigate the turbulent flow structure and
vortex dynamics. The numerical computations are performed
by solving the viscous conservation equations for compress-
ible fluids. An implicit dual time stepping scheme combined
with low Mach number preconditioning and a multigrid ac-
celerating technique is developed for LES computations. The
method is validated by comparing data of turbulent pipe flow
at Rer = 1280 and cylinder flow at Re = 3900 at different
Mach numbers with experimental findings from the literature.
Finally, the characteristics of the flow in a one-strand tundish
is analyzed.

INTRODUCTION

In many engineering problems compressible and nearly in-
compressible flow regimes occur simultaneously. For example
low speed flows, which may be compressible due to surface
heat transfer or volumetric heat addition. The numerical anal-
ysis of such flows requires to solve the viscous conservation
equations for compressible fluids to capture the essential ef-
fects.

When a compressible flow solver is applied to a nearly in-
compressible flow, its performance can deteriorate in terms of
both speed and accuracy (Turkel, 1999). It is well known that
most compressible codes do not converge to an acceptable so-
lution when the Mach number of the flow field is smaller than
O(10~1). The main difficulty with such low speed flows arises
from the large disparity between the wave speeds. The acous-
tic wave speed is |[uzc|, while entropy or vorticity waves travel
at |u|, which is quite small compared to |ute¢|. In explicit time-
marching codes, the acoustic waves define the maximum time
step, while the convective waves determine the total number
of iterations such that the overall computational time becomes
large for small Mach numbers.

Different methods have been proposed to solve such mixed
flow problems by modifying the existing compressible flow
One of the most popular approaches is to use low
Mach number preconditioning methods for compressible codes
(Turkel, 1999). The basic idea of this approach is to modify
the time marching behavior of the system of equations with-
out altering the steady state solution. This is, however, only
useful when the steady state solution is sought. A straightfor-
ward extension of the preconditioning approach to unsteady
flow problems is achieved when it is combined with a dual time
stepping technique.

This idea is followed in the present paper, i.e., a highly ef-
ficient large-eddy simulation method is described based on an
implicit dual time stepping scheme combined with precondi-
tioning and multigrid. This method is validated by well-known
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case studies Alkishriwi et al. (2004) and finally, the precon-
ditioned large-eddy simulation method is used to investigate
the flow field in a continuous casting tundish.

In continuous casting of steel, the tundish enables to remove
nonmetallic inclusions from molten steel and to regulate the
flow from individual ladles to the mold. There is two types of
flow conditions in a tundish: steady-state casting where the
mass flow rate through the shroud mgy is equal to the mass
flow rate through the submerged entry nozzle into the mold
msgN, and transient casting in which the mass of steel in
a tundish varies in time during the filling or draining stages.
The motion of the liquid steel is generated by jets into the
tundish and continuously casting mold. The flow regime is
mostly turbulent, but some turbulence attenuation can occur
far from the inlet. The characteristics of the flow in a tundish
include jet spreading, jet impingement on the wall, wall jets,
and an important decrease of turbulence intensity in the core
region of the tundish far from the jet (Gardin et al. 1999) and
(Odental et al. 2002).

In previous studies, a large amount of research has been
carried out to understand the physics of the flow in a tundish
mainly through numerical simulations based on the Reynolds-
averaged NAVIER-STOKES (RANS) equations plus an appro-
priate turbulence model. To gain more knowledge about the
transient turbulence process, which cannot be achieved via
RANS solutions, large-eddy simulations of the tundish flow
field are performed.

After a concise presentation of the governing equations the
implementation of the preconditioning in the LES context us-
ing the dual time stepping technique is described. Then, the
discretization and the time marching solution technique within
the dual time stepping approach are discussed. After the de-
scription of the boundary conditions and the computational
domain of the tundish flow, the numerical results of the vali-
dation cases and the tundish simulation are presented.

GOVERNING EQUATIONS

The governing equations are the unsteady three-
dimensional compressible NAVIER-STOKES equations written
in generalized coordinates &;,1 =1,2,3
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where the quantity Q represents the vector of the conservative
variables and F¢;, Fy,; are inviscid and viscous flux vectors,
respectively. As mentioned before, preconditioning is required
to provide an efficient and accurate method of solution of
the steady NAVIER-STOKES equations for compressible flow
at low Mach numbers. Moreover, when unsteady flows are
considered, a dual time stepping technique for time accurate
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solutions is used. In this approach, the solution at the next
physical time step is determined as a steady state problem to
which preconditioning, local time stepping and multigrid are
applied.

Introducing of a pseudo-time 7 in (1), the unsteady two-
dimensional governing equations with preconditioning read
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and I'~! is the preconditioning matrix, which is to be defined
such that the new eigenvalues of the preconditioned system of
equations are of similar magnitude. In this study, a precondi-
tioning technique from Turkel (1999) has been implemented.

It is clear that only the pseudo-time terms in (2) are altered by
the preconditioning, while the physical time and space deriva-
tives retain their original form. Convergence of the pseudo-
time within each physical time step is necessary for accurate
unsteady solutions. This means, the acceleration techniques
such as local time stepping and multigrid can be immediately
utilized to speed up the convergence within each physical time
step to obtain an accurate solution for unsteady flows. The
derivatives with respect to the physical time ¢ are discretized
using a three-point backward difference scheme that results in
an implicit scheme, which is second-order accurate in time

@ = RHS (4)
or
with the right-hand side
n+1 _ 4QM n—1
RHS = -T (3Q 22 +Q +R(Q“+1))

Note that at 7 — oo the first term on left-hand side of (2)
vanishes such that (1) is recovered. To advance the solu-
tion of the inner pseudo-time iteration, a 5-stage Runge-Kutta
method in conjunction with local time stepping and multigrid
is used. For stability reasons the term % is treated im-
plicitly within the Runge-Kutta stages yielding the following
formulation for the I*" stage
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The additional term means that in smooth flows the develop-
ment in pseudo-time is proportional to the evolution in t.

NUMERICAL PROCEDURE

The governing equations are the NAVIER-STOKES equa-
tions filtered by a low-pass filter of width A, which corresponds
to the local average in each cell volume. The monotone inte-
grated large-eddy simulations (MILES) approach is used to
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implicitly model the small scale motions through the numeri-
cal scheme.

The approximation of the convective terms of the conser-
vation equations is based on a modified second-order accurate
AUSM scheme using a centered 5-point low dissipation stencil
Meinke et al. (2002) to compute the pressure derivative in the
convective fluxes. The pressure term contains an additional
expression, which is scaled by a weighting parameter x that
represents the rate of change of the pressure ratio with re-
spect to the local Mach number. This parameter determines
the amount of numerical dissipation to be added to avoid os-
cillations that could lead to unstable solutions. The parameter
x was chosen in the range 0 < x < ﬁ. The viscous stresses
are discretized to second-order accuracy using central differ-
ences, i.e., the overall spatial approximation is second-order
accurate.

A dual time stepping technique is used for the temporal
integration. In this approach, the solution at the next
physical time step is determined as a steady state problem to
which preconditioning, local time stepping and multigrid are
applied. A 5-stage Runge-Kutta method is used to propagate
the solution from time level n to n+1. The Runge-Kutta coef-
ficients oy = (57, 545 57+ %, g—i) are optimized for maximum
stability of a centrally discretized scheme. The physical time
derivative is discretized by a backward difference formula
of second-order accuracy. The method is formulated for
multi-block structured curvilinear grids and implemented on
vector and parallel computers.

TUNDISH FLOW

In the following the numerical setup of the tundish flow is
briefly described. The geometry and the flow configuration for
the simulation are shown in Fig. 1.
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Figure 1: Presentation of the main parameters of the
tundish geometry.

The numerical simulations consist of two simultaneously
performed computations on the one hand, the pipe flow is
calculated to provide time-dependent inflow data for the jet
into the tundish and on the other hand, the flow field within
the tundish. The geometrical values and the flow parameters
of the tundish are given in Table 1. The computational
domain is discretized by 12 million grid points, 5 million of
which are located in the jet domain to resolve the essential
turbulent structures. Since the jet possesses the major impact
on the flow characteristics in the tundish, it is a must to
determine in great detail the interaction between the jet and
the tundish flow.



Table 1: Physical parameters of the tundish flow.

tundish length Lj 1.847 m
tundish width B 0.459 m
tundish height H 0.471 m
inclination of side walls 7°
diameter of the shroud dgp 0.04 m
height between bottom shroud Zgp 0.352 m
diameter of the SEN dgspn 0.041 m
diameter of the stopper rod  ds, 0.0747 m
hydraulic diameter dpyq 0.6911 m
Re based on the jet diameter 25000

The boundary conditions consist of no-slip conditions on
solid walls. At the free surface, the normal velocity com-
ponents and the normal derivatives of all remaining other
variables are set zero. An LES of the impinging jet requires a
prescription of the instantaneous flow variables at the inlet sec-
tion of the jet. To determine those values a slicing technique
based on a simultaneously conducted LES of a fully developed
turbulent pipe flow is used.

VALIDATION

To validate the efficiency and the accuracy of the method,
large-eddy simulations of turbulent pipe flow at a Reynolds
number Re; = 1280 based on the friction velocity w-, which
corresponds to a diameter D based Reynolds number Rep =
ug D/v = 22550, are investigated. The Mach number based
on the centerline velocity of the pipe is set to Ma = 0.02
and the physical time step At = 0.01. The comparison of the
pure explicit LES results from Riitten et al. (2001 & 2005)
and the LES findings of the implicit method in Figs. 2 and
3 shows a good agreement for the mean velocity profiles and
the turbulence intensity distributions.

The flow around a cylinder at a diameter based Rep = 3900
is performed at a freestream Mach number M~ = 0.05 and
a physical time step At = 0.02. Figure 4 shows the stream-
wise velocity distribution on the centerline in the wake of the
cylinder compared with the LES distribution of a pure explicit
scheme without preconditioning at a Mach number Mo, = 0.1
and with experimental data from the literature. The profiles of
the velocity fluctuations of the streamwise and vertical compo-
nents at X/D = 1.54 as a function of Y/ D presented in Figs. 5
and 6 corroborate the correspondence with the measurements
from Lourenco and Shih (1994).

The efficiency analysis is performed for different parameters
such as the size of the physical time step, the required residual
constraint for the inner pseudo-time iteration, the Mach num-
ber and the Reynolds number. Figs. 7 and 8 demonstrate the
impact of the size of the physical time step and the Mach num-
ber on the efficiency of the implicit scheme. It is evident that
as the size of the physical time step increases, the required
number of iterations in the inner pseudo-time cycle grows.
Fig. 8 demonstrates the impact of the Mach number on the
efficiency of the implicit scheme. The results, which are based
on the simulations of turbulent channel flow at Re, = 590 and
Ma = 0.01, show a speedup in the range of 9 to 60 compared
to the explicit scheme for a reduction of two orders of magni-
tude. Note, that for a reduction of three orders of magnitude
this speedup is lowered to a range of 6 to 26.
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RESULTS

The typical structure of the velocity field in the tundish
is shown in Figs. 9-15. These figures show the computed
flow pattern in different locations within the tundish. Figs.
9 to 12 visualize the jet flow into the tundish. It is clear
that the turbulent flow contains a wide range of length scales.
Large eddies with a size comparable to the diameter of the
pipe occur together with eddies of very small size. The figures
evidence the jet spreading, jet impingement on the wall, and
wall jets. The jet ejected from the ladle reaches the bottom
of the tundish at high velocities, spreads in all directions and
then mainly flows along the side walls of the tundish. This
behavior can be seen in Figs. 12 and 14. Such a flow pattern
leads to nonmetallic inclusions, which are to be avoided.

Figs. 13 and 14 represent flow field structures in the center
and near-wall longitudinal vertical planes of the tundish. The
streamlines in these figures illustrate the vortex dominated
flow in the tundish. It can be seen that the flow includes
strong vortices and recirculation regions mainly in the inlet
region of the tundish, which is fully turbulent. In Fig. 15 the
turbulent jet flow in a tundish is visualized by the A2 criterion.

CONCLUSION

An efficient large-eddy simulation method for nearly incom-
pressible flows based on solutions of the governing equations of
viscous compressible fluids has been introduced. The method
uses an implicit time accurate dual time-stepping scheme in
conjunction with low Mach number preconditioning and multi-
grid acceleration. To validate the scheme, large-eddy simula-
tions of turbulent pipe flow at Re, = 1280, and cylinder flow
at Rep = 3900 have been performed. The results show the
scheme to be efficient and to improve the accuracy at low Mach
number flows. Generally, the new method is 6-40 times faster
than the basic explicit 5-stage Runge-Kutta scheme.

A large-eddy simulation of the flow field in a tundish is
conducted to analyze the flow structure, which determines to
a certain extent the steel quality. The findings evidence many
intricate flow details that have not been observed before by
customary RANS approaches.
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Figure 2: Mean velocity distributions of turbulent pipe flow

at Re,-=1280.
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Figure 3: Turbulence intensity distributions of turbulent pipe
flow at Re,=1280.
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Figure 4: Streamwise velocity as a function of X/D on the
centerline Y/D = 0, Z/D = 0 in the cylinder wake at Rep =
3900.
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Figure 5: Streamwise velocity fluctuations as a function of
Y/D in the cylinder wake at X/D = 1.54.
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Figure 6: Vertical velocity fluctuations as a function of Y/D
in the cylinder wake at X/D = 1.54.
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Figure 7: Convergence of the inner iterations at Ma = 0.01

for channel flow computations at Re-=590. Figure 10: Instantaneous entropy contours in the center plane

of the jet.
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Figure 11: Instantaneous velocity vectors in the center plane
of the jet.
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Figure 9: Instantaneous entropy contours at X/L1=0.
Figure 12: Instantaneous velocity vectors at X/L1=0.
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Figure 13: Streamlines at Z/B; = 0.

Figure 14: Streamlines near the outer wall.

Figure 15: A2 contours of the injected jet.
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